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A posteriori estimates distinguishing the error components and
adaptive stopping criteria for numerical approximations of

parabolic variational inequalities ∗

Jad Dabaghi†‡ Vincent Martin§ Martin Vohralík†‡

August 29, 2019

Abstract

We consider in this paper a model parabolic variational inequality. This problem is discretized with
conforming Lagrange finite elements of order p ≥ 1 in space and with the backward Euler scheme in
time. The nonlinearity coming from the complementarity constraints is treated with any semismooth
Newton algorithm and we take into account in our analysis an arbitrary iterative algebraic solver. In the
case p = 1, when the system of nonlinear algebraic equations is solved exactly, we derive an a posteriori
error estimate on both the energy error norm and a norm approximating the time derivative error. When
p ≥ 1, we provide a fully computable and guaranteed a posteriori estimate in the energy error norm
which is valid at each step of the linearization and algebraic solvers. Our estimate, based on equilibrated
flux reconstructions, also distinguishes the discretization, linearization, and algebraic error components.
We build an adaptive inexact semismooth Newton algorithm based on stopping the iterations of both
solvers when the estimators of the corresponding error components do not affect significantly the overall
estimate. Numerical experiments are performed with the semismooth Newton-min algorithm and the
semismooth Newton–Fischer–Burmeister algorithm in combination with the GMRES iterative algebraic
solver to illustrate the strengths of our approach.

Keywords: parabolic variational inequality, complementarity condition, semismooth Newton method, al-
gebraic solver, a posteriori error estimate, adaptivity, stopping criterion

1 Introduction
Let Ω ⊂ R2 be a polygonal domain and let T > 0 denote the final time. Let H1(Ω) be the space of L2

functions on the domain Ω which admit a weak gradient in [L2(Ω)]2 and H1
0 (Ω) its zero-trace subspace.

Consider the affine space H1
g (Ω) :=

{
v ∈ H1(Ω), v = g on ∂Ω

}
, where g is a positive constant and denote

the dual space of H1
0 (Ω) by H−1(Ω), with the duality pairing 〈·, ·〉. Consider a bilinear continuous form

a(·, ·) :
[
H1(Ω)

]2 × [H1(Ω)
]2 → R, coercive on

[
H1

0 (Ω)
]2. Let Kg be a nonempty closed convex subset of

H1
g (Ω)×H1

0 (Ω) and let Kt
g be its evolutive-in-time version

Kt
g :=

{
v ∈ L2(0, T ;H1

g (Ω))× L2(0, T ;H1
0 (Ω)), v(t) ∈ Kg a.e. in ]0, T [

}
. (1.1)

We consider the following parabolic variational inequality: for the data f := (f1, f2) ∈
[
L2(0, T ;L2(Ω))

]2
and the initial condition u0 = (u0

1, u
0
2) ∈ Kg, find u = (u1, u2) ∈ Kt

g such that ∂tu ∈
[
L2(0, T ;H−1(Ω))

]2
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and such that for all v ∈ Kt
g∫ T

0

〈∂tu,v − u〉(t) dt +

∫ T

0

a(u,v − u)(t) dt ≥
∫ T

0

(f ,v − u)Ω(t) dt,

u(0) = u0.

(1.2)

Problem (1.2) belongs to the wide class of parabolic variational inequalities of the first kind, see Glowinski [1]
and Lions [2] for a general introduction. Evolutionnary variational inequalities have attracted recent interest
in a wide variety of applications. We mention the problems in modeling pricing of American options [3, 4],
the applications in stochastic control [5], and obstacle problems in mechanics [2, 6, 7, 8]. Existence and
uniqueness of a weak solution u ∈ Kt

g for (1.2) is classical, see [2, 9, 10] and the references therein.
For spatial discretization of variational inequalities, the finite element method is commonly employed,

see Chen and Nochetto [11], Veeser [12], Braess [13], or Ben Belgacem et al. [14] for a P1 conforming solution,
and Bürg and Schröder [15], Dabaghi et al. [16] for a Pp nonconforming solution. Discontinuous Galerkin
methods have been studied in Wang et al. [17] and Gudi and Porwal [18, 19, 20], finite volumes in Herbin
and Marchand [21], Berton and Eymard [22], and Steinbach [23], and discontinuous skeletal methods in
the recent work of Cicuttin, Ern, and Gudi [24]. The discretization in time often uses the backward Euler
scheme.

Among the spectrum of methods for the solution of the systems of algebraic inequalities arising from
discretizations of (1.2), let us mention the interior point method of Wright [25], the active set strategy
by Kanzow [26], the primal-dual active set strategy by Hintermüller et al. [27], and the the family of
the semismooth Newton methods (see [28, 29, 30, 31]). In this work, we use a saddle-point Lagrangian
formulation giving rise at each time step n to a nonlinear system of algebraic equations of the form

Sn(Xn
h ) = 0, (1.3)

where S is a nonlinear operator and Xn
h ∈ Rm, m ≥ 1, is the unknown vector of degrees of freedom. We

employ any semismooth linearization procedure starting from an initial guessXn,0
h ∈ Rm and giving at each

step k ≥ 1 the system of linear algebraic equations

An,k−1Xn,k
h = F n,k−1, (1.4)

where the matrix An,k−1 ∈ Rm,m and the vector F n,k−1 ∈ Rm are constructed from Xn,k−1
h ∈ Rm.

Solving (1.4) with a direct method may be very expensive. A popular approach is to employ an inexact
algebraic solver giving at each iterative linear algebraic step i ≥ 0 and each linearization step k ≥ 1 a
residual vector Rn,k,i

h ∈ Rm defined by

Rn,k,i
h := F n,k−1 − An,k−1Xn,k,i

h . (1.5)

In the present work, we focus on answering the following questions: To which precision should (1.4) be
solved? To which precision should (1.3) be resolved? Can we estimate the total error, as well as each error
component (discretization, linearization, algebraic) of the overall numerical approximation? Can we reduce
the typical number of iterations of both linearization and algebraic solvers?

Our key tool to propose answers to the above questions is the a posteriori error analysis. A huge
amount of work has been performed in the recent past on a posteriori error estimates for partial differential
equations. We can mention the pioneering work of Prager and Synge [32], Babuška and Rheinboldt [33],
Ainsworth and Oden [34], and Verfürth [35] for a general introduction. For elliptic variational inequalities,
we can mention the contributions [36, 37, 38, 15, 11, 12, 13, 18, 20, 39]. In contrast to the last references,
in Bürg and Schröder [15] and Dabaghi et al. [16], a Pp conforming finite element discretization, yielding a
nonconforming approximation of variational inequalities for p ≥ 2 are employed. In [16], three components
of the error are distinguished: the discretization error, the semismooth linearization error, and the iterative
algebraic error.

In the context of parabolic problems, a posteriori analysis has received significant attention over the
past decade. For parabolic equations, we mention Verfürth [40], Bernardi, Bergham, and Mghazli [41], and
Ern, Smears, and Vohralík [42, 43], where in particular in [42], local efficiency in space and in time for the
estimators is proven. For parabolic variational inequalities, the edifice seems still under construction. We
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can mention Moon, Nochetto, Petersdorff, and Zhang [44] for a study of the Black–Scholes model, Achdou,
Hecht, and Pommier [7] for a study of the parabolic obstacle problem, and Gimperlein and Stocek [45] for
a large variety of parabolic variational inequalities. In the present work, we follow the methodology of [42]
and [16] to derive a posteriori error estimates for a parabolic variational inequality with distinction of each
component of the error. In particular, this enables us to define adaptive stopping criteria for nonlinear
semismooth and linear algebraic solvers, which is new to the best of our knowledge. Importantly, it enables
to save many unnecessary iterations.

To exemplify our approach, we consider the system of unsteady parabolic variational inequalities as
an extension of the stationary model problem studied in [16]. Two important difficulties arise for the a
posteriori analysis in this setting:

1) Denoting by uk,ihτ :=
(
uk,i1hτ , u

k,i
2hτ

)
the space-time numerical approximation, where the indices k, i

indicate the presence of inexact linearization and algebraic solvers and where uk,ihτ is piecewise affine and
continuous in time and piecewise polynomial of degree p and continuous for each variable in space, uk,ihτ
is nonconforming in the sense that uk,ihτ /∈ Kt

g. Denoting by λk,ihτ the discrete counterpart of the Lagrange
multiplier λ, the same phenomenon occurs in the sense that λk,ihτ is not also conforming. 2) We cannot
easily provide, as for the parabolic heat equation, an a posteriori upper bound for the time derivative∥∥∥∂t (u− uk,ihτ)∥∥∥

[L2(0,T ;H−1(Ω))]2
. To tackle this difficulty at least for p = 1 and exact solvers, where we

simply denote uhτ = uk,ihτ , we construct an element z ∈ Kt
g such that ‖u− z‖[L2(0,T ;H1

0 (Ω))]
2 is closely

linked to ‖∂t (u− uhτ )‖[L2(0,T ;H−1(Ω))]2 and such that the a posteriori error estimate holds as

‖u− uhτ‖2[L2(0,T ;H1
0 (Ω))]

2 + ‖u− z‖2[L2(0,T ;H1
0 (Ω))]

2 + ‖(u− uhτ ) (·, T )‖2L2(Ω) ≤ (η(uhτ ))
2
, (1.6)

with η(uhτ ) depending only on the approximate solution uhτ .
This contribution is structured as follows. We first present the model problem, its weak formulation,

and its discretization with the backward Euler scheme in time and the conforming Pp (p ≥ 1) finite
element method in space. In particular, we show that our nonlinear system may be seen as a system of
parabolic partial differential equations with complementarity constraints. Then, we present the concept
of inexact semismooth Newton methods to solve our system of algebraic inequalities at each time step.
Next, we provide the a posteriori analysis following the approach of the equilibrated flux reconstructions.
In particular, we derive an a posteriori error estimate for affine finite elements (p = 1) at each time step n
when the semismooth Newton solver as well as the algebraic iterative solver have converged. Then we can
estimate the error as shown in (1.6). We next provide a second a posteriori error estimate, valid for any
p ≥ 1 at each semismooth linearization iteration k ≥ 1 and at each iterative algebraic solver iteration i ≥ 0.
This estimate only bounds the first component on the left-hand side of (1.6), but distinguishes the different
error components, namely the discretization error, the semismooth linearization error, the algebraic error,
and the initial error, taking the form∥∥∥u− uk,ihτ ∥∥∥[L2(0,T ;H1

0 (Ω))]
2
≤ η(uk,ihτ ) ≤ ηk,idisc + ηk,ilin + ηk,ialg + ηinit.

This lead us to a proposition of an adaptive inexact semismooth Newton algorithm for parabolic problems.
Finally, we present numerical experiments when p = 1 with the Newton-min algorithm as well as with
the Newton–Fischer–Burmeister algorithm in combination with the GMRES algebraic solver, assessing the
strengths of our approach.
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2 Model problem and setting
Let Ω ⊂ R2 be a polygonal domain and T > 0 be the final simulation time. The model problem we consider
here is to find u1, u2, and λ such that

∂tu1 − µ1∆u1 − λ = f1 in Ω× ]0, T [

∂tu2 − µ2∆u2 + λ = f2 in Ω× ]0, T [

(u1 − u2)λ = 0, u1 − u2 ≥ 0, λ ≥ 0 in Ω× ]0, T [

u1 = g on ∂Ω× ]0, T [

u2 = 0 on ∂Ω× ]0, T [

u1(0) = u0
1, u2(0) = u0

2, u
0
1 − u0

2 ≥ 0 in Ω

(2.1)

Here, the real coefficients µ1 and µ2 are supposed constant and strictly positive, and, for the sake of
simplicity, we assume that the Dirichlet boundary condition g > 0 is also a constant. The source term
f := (f1, f2) is supposed to belong to

[
L2(0, T ;L2(Ω))

]2. Finally, the initial conditions are supposed to
satisfy u0 :=

(
u0

1, u
0
2

)
∈ H1

g (Ω) × H1
0 (Ω) and u0

1 − u0
2 ≥ 0 a.e. in Ω. The two first equations of (2.1) are

of parabolic type. The third line of (2.1) states linear complementarity conditions expressing that either
u1 − u2 = 0 and λ > 0, or u1 − u2 > 0 and λ = 0. Observe that when u1 − u2 > 0 and λ = 0 everywhere in
Ω×]0, T [, problem (2.1) is equivalent to solving two separated heat equations. On the other hand, when f1

and f2 are independent of time and ∂tu1 = ∂tu2 = 0, (2.1) becomes the stationary contact problem between
two membranes studied in [14, 46, 47, 16].

We define the sets

Λ :=
{
χ ∈ L2(Ω), χ ≥ 0 a.e. in Ω

}
and Ψ := L2(0, T ; Λ).

We also introduce the nonempty closed convex set

Kg :=
{

(v1, v2) ∈ H1
g (Ω)×H1

0 (Ω), v1 − v2 ≥ 0 a.e. in Ω
}
, (2.2)

as well as its evolutive-in-time version Kt
g defined by (1.1). Note that since (g, 0) ∈ L2(0, T ;H1

g (Ω)) ×
L2(0, T ;H1

0 (Ω)), Kt
g is nonempty. The compact notations

a(u,v) :=

2∑
α=1

µα (∇uα,∇vα)Ω , b(v, χ) := (χ, v1 − v2)Ω (2.3)

will be useful henceforth, where u = (u1, u2), v = (v1, v2), a is continuous and coercive as described in the
introduction, and b is a continuous bilinear form on

[
H1(Ω)

]2 × L2(Ω).
The weak formulation of problem (2.1) is given by the parabolic variational inequality (1.2) and it is

well-posed. To illustrate the construction of the numerical discretization in Section 3 below, let us also
mention that alternatively, one could look for (u1, u2, λ) ∈ L2(0, T ;H1

g (Ω)) × L2(0, T ;H1
0 (Ω)) × Ψ such

that ∂tuα ∈ L2(0, T ;H−1(Ω)), α = 1, 2, and satisfying for almost all t ∈ ]0, T [ and for all (v1, v2, χ) ∈
H1

0 (Ω)×H1
0 (Ω)× Λ

2∑
α=1

〈∂tuα(t), vα〉+

2∑
α=1

µα (∇uα(t),∇vα)Ω − (λ(t), v1 − v2)Ω =

2∑
α=1

(fα(t), vα)Ω ,

(χ− λ(t), u1(t)− u2(t))Ω ≥ 0,

u(0) = u0.

(2.4)

The second line in (2.4) can also be interpreted as a linear complementarity constraint, cf. a derivation in
the case of a stationary problem in [47, 16], reading as

(u1 − u2) (t) ≥ 0, λ(t) ≥ 0, λ(t) (u1 − u2) (t) = 0. (2.5)

Finally, standard notations ∇ and ∇· are used respectively for the weak gradient and divergence opera-
tors. For a nonempty set O of R2, we denote its Lebesgue measure by |O| and the L2(O) scalar product for
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u, v ∈ L2(O) by (u, v)O :=
∫
O uv dx. We also use the notations ‖v‖2O := (v, v)O, ‖w‖

2
O :=

∑
α=1,2 ‖wα‖

2
O

for w = (w1, w2) ∈ [L2(O)]2, and ‖∇v‖2O := (∇v,∇v)O. Then, we define the space energy norm:

∀v = (v1, v2) ∈ [H1
0 (O)]2, |‖v‖|O :=

{
2∑

α=1

µα ‖∇vα‖2O

} 1
2

. (2.6)

For a function v = (v1, v2) ∈ [L2(0, T ;H1
0 (Ω))]2, we then define the space-time energy norm by

|‖v‖|Ω,T :=

{∫ T

0

|‖v‖|2Ω (t) dt

} 1
2

. (2.7)

3 Discretization and semismooth Newton linearization
The discretization relies on the backward Euler scheme in time and on the conforming finite element method
of degree p ≥ 1 in space.

3.1 Setting
For the time discretization, we introduce a division of the interval [0, T ] into subintervals In := [tn−1, tn],
1 ≤ n ≤ Nt, such that 0 = t0 < t1 < · · · < tNt = T . The time steps are denoted by ∆tn = tn − tn−1,
n = 1, · · · , Nt. For the space discretization, we consider a conforming simplicial mesh Th of the domain Ω,
i.e., Th is a set of triangles K verifying ⋃

K∈Th

K = Ω,

where the intersection of the closure of two elements of Th is either an empty set, a vertex, or an edge. The
set of vertices of Th is denoted by Vh and is partitioned into interior vertices V int

h and boundary vertices
Vext
h . We denote by N int

h the number of interior vertices. The vertices of an element K ∈ Th are collected
in the set VK . Denote by hK the diameter of a triangle K and h := maxK∈Th hK . Furthermore, for the
vertex a ∈ Vh, let the patch ωa

h ⊂ Ω be the domain made up of the elements of Th that share a. The vector
nωa

h
stands for its outward unit normal. In the sequel, we use the discrete conforming space of piecewise

polynomial and continuous functions

Xp
h :=

{
vh ∈ C0(Ω); vh|K ∈ Pp(K) ∀K ∈ Th

}
⊂ H1(Ω),

where Pp(K) stands for the set of polynomials of total degree less than or equal to p on the element K. We
also denote by Vpd the set of the Lagrange nodes of the space Xp

h and by N p
d its cardinality. The internal

degrees of freedom are collected in the set Vp,int
d whose cardinality is N p,int

d , and the boundary ones are
collected in the set Vp,ext

d . The Lagrange basis functions of Xp
h are denoted by (ψh,xl)1≤l≤Npd

for xl ∈ Vpd .
We recall that ψh,xl(xl) = 1 for all xl ∈ Vpd and ψh,xl(xl′) = 0 for all (xl′)1≤l′ 6=l≤Npd

∈ Vpd . In the particular
case p = 1, the set V1

d coincides with Vh and the Lagrange basis functions are the “hat” basis functions that
are denoted by ψh,a, a ∈ Vh. Still in this case, we denote Ma := (ψh,a, 1)ωa

h
=
|ωa
h |
3 . We also introduce the

boundary-aware set and space

Xp
gh := {vh ∈ Xp

h, vh = g on ∂Ω} ⊂ H1
g (Ω), Xp

0h := Xp
h ∩H

1
0 (Ω),

and the convex set

Kp
gh :=

{
(v1h, v2h) ∈ Xp

gh ×X
p
0h, v1h(xl)− v2h(xl) ≥ 0 ∀ (xl)1≤l≤Npd

∈ Vpd
}
. (3.1)

Recall the defintion (2.2) and observe that K1
gh ⊂ Kg holds in the case p = 1 but Kp

gh 6⊂ Kg for p ≥
2, see [11, 12, 14, 16]. For α = 1, 2, let us introduce the piecewise constant in time functions f̃α ∈
L2(0, T ;L2(Ω)) such that

(f̃α)|In :=
1

∆tn

∫
In

fα(t) dt, and denote f̃nα := (f̃α)|In ∈ L2(Ω), f̃ :=
(
f̃1, f̃2

)
, f̃n :=

(
f̃n1 , f̃

n
2

)
. (3.2)
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3.2 Discrete reduced problem and discrete saddle-point problem
Let

cn(unh,vh) :=
1

∆tn

2∑
α=1

(unαh, vαh)Ω , 1 ≤ n ≤ Nt.

Given u0
h ∈ Kp

gh, the discrete reduced problem corresponding to (1.2) consists in searching for all 1 ≤ n ≤ Nt

unh ∈ Kp
gh such that for all vh ∈ Kp

gh

cn
(
unh − un−1

h ,vh − unh
)

+ a(unh,vh − unh) ≥
(
f̃n,vh − unh

)
Ω
. (3.3)

Following the Lions–Stampacchia theorem [48], we have:

Proposition 1. The discrete problem (3.3) admits a unique solution.

Recall that when p ≥ 2, unh is typically nonconforming in the sense that unh /∈ Kg. Moreover, following
the methodology of [16, 14, 18, 15], knowing unh, the solution to (3.3), we define for 1 ≤ n ≤ Nt and for all
α = 1, 2 the functions λnαh ∈ X

p
h by

〈λnαh, zαh〉h := (−1)α
[
− 1

∆tn

(
unαh − un−1

αh , zαh
)

Ω
− µα (∇unαh,∇zαh)Ω +

(
f̃nα , zαh

)
Ω

]
∀zαh ∈ Xp

0h,

〈λnαh, ψh,xl〉h := 0 ∀xl ∈ Vp,ext
d ,

(3.4)

where for all (wh, vh) ∈ Xp
h ×X

p
h,

〈wh, vh〉h :=
∑
a∈Vh

wh(a)vh(a)Ma if p = 1, and 〈wh, vh〉h := (wh, vh)Ω if p ≥ 2.

Lemma 3.1. Let 1 ≤ n ≤ Nt be a time step and (un1h, u
n
2h) ∈ Kp

gh be the solution of the reduced discrete
problem (3.3). Then, the functions λn1h and λn2h defined by (3.4) coincide.

Proof. From (3.4) and taking z1h = z2h = ψh,xl with xl any internal Lagrange node, we get

〈λn1h − λn2h, ψh,xl〉h =
1

∆tn

2∑
α=1

[(
unαh − un−1

αh , ψh,xl
)

Ω
+ (µα∇unαh,∇ψh,xl)Ω

]
−
(
f̃n1 + f̃n2 , ψh,xl

)
Ω
.

Taking v1h := un1h + ψh,xl and v2h := un2h + ψh,xl so that (v1h, v2h) ∈ Kp
gh, we see

〈λn1h − λn2h, ψh,xl〉h ≥ 0 ∀l = 1 . . .N p,int
d . (3.5)

In the same way, taking v1h := un1h − ψh,xl and v2h := un2h − ψh,xl , we have (v1h, v2h) ∈ Kp
gh and we get

〈λn1h − λn2h, ψh,xl〉h ≤ 0 ∀l = 1 . . .N p,int
d . (3.6)

The conclusion follows the last lines of [16, Lemma 2.1].

Following Lemma 3.1, we can set λnh := λn1h = λn2h ∈ X
p
h. Moreover, λnh satisfies the following property:

Lemma 3.2. Let 1 ≤ n ≤ Nt, let (un1h, u
n
2h) ∈ Kp

gh be the solution of the reduced discrete problem (3.3),
and let λnh be defined by (3.4). Then, there holds

〈λnh, ψh,xl〉h ≥ 0 ∀xl ∈ Vp,int
d .

Proof. For xl ∈ Vp,int
d , observe that (v1h, v2h) := (un1h + ψh,xl , u

n
2h) ∈ Kp

gh. Using the reduced problem (3.3),
the characterization (3.4) with z1h = ψh,xl ∈ X

p
0h, and Lemma 3.1, we get for all l = 1 . . .N p,int

d

1

∆tn

(
un1h − un−1

1h , ψh,xl
)

Ω
+ µ1 (∇un1h,∇ψh,xl)Ω −

(
f̃n1 , ψh,xl

)
Ω

= 〈λh, ψh,xl〉h ≥ 0.
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Following Lemma 3.2 we suggest the following definition for the discrete convex set associated to λnh

Definition 3.3. Let, for all p ≥ 1,

Λph :=
{
vh ∈ Xp

h; 〈vh, ψh,xl〉h ≥ 0 ∀xl ∈ Vp,int
d , 〈vh, ψh,xl〉h = 0 ∀xl ∈ Vp,ext

d

}
. (3.7)

Remark 3.4. Observe that Λph 6⊂ Λ for p ≥ 2. In the case p = 1, Λph reduces to

Λ1
h =

{
vh ∈ X1

0h; vh(a) ≥ 0 ∀a ∈ V int
h

}
⊂ Λ. (3.8)

For p = 1, the construction above provides the positivity of the discrete Lagrange multiplier λnh in
internal vertices of the mesh. In the case p ≥ 2, the positivity of λnh ∈ Λph only holds in a weak sense, which
will in particular allow for the equivalence stated in Lemma 3.5 below. We also note that for any χnh ∈ Λph
and any vh ∈ Kp

gh,

〈χnh, vn1h − vn2h〉h =
∑

xl∈Vp,intd

(vn1h − vn2h) (xl) 〈χnh, ψh,xl〉h ≥ 0. (3.9)

It will be useful to also consider the discrete formulation corresponding to problem (2.4). Given(
u0

1h, u
0
2h

)
∈ Kp

gh, it consists, for each n = 1 · · ·Nt, in searching (un1h, u
n
2h, λ

n
h) ∈ Xp

gh × Xp
0h × Λph such

that for all (z1h, z2h, χh) ∈ Xp
0h ×X

p
0h × Λph,

1

∆tn

2∑
α=1

(
unαh − un−1

αh , zαh
)

Ω
+

2∑
α=1

µα (∇unαh,∇zαh)Ω − 〈λ
n
h, z1h − z2h〉h =

2∑
α=1

(
f̃nα , zαh

)
Ω
,

〈χh − λnh, un1h − un2h〉h ≥ 0.

(3.10)

Let us also construct the basis (Θh,xl)1≤l≤Npd
of Xp

h, dual to (ψh,xl)1≤l≤Npd
, satisfying

〈Θh,xl , ψh,xl〉h = 1 ∀xl ∈ Vpd ,〈
Θh,xl , ψh,x∗l

〉
h

= 0 ∀xl∗ ∈ Vpd , xl∗ 6= xl,
(3.11)

as in [16]. Note that each vector Θh,xl of the dual basis can be determined by inverting a diagonal (lumped
mass) matrix for p = 1 and the finite element mass matrix for p ≥ 2; importantly, all Θh,xl , 1 ≤ l ≤ N p,int

d ,
belong to Λph. Note also that the support of Θh,xl is typically not local. We can now link formulations (3.3)
and (3.10):

Lemma 3.5. Let 1 ≤ n ≤ Nt be a time step. For any solution (un1h, u
n
2h, λ

n
h) of problem (3.10), the pair

(un1h, u
n
2h) is a solution of problem (3.3). Conversely, for any solution (un1h, u

n
2h) of problem (3.3), defining

the function λnh = λnαh, α = 1, 2, by (3.4), the triple (un1h, u
n
2h, λ

n
h) is a solution to problem (3.10).

Proof. For the case p = 1, the proof is a direct extension of [46, Lemma 13] and for p ≥ 2 it employs the
arguments of [16, Lemma 2.3]. Let p ≥ 1 and let (un1h, u

n
2h, λ

n
h) be the solution of problem (3.10). The first

lines of [16, Lemma 2.3] prove that the discrete vector unh is an element of Kp
gh. Now, we prove (3.3). Let

(v1h, v2h) ∈ Kp
gh. Taking z1h := v1h − un1h ∈ X

p
0h and z2h := v2h − un2h ∈ X

p
0h as test functions in (3.10)

provides

〈λnh, v1h − v2h〉h− 〈λ
n
h, u

n
1h − un2h〉h = a(unh,vh−unh)−

(
f̃n,vh−unh

)
Ω

+ cn
(
unh − un−1

h ,vh − unh
)
. (3.12)

Using (3.9) with λnh ∈ Λph and vh ∈ Kp
gh and taking χh = 0 ∈ Λph in (3.10) gives

〈λnh, v1h − v2h〉h ≥ 0, 〈−λnh, un1h − un2h〉h ≥ 0. (3.13)

Combining (3.12) and (3.13) provides (3.3).
Conversely, let (un1h, u

n
2h) ∈ Kp

gh be the solution of the reduced problem (3.3) and let (z1h, z2h) ∈
Xp

0h × Xp
0h be arbitrary. The Lagrange multiplier λnh defined by (3.4) combined with Lemma 3.1 and

Lemma 3.2 yields λnh ∈ Λph. Next, considering the first line of (3.4) with α = 1, 2 and subtracting these
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equations gives the first line of (3.10). It remains to prove the second line of (3.10). Let now (v1h, v2h) ∈ Kp
gh.

The first line in (3.10) now implies (3.12) and the reduced problem (3.3) yields

− 〈λnh, un1h − un2h〉h + 〈λnh, v1h − v2h〉h ≥ 0 ∀ (v1h, v2h) ∈ Kp
gh. (3.14)

For v1h := un1h−
∑

xl∈Vp,intd

u1h(xl)ψh,xl ∈ X
p
gh and v2h := 0 ∈ Xp

0h, (v1h, v2h) ∈ Kp
gh, and using the definition

of Λph, we have 〈λnh, v1h − v2h〉h = 0 and the inequality (3.14) yields −〈λnh, un1h − un2h〉h ≥ 0. To conclude
the proof, we use (3.9) with unh ∈ Kp

gh and for any χh ∈ Λph.

As a consequence of Lemma 3.5 and Proposition 1, problem (3.10) is well-posed and admits a unique
weak solution for each n = 1, · · · , Nt. We finish this section by the following remark:

Remark 3.6. Taking in (3.10) χh = 0 and next χh = 2λnh ∈ Λph gives 〈λnh, un1h − un2h〉h = 0. As unh ∈ Kp
gh

and λnh ∈ Λph, we obtain a discrete equivalent of the complementarity condition (2.5) valid for all polynomial
degrees p ≥ 1 :

(un1h − un2h) (xl) ≥ 0 ∀xl ∈ Vp,int
d , 〈λnh, ψh,xl〉h ≥ 0, ∀xl ∈ Vp,int

d , 〈λnh, ψh,xl〉h = 0 ∀xl ∈ Vp,ext
d ,

〈λnh, un1h − un2h〉h = 0.
(3.15)

3.3 Numerical resolution and discrete complementarity constraints
Let n be fixed in {1, . . . , Nt}. We write in an algebraic form the discrete problem (3.10), using the expres-
sion (3.15) for the constraints. We employ the subset (Θh,xl)1≤l≤Np,intd

of the basis (Θh,xl)1≤l≤Npd
of Λph,

dual to (ψh,xl)1≤l≤Np,intd
in the sense of (3.11). For the first component of the discrete solution un1h ∈ X

p
gh,

we use the lifting un1h = u∗,n1h + g where u∗,n1h ∈ X
p
0h and g > 0 is the constant boundary value. The algebraic

representation of the lifting is denoted by Xn
1h ∈ RN

p,int
d , so that

un1h =

Np,intd∑
l=1

(Xn
1h)l ψh,xl + g where (Xn

1h)l = u∗,n1h (xl). (3.16)

The second component of the discrete solution un2h is expressed in the Lagrange basis (ψh,xl)1≤l≤Np,intd
as

un2h =

Np,intd∑
l=1

(Xn
2h)l ψh,xl where (Xn

2h)l = un2h(xl). (3.17)

The initial value u0
h ∈ Kp

gh is decomposed in the same way into (u∗,01h + g, u0
2h), and (u∗,01h , u

0
2h) ∈ [Xp

0h]2 is

represented by X0
h =

[
X0

1h,X
0
2h

]T ∈ R2Np,intd . The discrete Lagrange multiplier λnh is decomposed in the
basis (Θh,xl)1≤l≤Npd

as

λnh =

Np,intd∑
l=1

(Xn
3h)l Θh,xl with Xn

3h ∈ RN
p,int
d , (3.18)

because λnh ∈ Λph and thus the components for xl ∈ Vp,ext
d are 0.

In algebraic form, the first line of (3.10) reads

EnpXn
h = F n,

where Xn
h := [Xn

1h,X
n
2h,X

n
3h]

T ∈ R3Np,intd is the unknown algebraic vector and Enp ∈ R2Np,intd ,3Np,intd is the
rectangular matrix defined by

Enp :=

[
µ1S + 1

∆tn
M 0 −Id

0 µ2S + 1
∆tn

M +Id

]
,
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Id ∈ RN
p,int
d ,Np,intd is the identity matrix, and the finite element mass matrix M and the stiffness matrix S

belonging to RN
p,int
d ,Np,intd are defined by

Ml,m := (ψh,xl , ψh,xm)Ω , Sl,m := (∇ψh,xl ,∇ψh,xm)Ω , 1 ≤ l,m ≤ N p,int
d . (3.19)

The right-hand side vector F n is defined by blocks ([F n]
T

:= [F n1 ,F
n
2 ]
T ) as

(F nα )l :=

(
f̃nα +

1

∆tn
un−1
αh , ψh,xl

)
Ω

1 ≤ l ≤ N p,int
d , α = 1, 2. (3.20)

With 1 = (1, 1, · · · , 1)
T ∈ RN

p,int
d , the first complementarity constraint of (3.15) is expressed as

Xn
1h + g1−Xn

2h ≥ 0.

Next, using (3.11), the second complementarity constraint of (3.15) is given for any xl ∈ Vp,int
d by

〈λnh, ψh,xl〉h =

Np,intd∑
l′=1

(Xn
3h)l′

〈
Θh,xl′ , ψh,xl

〉
h

= (Xn
3h)l ≥ 0.

For the last constraint in (3.15), using again (3.11), we get

〈λnh, un1h − un2h〉h = (Xn
1h −Xn

2h) ·Xn
3h + g1 ·Xn

3h. (3.21)

Thus, for any p ≥ 1, problem (3.10) can be written as: given X0
h ∈ R2Np,intd , for n = 1, · · · , Nt, search

Xn
h ∈ R3Np,intd such that

EnpXn
h = F n,

Xn
1h + g1−Xn

2h ≥ 0, Xn
3h ≥ 0, (Xn

1h + g1−Xn
2h) ·Xn

3h = 0.
(3.22)

Remark 3.7. Note that u∗,n1h and un2h are expressed in the Lagrange basis (ψh,xl)1≤l≤Np,intd
, while the discrete

lagrange multiplier λnh is expressed in a subset (Θh,xl)1≤l≤Np,intd
of the dual basis to (ψh,xl)1≤l≤Npd

. It is also
possible to express λnh in the Lagrange basis (ψh,xl)1≤l≤Npd

of Xp
h, see [49, Sect. 1.2.3]. In such a case, the

complementary constraints are expressed with submatrices of the finite element mass matrix and the identity
matrix blocks in the matrix Enp are replaced by the mass matrix.

3.4 Equivalent rewriting using C-functions
We now express the complementarity constraints given by the second line of (3.22) via non-differentiable
equations. Let us recall that a function f : (Rm)

2 → Rm, m ≥ 1, is a C-function or a complementarity
function, see [29, 30], if

∀(x,y) ∈ (Rm)
2

f(x,y) = 0 ⇐⇒ x ≥ 0, y ≥ 0, x·y = 0.

Examples of C-functions are the min and max functions

(min{x,y})l := min {xl,yl} , (max{x,y})l := max {xl,yl} l = 1, . . . ,m, (3.23)

the Fischer–Burmeister function

(fFB(x,y))l :=
√
x2
l + y2

l − (xl + yl) l = 1, . . . ,m, (3.24)

or the Mangasarian function

(fM(x,y))l := ξ(|xl − yl|)− ξ(yl)− ξ(xl) l = 1, . . . ,m,
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where ξ : R 7→ R is an increasing function satisfying ξ(0) = 0. The min function, the max func-
tion, the Fischer–Burmeister function, and the Mangasarian function are not Fréchet differentiable ev-
erywhere. Let C̃ be any C-function satisfying for m = N p,int

d C̃(Xn
1h + g1 − Xn

2h,X
n
3h) = 0 ⇐⇒

{Xn
1h + g1−Xn

2h ≥ 0, Xn
3h ≥ 0, and (Xn

1h + g1−Xn
2h) ·Xn

3h = 0}. Then, introducing the function C :

R3Np,intd → RN
p,int
d defined as C(Xn

h ) = C̃(Xn
1h + g1 − Xn

2h,X
n
3h), problem (3.22) can be equivalently

rewritten as: given X0
h ∈ R2Np,intd , for each n ≥ 1, search Xn

h ∈ R3Np,intd such that{
EnpXn

h = F n,

C(Xn
h ) = 0.

(3.25)

3.5 Linearization by semismooth Newton methods

Let a time step n ≥ 1 be fixed and let X0
h ∈ R2Np,intd be given. We provide in this section the linearization

of system (3.25). Observe that the 2N p,int
d first lines of (3.25) are linear and the nonlinearity occurs in the

last N p,int
d lines of (3.25). Even if the function C is not Fréchet differentiable, it is locally Lipschitz and

continuous. As a result of the Rademacher theorem (see [50, 29, 30]), the function C is differentiable almost
everywhere, or more precisely, it belongs to the class of strong semismooth functions. The semismooth
Newton linearization is defined as follows: let an initial guess Xn,0

h ∈ R3Np,intd be given; typically, Xn,0
h :=

Xn−1
h , where Xn−1

h is the last iterate from the previous time step (including possibly inexact solvers). At
step k ≥ 1, one looks for Xn,k

h ∈ R3Np,intd such that

An,k−1Xn,k
h = Bn,k−1, (3.26)

where An,k−1 ∈ R3Np,intd ,3Np,intd is a matrix and Bn,k−1 ∈ R3Np,intd is the right-hand side vector given by

An,k−1 :=

[
Enp

JC(Xn,k−1
h )

]
Bn,k−1 :=

[
F n

JC(Xn,k−1
h )Xn,k−1

h −C(Xn,k−1
h )

]
. (3.27)

Here, the notation JC(Xn,k−1
h ) stands for the Jacobian matrix in the sense of Clarke. For example, consid-

ering the semismooth min function (3.23), we have, for p ≥ 1,

min {Xn
1h + g1−Xn

2h,X
n
3h} = min




un1h(x1)− un2h(x1)
...

un1h(xNp,intd
)− un2h(xNp,intd

)

 ,


(Xn

3h)1
...

(Xn
3h)Np,intd


 ,

and if the block matrices K and G in RN
p,int
d ,3Np,intd are defined respectively by

K :=
[
IdNp,intd ×Np,intd

,−IdNp,intd ×Np,intd
,0Np,intd ×Np,intd

]
, (3.28)

G :=
[
0Np,intd ×Np,intd

,0Np,intd ×Np,intd
, IdNp,intd ×Np,intd

]
, (3.29)

the lth row of the Jacobian matrix in the sense of Clarke JC(Xn,k−1
h ) is either given by the lth row of K if

un,k−1
1h (xl)− un,k−1

2h (xl) ≤
(
Xn,k−1

3h

)
l
, or by the lth row of G if un,k−1

1h (xl)− un,k−1
2h (xl) >

(
Xn,k−1

3h

)
l
.

For an “exact semismooth Newton” resolution of (3.25), choose a tolerance εlin close to the machine
precision and stop the linearization procedure when the relative linearization residual satisfies∥∥∥∥∥

(
F n − EnpX

n,k
h

C(Xn,k
h )

)∥∥∥∥∥/
∥∥∥∥∥
(
F n − EnpX

n,0
h

C(Xn,0
h )

)∥∥∥∥∥ ≤ εlin. (3.30)

3.6 Iterative algebraic solvers and inexact linearization
Let a linearization step k ≥ 1 be fixed and choose an iterative algebraic solver with iteration index i ≥ 0.
Given an initial guessXn,k,0

h ∈ R3Np,intd , often taken asXn,k,0
h := Xn,k−1

h , whereXn,k−1
h is the last available
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iterate from the previous semismooth Newton step (including possibly inexact algebraic solver), the residual
in (3.26) is defined by

Rn,k,i
h := Bn,k−1 − An,k−1Xn,k,i

h . (3.31)

In fact, the residual Rn,k,i
h ∈ R3Np,intd is a block vector

Rn,k,i
h :=

[
Rn,k,i

1h ,Rn,k,i
2h ,Rn,k,i

3h

]T
,

where Rn,k,i
αh ∈ N p,int

d , α = 1, 2, are the components associated to the block equation in (3.22), whereas
Rn,k,i

3h ∈ N p,int
d is associated with the block inequality (constraints) in (3.22).

“Inexact semismooth Newton” resolution of (3.25) consists in, on each step k ≥ 1, stopping the algebraic
iterations when the relative algebraic residual satisfies∥∥∥Rn,k,i

h

∥∥∥/∥∥∥Bn,k−1 − An,k−1Xn,k,0
h

∥∥∥ ≤ εkalg, (3.32)

where the term εkalg is commonly called the “forcing term”, see [51, 52, 53, 54]. When the algebraic stopping
criterion (3.32) is satisfied, one updates the solution as

Xn,k
h := Xn,k,i

h ,

and once the linearization stopping criterion (3.32) is satisfied, one updates the solution as

Xn
h := Xn,k

h .

In this way, un−1
1h , un−1

2h are the functional representations of the vectors Xn−1
1h and Xn−1

2h , i.e. Xn−1,k,i
αh

when the stopping criteria are met.
We provide in Section 5 below the alternative to the classical stopping criteria (3.30) and (3.32).

4 A posteriori error analysis
In this section, we derive two a posteriori error estimates. First, we establish an a posteriori error estimate
when p = 1 and when both the algebraic and linearization solvers have converged. Next, we derive an a
posteriori error estimate when p ≥ 1 at any semismooth linearization step k ≥ 1 and any step of the iterative
algebraic solver i ≥ 0.

4.1 Approximate solution
At each time step 1 ≤ n ≤ Nt, we try to solve the nonlinear system (3.25) giving in particular the degrees
of freedom of the numerical solution Xn,k,i

h ∈ R3Np,intd where k ≥ 1 is the semismooth Newton step and
i ≥ 0 is the algebraic solver step. The functional representations of the vectors Xn,k,i

1h and Xn,k,i
2h , denoted

by un,k,i1h and un,k,i2h are given as in (3.16) and (3.17), and the function of Xn,k,i
3h denoted by λn,k,ih is given

as in (3.18). Obviously,
(
un,k,i1h , un,k,i2h , λn,k,ih

)
∈ Xp

gh ×X
p
0h ×X

p
h ∀1 ≤ n ≤ Nt. Next, we associate to the

functions in space un,k,i1h ∈ Xp
gh and un,k,i2h ∈ Xp

0h, 1 ≤ n ≤ Nt, their space-time representations uk,i1hτ , u
k,i
2hτ

uk,i1hτ |In :=
un,k,i1h − un−1

1h

∆tn
(t− tn) + un,k,i1h ∀1 ≤ n ≤ Nt,

uk,i2hτ |In :=
un,k,i2h − un−1

2h

∆tn
(t− tn) + un,k,i2h ∀1 ≤ n ≤ Nt.

Concerning the discrete Lagrange multiplier λn,k,ih ∈ Xp
h, its space-time representation is defined by a

piecewise constant-in-time function λk,ihτ
λk,ihτ |In := λn,k,ih .
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Note that this construction ensures that uk,iαhτ , α = 1, 2, are continuous and piecewise affine in time, so that
∂tu

k,i
αhτ ∈ L2(0, T ;H−1(Ω)). In the expressions of uk,i1hτ , u

k,i
2hτ , and λ

k,i
hτ , the indices k, i are kept to indicate

the presence of inexact solvers; more precisely, un−1
αh are equal to un−1,k,i

αh for the last iterates k and i when
the stopping criteria are met. For each time step n, we also denote

un,k,i1hτ := uk,i1hτ |In , un,k,i2hτ := uk,i2hτ |In , (4.1)

so that
∂tu

n,k,i
1hτ |In =

1

∆tn

(
un,k,i1h − un−1

1h

)
, ∂tu

n,k,i
2hτ |In =

1

∆tn

(
un,k,i2h − un−1

2h

)
.

4.2 Representation of the residual
We first start by giving a functional representation to (3.31), following [55]. We associate respectively with
Rn,k,i

1h and Rn,k,i
2h elementwise discontinuous polynomials rn,k,i1h and rn,k,i2h of degree p ≥ 1 that vanish on the

boundary of Ω. These can be easily computed solving on each element K ∈ Th a small problem with an
element mass matrix given as follows. For xl ∈ Vp,int

d , denote by Nh,xl the number of mesh elements forming
the support of the basis function ψh,xl . Then, for all K ∈ Th and for all α ∈ {1, 2}, define rn,k,iαh |K ∈ Pp(K)
such that:

(rn,k,iαh , ψh,xl)K :=
(Rn,k,i

αh )l
Nh,xl

and rk,iαh|∂K∩∂Ω := 0

for all Lagrange basis functions ψh,xl ∈ X
p
h, xl ∈ V

p,int
d , nonzero on K. It is easily seen that the first 2N p,int

d

lines of (3.31) then read

µ1

(
∇un,k,i1h ,∇ψh,xl

)
Ω

=
(
f̃n1 + λ̃n,k,ih,l − r

n,k,i
1h − ∂tun,k,i1hτ , ψh,xl

)
Ω
∀l = 1, . . . ,N p,int

d ,

µ2

(
∇un,k,i2h ,∇ψh,xl

)
Ω

=
(
f̃n2 − λ̃

n,k,i
h,l − r

n,k,i
2h − ∂tun,k,i2hτ , ψh,xl

)
Ω
∀l = 1, . . . ,N p,int

d ,
(4.2)

where

λ̃n,k,ih,l =

{
λn,k,ih (xl) if p = 1,

λn,k,ih (function λn,k,ih , the index l is discarded) if p ≥ 2.
(4.3)

We also use the shorthand notation

λ̃n,k,ih,a =

{
λn,k,ih (a) if p = 1,

λn,k,ih if p ≥ 2.

The functional representation of (3.31) given by (4.2) is essential for our a posteriori analysis as we will see
in the sequel.

4.3 Flux reconstructions
Our a posteriori analysis relies on the equilibrated flux reconstructions following the concepts of [56, 57,
58, 16]. We construct a discretization flux reconstruction σn,k,iαh,disc ∈ H(div,Ω) and an algebraic error flux
reconstruction σn,k,iαh,alg ∈ H(div,Ω). More precisely, the discretization flux reconstruction is obtained by
solving mixed finite element systems on the patches ωa

h around the mesh vertices a ∈ Vh on the mesh
Th, while the algebraic flux σn,k,iαh,alg is obtained via solving local problems on a hierarchy of nested grids.
The fluxes σn,k,iαh,alg,σ

n,k,i
αh,disc are reconstructed in the Raviart–Thomas subspaces of H(div,Ω). The Raviart–

Thomas spaces of order p ≥ 1 [59, 60, 61] are defined by

RTp(Ω) := {τh ∈ H(div,Ω), τh|K ∈ RTp(K) ∀K ∈ Th} ,

where RTp(K) := [Pp(K)]
2

+ ~xPp(K), with ~x = [x1, x2]
T . For a ∈ Vh, let

RTp(ω
a
h ) := {τh ∈ H(div, ωa

h ), τh|K ∈ RTp(K), ∀K ∈ Th such that K ⊂ ωa
h} ,
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and let Pd
p(Th|ωa

h
) stand for piecewise discontinuous polynomials of order p in the patch ωa

h . Define conse-
quently the spaces Va

h and Qa
h by

Va
h :=

{
τh ∈ RTp(ω

a
h ), τh·nωa

h
= 0 on ∂ωa

h

}
, Qa

h :=
{
qh ∈ Pd

p(Th|ωa
h

), (qh, 1)ωa
h

= 0
}
, (4.4)

when a ∈ V int
h and

Va
h :=

{
τh ∈ RTp(ω

a
h ), τh·nωa

h
= 0 on ∂ωa

h\∂Ω
}
, Qa

h := Pd
p(Th|ωa

h
) (4.5)

when a ∈ Vext
h .

4.3.1 Discretization flux reconstructions

For all time steps 1 ≤ n ≤ Nt, let
(
un,k,i1h , un,k,i2h , λn,k,ih

)
be the approximate solution given by (3.31), verifying

in particular (4.2). For each vertex a ∈ Vh and each α ∈ {1, 2}, define σn,k,i,aαh,disc ∈ Va
h and γn,k,i,aαh ∈ Qa

h by
solving: (

σn,k,i,aαh,disc, τh

)
ωa
h

−
(
γn,k,i,aαh ,∇·τh

)
ωa
h

= −
(
µαψh,a∇un,k,iαh , τh

)
ωa
h

∀τh ∈ Va
h ,(

∇·σn,k,i,aαh,disc, qh

)
ωa
h

=
(
g̃n,k,i,aαh , qh

)
ωa
h

∀qh ∈ Qa
h ,

(4.6)

where the spaces Va
h and Qa

h are defined by (4.4)–(4.5). The right-hand sides are given as

g̃n,k,i,aαh :=
(
f̃nα − (−1)αλ̃n,k,ih,a − r

n,k,i
αh − ∂tun,k,iαhτ |ωa

h

)
ψh,a − µα∇un,k,iαh ·∇ψh,a.

Note that it follows from (4.2) with the hat test functions ψh,a (∈ Xp
h for all polynomial degrees p ≥ 1),(

g̃n,k,i,aαh , 1
)
ωa
h

= 0 ∀a ∈ V int
h . (4.7)

This implies the Neumann compatibility condition for (4.6). At each time step 1 ≤ n ≤ Nt, the discretization
flux reconstruction is defined by

σn,k,iαh,disc :=
∑
a∈Vh

σn,k,i,aαh,disc.

The following proposition can be shown as in [55, 16]:

Proposition 2. The flux reconstruction σn,k,iαh,disc ∈ H(div,Ω) and satisfies the equilibration property(
∇·σn,k,iαh,disc, qh

)
K

=
(
f̃nα − (−1)αλn,k,ih − rn,k,iαh − ∂tun,k,iαhτ , qh

)
K
∀qh ∈ Pp(K), ∀K ∈ Th. (4.8)

4.3.2 Algebraic error flux reconstructions

The algebraic error flux reconstructions σn,k,iαh,alg, α = 1, 2, are obtained by the methodology of [55] and yield

σn,k,iαh,alg ∈ H(div,Ω) and ∇·σn,k,iαh,alg = rn,k,iαh .

4.3.3 Total flux reconstructions

Finally, the total flux reconstructions are the sums

σn,k,iαh := σn,k,iαh,disc + σn,k,iαh,alg α = 1, 2, (4.9)

so that (
∇·σn,k,iαh , qh

)
K

=
(
f̃nα − (−1)αλn,k,ih − ∂tun,k,iαhτ , qh

)
K
∀qh ∈ Pp(K), ∀K ∈ Th. (4.10)

For α = 1, 2, all these fluxes are extended piecewise constant in time as(
σk,iαhτ ,σ

k,i
αhτ,disc,σ

k,i
αhτ,alg

)
∈
[
L2(0, T ;H(div,Ω))

]3
,

σk,iαhτ |In = σn,k,iαh , σk,iαhτ,disc|In = σn,k,iαh,disc, σ
k,i
αhτ,alg|In = σn,k,iαh,alg, ∀1 ≤ n ≤ Nt.

(4.11)

As a shorthand notation, we will also use σn,k,iαhτ := σk,iαhτ |In .
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4.4 An a posteriori error estimate for p = 1 and exact solvers
In this section, we establish an a posteriori error estimate between the exact solution u ∈ Kt

g given by (1.2)
and the approximate numerical solution for p = 1 when the semismooth Newton solver and the iterative
algebraic solver have converged. In this case, we discard the indices k and i. Note that when p = 1, the
constraints in (3.15) imply that the approximate solution is conforming in the sense that uhτ ∈ Kt

g and
λhτ ∈ Ψ.

Definition 4.1. Let 1 ≤ n ≤ Nt, K ∈ Th, and α = 1, 2. We define the residual estimator ηnR,K,α, the flux
estimator ηnF,K,α, the constraint estimator ηnC,K , and the data oscillation estimator ηnosc,K,α by the temporal
functions, for all t ∈ In,

ηnR,K,α(t) :=
hK
π
µ
− 1

2
α

∥∥∥f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαhτ
∥∥∥
K
, (4.12)

ηnF,K,α(t) :=
∥∥∥µ 1

2
α∇unαhτ + µ

− 1
2

α σnαhτ

∥∥∥
K
, (4.13)

ηnC,K(t) := 2 (λnh, u
n
1hτ − un2hτ )K , (4.14)

ηnosc,K,α(t) := CPFhΩµ
− 1

2
α

∥∥∥fα − f̃nα∥∥∥
K
. (4.15)

Remark 4.2. The estimators (4.12)–(4.15) are an extension of the estimators of [47] derived in the case
of elliptic variational inequations to the parabolic case. They reflect various violations of physical properties
of the approximate solution (un1hτ , u

n
2hτ , λ

n
hτ ): ηnR,K,α and ηnF,K,α represent the nonconformity of the flux,

i.e., the fact that −µα∇unαhτ 6∈ L2(0, T ;H(div,Ω)); ηnC,K reflects inconsistencies in the complementarity
conditions at the discrete level, i.e., the fact that (un1hτ −un2hτ )λnh 6= 0. Note that the last constraint in (3.15)
for p = 1 requires that (un1h−un2h)λnh vanishes at each vertex of Th but not everywhere in Ω. Finally, ηnosc,K,α

represents the local distance between the right hand side and its time-averages over In. Note that this latter
term is an estimator of

∥∥∥fα − f̃nα∥∥∥
H−1(Ω)

(see (4.21) further) with a rather pessimistic constant, see the

discussion in [42, Rem. 5.4] and the references therein).

4.4.1 A control of the energy error

Recall the Poincaré–Friedrichs and the Poincaré–Wirtinger inequalities, cf. [62, 63]. Denoting by vO the
mean value of v over domain O and hO the diameter of O,

‖v‖O ≤ CPFhO ‖∇v‖O ∀v ∈ H1
0 (O), (4.16a)

‖v − vO‖O ≤ CPWhO ‖∇v‖O ∀v ∈ H1(O). (4.16b)

We then have:

Theorem 4.3 (case p = 1 and exact solvers). Let u ∈ Kt
g be the exact solution given by (1.2). Let

uhτ ∈ Kt
g and λhτ ∈ Ψ be the approximate solutions for p = 1 and exact solvers. Consider the equilibrated

flux reconstructions σαhτ ∈ L2(0, T ;H(div,Ω)) given by (4.9), (4.11). Using the error estimators defined
by (4.12)–(4.15), there holds

|‖u− uhτ‖|2Ω,T + ‖(u− uhτ ) (·, T )‖2Ω ≤ η
2 :=

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnR,K,α + ηnF,K,α

)2) 1
2

+

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

) 1
2


2

+

Nt∑
n=1

∫
In

∑
K∈Th

ηnC,K(t) dt + ‖(u− uhτ ) (·, 0)‖2Ω .

(4.17)

To prove Theorem 4.3, we first introduce the following lemma.
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Lemma 4.4. Let a and b be the forms defined in (2.3). Let u ∈ Kt
g be the weak solution from (1.2)

and let y := (y1, y2) ∈ Kt
g be arbitrary. Then, for the vector y∗ := (y∗1 , y

∗
2) := (u1 − y1, u2 − y2) ∈[

L2(0, T ;H1
0 (Ω))

]2, there holds

A :=

∫ T

0

((f ,y∗)Ω − (∂tuhτ ,y
∗)Ω − a(uhτ ,y

∗) + b(y∗, λhτ )) (t) dt

≤

{ Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnR,K,α + ηnF,K,α

)2
(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

} 1
2

 |‖y∗‖|Ω,T .
(4.18)

Proof. Adding and subtracting σαhτ (t) ∈ H(div,Ω) and using the Green formula with y∗α(t) ∈ H1
0 (Ω),

α = 1, 2, and employing the decomposition fα = f̃nα +
(
fα − f̃nα

)
, we have

A =

∫ T

0

2∑
α=1

(
f̃nα − ∂tuαhτ −∇·σαhτ − (−1)αλhτ , y

∗
α

)
Ω

(t) dt

−
∫ T

0

2∑
α=1

(
µ

1
2
α∇uαhτ + µ

− 1
2

α σαhτ , µ
1
2
α∇y∗α

)
Ω

(t) dt +

∫ T

0

2∑
α=1

(
fα − f̃nα , y∗α

)
Ω

(t) dt.

Let α = 1, 2, 1 ≤ n ≤ Nt, t ∈ In, and K ∈ Th be fixed. Denoting by wK the mean value over K of
w ∈ L2(Ω) and using the property (4.10), one has(

f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαhτ , y∗α
)
K

(t)

=
(
µ
− 1

2
α

(
f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαhτ

)
, µ

1
2
α

(
y∗α −

(
y∗α
)
K

))
K

(t).

Using the Cauchy–Schwarz inequality and next the Poincaré–Wirtinger inequality (4.16b) with CPW = 1
π

for the convex mesh element K, we get(
f̃nα − ∂tunαhτ − (−1)αλnh −∇·σnαhτ , y∗α

)
K

(t) ≤ ηnR,K,α
∥∥∥µ 1

2
α∇y∗α

∥∥∥
K

(t). (4.19)

Next, as a result of the Cauchy–Schwarz inequality, we have(
µ

1
2
α∇unαhτ + µ

− 1
2

α σnαhτ , µ
1
2
α∇y∗α

)
K

(t) ≤ ηnF,K,α
∥∥∥µ 1

2
α∇y∗α

∥∥∥
K

(t). (4.20)

Finally, the Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality over the entire computational
domain Ω give (

fα − f̃nα , y∗α
)

Ω
(t) ≤ CPFhΩµ

− 1
2

α

∥∥∥fα − f̃nα∥∥∥
Ω

∥∥∥µ 1
2
α∇y∗α

∥∥∥
Ω

(t)

=

( ∑
K∈Th

(ηnosc,K,α)2(t)

) 1
2 ∥∥∥µ 1

2
α∇y∗α

∥∥∥
Ω

(t).
(4.21)

Therefore, combining (4.19)–(4.21) and applying the Cauchy–Schwarz inequality, we get the desired result.

Proof of Theorem 4.3. Observe that [64, Theorem 5.9.3] gives

1

2
‖(u− uhτ ) (·, T )‖2Ω =

1

2
‖(u− uhτ ) (·, 0)‖22 +

∫ T

0

2∑
α=1

〈∂t(uα − uαhτ ), uα − uαhτ 〉(t) dt. (4.22)

Then posing B := |‖u− uhτ‖|2Ω,T +
1

2
‖(u− uhτ ) (·, T )‖2Ω, using definition (2.7) and (4.22), we get

B =

∫ T

0

(a(u− uhτ ,u− uhτ ) + 〈∂tu,u− uhτ 〉 − (∂tuhτ ,u− uhτ )Ω) (t)dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .
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Then, using the weak formulation (1.2) with v = uhτ ∈ Kt
g, we obtain

B ≤
∫ T

0

((f − ∂tuhτ ,u− uhτ )Ω − a(uhτ ,u− uhτ )) (t) dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .

Next, adding and subtracting
∫ T

0

b(u − uhτ , λhτ )(t) dt and noting that (−λhτ , u1 − u2)Ω (t) ≤ 0 for a.e

t ∈]0, T [ because λhτ ∈ Ψ, we obtain

B ≤
∫ T

0

((f − ∂tuhτ ,u− uhτ )Ω − a(uhτ ,u− uhτ ) + b(u− uhτ , λhτ )) (t) dt

+

Nt∑
n=1

∫
In

∑
K∈Th

ηnC,K
2

(t) dt +
1

2
‖(u− uhτ ) (·, 0)‖2Ω .

Finally, employing Lemma 4.4 with y = uhτ ∈ Kt
g and using the Young inequality A1A2 ≤ 1

2

(
A2

1 +A2
2

)
,

∀A1, A2 ≥ 0, we get the desired result.

4.4.2 A control of the temporal derivative error

So far, we have established an a posteriori error estimate between the exact solution u ∈ Kt
g and its

approximate solution uhτ ∈ Kt
g in the energy norm. As we mentioned in the introduction, we cannot easily

estimate the norm ‖∂t (u− uhτ )‖[L2(0,T ;H−1(Ω))]2 . We now give our replacement result. Given u ∈ Kt
g and

for the approximate solution uhτ ∈ Kt
g, let z ∈ Kt

g be such that, for all v ∈ Kt
g,∫ T

0

a(z − u,v − z)(t) dt ≥ −
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ )− (−1)αλhτ , vα − zα〉(t) dt,

z(0) = uhτ (0) ∈ Kg.

(4.23)

As a result of the Lions–Stampacchia theorem, problem (4.23) is well posed. Now, we give an a posteriori
error estimate on the error |‖u− z‖|Ω,T .

Theorem 4.5 (case p = 1 and exact solvers). Let u ∈ Kt
g be the solution of the weak formulation given by

(1.2) and let z ∈ Kt
g be the solution of (4.23). Assume that the hypotheses of Theorem 4.3 hold and let the

total estimator η be defined by (4.17). Then

|‖u− z‖|Ω,T ≤ 2η.

Proof. Setting w∗ := u − z, we have |‖w∗‖|2Ω,T =

∫ T

0

a(u − z,u − z) dt. For v = u ∈ Kt
g, we in turn get

from (4.23)

|‖w∗‖|2Ω,T ≤
∫ T

0

(〈∂t (u− uhτ ) ,w∗〉+ b(w∗, λhτ )) (t) dt +

∫ T

0

(a(u− uhτ ,w∗)− a(u− uhτ ,w∗)) (t) dt.

Employing the weak formulation (1.2) with v = z ∈ Kt
g we obtain

|‖w∗‖|2Ω,T ≤
∫ T

0

[(f − ∂tuhτ ,w∗)Ω + b(w∗, λhτ )− a(uhτ ,w
∗)− a(u− uhτ ,w∗)] (t) dt. (4.24)

To bound the three first terms of (4.24), we employ Lemma 4.4 with y = z ∈ Kt
g and next the Young

inequality (AB ≤ 1
4A

2 +B2) to see

|‖w∗‖|2Ω,T ≤

{ Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηnR,K,α + ηnF,K,α

)2
(t) dt

} 1
2

+

{∫ T

0

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

} 1
2

2

+
1

4
|‖w∗‖|2Ω,T −

∫ T

0

a(u− uhτ ,w∗)(t) dt.

(4.25)
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The Cauchy–Schwarz inequality and the Young inequality give

−
∫ T

0

a(u− uhτ ,w∗)(t) dt ≤ |‖u− uhτ‖|Ω,T |‖w
∗‖|Ω,T ≤ |‖u− uhτ‖|

2
Ω,T +

1

4
|‖w∗‖|2Ω,T . (4.26)

Finally, combining (4.25) and (4.26) with (4.17), we get |‖w∗‖|2Ω,T ≤ 4η2 which is the desired result.

Combining Theorems 4.3 and 4.5, we infer

Corollary 4.6 (case p = 1 and exact solvers). Assume the hypotheses of Theorem 4.5. Then

|‖u− uhτ‖|2Ω,T + |‖u− z‖|2Ω,T + ‖(u− uhτ ) (·, T )‖2Ω ≤ 5η2. (4.27)

In Lemma 4.7, we show that the error measure |‖u− z‖|Ω,T is linked to the temporal derivative error,
but we could not obtain the (more interesting) converse estimate that would allow to control the temporal
derivative error by the estimators.

Lemma 4.7. Assuming the hypotheses of Theorem 4.5 and denoting by δ := 2/min
(
µ

1
2
1 , µ

1
2
2

)
we have

|‖u− z‖|Ω,T ≤ δ

(∫ T

0

2∑
α=1

‖∂t (uα − uαhτ )‖2H−1(Ω) (t) dt

) 1
2

+

(∫ T

0

‖λhτ − λ‖2H−1(Ω) (t) dt

) 1
2

 .

Proof. Denoting by w∗ := u− z, we have

|‖w∗‖|2Ω,T ≤
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ ) , w∗α〉(t) dt +

∫ T

0

(λhτ , w
∗
1 − w∗2)Ω (t) dt.

Next, ∫ T

0

(λhτ , w
∗
1 − w∗2)Ω (t) dt =

∫ T

0

(λhτ − λ,w∗1 − w∗2)Ω (t) dt +

∫ T

0

(λ,w∗1 − w∗2)Ω (t) dt.

Observe that ∫ T

0

(λ,w∗1 − w∗2)Ω (t) dt =

∫ T

0

(λ, u1 − u2)Ω (t) dt−
∫ T

0

(λ, z1 − z2)Ω (t) dt.

From (2.1) λ(u1 − u2) = 0, and as λ ∈ Ψ and z ∈ Kt
g, we have

∫ T
0

(λ,w∗1 − w∗2)Ω (t) dt ≤ 0 and thus∫ T

0

(λhτ , w
∗
1 − w∗2)Ω (t) dt ≤

∫ T

0

(λhτ − λ,w∗1 − w∗2)Ω (t) dt.

Finally,

|‖w∗‖|2Ω,T ≤
∫ T

0

2∑
α=1

〈∂t (uα − uαhτ ) , w∗α〉(t) dt +

∫ T

0

(λhτ − λ,w∗1 − w∗2)Ω (t) dt. (4.28)

Furthermore, denoting by A1 the first term in the right-hand side of (4.28) we have,

A1 ≤
∫ T

0

2∑
α=1

sup
Φα∈H1

0 (Ω)

〈
µ
− 1

2
α ∂t (uα − uαhτ ) , µ

1
2
αΦα

〉
∥∥∥µ 1

2
α∇Φα

∥∥∥
Ω

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt,

=

∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α ∂t (uα − uαhτ )
∥∥∥
H−1(Ω)

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt.

The Cauchy–Schwarz inequality gives

A1 ≤

(∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α ∂t (uα − uαhτ )
∥∥∥2

H−1(Ω)
(t) dt

) 1
2

|‖w∗‖|Ω,T . (4.29)
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To bound the second term A2 of (4.28) we employ the Cauchy–Schwarz inequality

A2 =

∫ T

0

(
µ
− 1

2
1 (λhτ − λ) , µ

1
2
1 w
∗
1

)
Ω

(t) dt−
∫ T

0

(
µ
− 1

2
2 (λhτ − λ) , µ

1
2
2 w
∗
2

)
Ω

(t) dt

≤
∫ T

0

2∑
α=1

∥∥∥µ− 1
2

α (λhτ − λ)
∥∥∥
H−1(Ω)

∥∥∥µ 1
2
α∇w∗α

∥∥∥
Ω

(t) dt

≤ δ

(∫ T

0

‖λhτ − λ‖2H−1(Ω) (t) dt

) 1
2

|‖w∗‖|Ω,T .

(4.30)

Combining (4.28), (4.29), and (4.30), we obtain the desired result.

4.5 An a posteriori error estimate for p ≥ 1 and each step k ≥ 1, i ≥ 0

In this section we devise an a posteriori error estimate which is valid at any time step 1 ≤ n ≤ Nt, at any
semismooth Newton step k ≥ 1, and at any algebraic step i ≥ 0. Several difficulties arise. Contrary to the
previous case of Section 4.4, the constraints (3.15) are not satisfied because the convergence is not reached.
Moreover, even if they were satisfied, the solution remains nonconforming for p ≥ 2 because Kp

gh 6⊂ Kg and
Λph 6⊂ Λ.

Consequently, we have to work with a nonconforming space-time solutions uk,ihτ /∈ Kt
g and λhτ /∈ Ψ. To

cope with these difficulties, we employ the decomposition

λn,k,ih = λn,k,i,pos
h + λn,k,i,neg

h where λn,k,i,pos
h = max

{
λn,k,ih , 0

}
and λn,k,i,neg

h = min
{
λn,k,ih , 0

}
.

We also introduce the potential sk,ihτ :=
(
sk,i1hτ , s

k,i
2hτ

)
∈ Kt

g as a piecewise affine and continuous function

in time over the whole time interval ]0, T [, verifying sk,i1hτ (t) − sk,i2hτ (t) ≥ 0 for all t ∈ ]0, T [. When p = 1, a
possibility is to construct sn,k,ih :=

(
sn,k,i1h , sn,k,i2h

)
∈ K1

gh by setting, for all 1 ≤ n ≤ Nt and for all a ∈ V int
h ,

sn,k,ih (a) :=


uk,ih (a) =

(
un,k,i1h (a), un,k,i2h (a)

)
if
(
un,k,i1h − un,k,i2h

)
(a) ≥ 0,(

un,k,i1h (a) + un,k,i2h (a)

2
,
un,k,i1h (a) + un,k,i2h (a)

2

)
if
(
un,k,i1h − un,k,i2h

)
(a) < 0.

(4.31)

Definition 4.8. For all 1 ≤ n ≤ Nt, we define the error estimators

ηn,k,iR,K,α(t) := hΩCPFµ
− 1

2
α

∥∥∥f̃nα − ∂tsn,k,iαhτ −∇·σn,k,iαhτ − (−1)αλn,k,ih

∥∥∥
K

(t),

ηn,k,iF,K,α(t) :=
∥∥∥µ 1

2
α∇sn,k,iαhτ + µ

− 1
2

α σn,k,iαhτ

∥∥∥
K

(t), ηn,k,i,pos
C,K (t) := 2

(
λn,k,i,pos
h , un,k,i1hτ − u

n,k,i
2hτ

)
K

(t),

ηn,k,inonc,1,K(t) := hΩCPF

(
1

µ1
+

1

µ2

) 1
2 ∥∥∥λn,k,i,neg

h

∥∥∥
K

(t), ηn,k,inonc,2,K,α(t) :=
∥∥∥µ 1

2
α∇

(
sn,k,iαhτ − u

n,k,i
αhτ

)∥∥∥
K

(t),

ηn,k,inonc,3,K(t) := 2
(
λn,k,i,pos
h ,

(
sn,k,i1hτ − u

n,k,i
1hτ

)
−
(
sn,k,i2hτ − u

n,k,i
2hτ

))
K

(t),

ηnosc,K,α(t) := CPFhΩµ
− 1

2
α

∥∥∥fα − f̃nα∥∥∥
K
.

We observe that the estimators given by Definition 4.8 are slightly different from the ones provided
in Definition 4.1. Indeed, in the estimators ηn,k,iR,K,α and ηn,k,iF,K,α, there appears a sn,k,iαhτ in place of un,k,iαhτ ,
and hΩ instead of hK . The constraint estimator ηn,k,i,pos

C,K is as in Definition 4.1 (remember that λnh ≥ 0

at convergence for p = 1) and expresses that λn,k,ih

(
un,k,i1hτ − u

n,k,i
2hτ

)
= 0 is not valid. Next, ηn,k,inonc,1,K ,

ηn,k,inonc,2,K,α, and ηn,k,inonc,3,K are nonconformity estimators expressing the possible negativity of the discrete
Lagrange multiplier and measuring how far the potential reconstruction sn,k,ihτ is from the displacements
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un,k,ihτ . Note that for p = 1, the estimators ηn,k,inonc,1,K , ηn,k,inonc,2,K,α, and ηn,k,inonc,3,K turn into semismooth
linearization estimators such that we can set ηn,k,ilin,1,K := ηn,k,inonc,1,K , ηn,k,ilin,2,K,α := ηn,k,inonc,2,K,α, and ηn,k,ilin,3,K :=

ηn,k,inonc,3,K . Indeed, at convergence for p = 1, λn,k,i,pos
h = λn,k,ih , λn,k,i,neg

h = 0, sn,k,ihτ = un,k,ihτ , and then
ηn,k,ilin,1,K = ηn,k,ilin,2,K,α = ηn,k,ilin,3,K = 0.

Theorem 4.9 (case p ≥ 1 and inexact solvers). Let u ∈ Kt
g be the exact solution given by (1.2)and let

uk,ihτ /∈ Kt
g be the approximate solution issued from inexact linearization and algebraic solvers at each time

step 1 ≤ n ≤ Nt. Consider the total equilibrated flux reconstruction σk,iαhτ ∈ L2(0, T,H(div,Ω)) given
by (4.9) and (4.11). Let sk,ihτ ∈ Kt

g and consider the estimators of Definition 4.8. Then, for

(
η̃k,i
)2

:=

{ Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,iR,K,α

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,iF,K,α

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,1,K

)2

(t) dt

} 1
2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηnosc,K,α

)2
(t) dt

} 1
2

2

+

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,i,pos
C,K (t) dt +

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,inonc,3,K(t) dt +
∥∥∥(u− sn,k,ihτ

)
(·, 0)

∥∥∥2

Ω
,

we have the a posteriori error estimate

∣∣∣∥∥∥u− un,k,ihτ

∥∥∥∣∣∣
Ω,T
≤ ηk,i := η̃k,i +

{
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,inonc,2,K,α

)2

(t) dt

} 1
2

. (4.32)

Proof. We start by the triangle inequality, leading to∣∣∣∥∥∥u− uk,ihτ ∥∥∥∣∣∣
Ω,T
≤
∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣

Ω,T
+
∣∣∣∥∥∥sk,ihτ − uk,ihτ ∥∥∥∣∣∣

Ω,T
. (4.33)

The second term of (4.33) immediately equals to

∣∣∣∥∥∥sk,ihτ − uk,ihτ ∥∥∥∣∣∣2
Ω,T

=

Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,inonc,2,K,α

)2

(t) dt. (4.34)

Next, observe that ∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣2
Ω,T
≤
∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣2

Ω,T
+

1

2

∥∥∥(u− sk,ihτ) (·, T )
∥∥∥2

Ω
.

Employing the fact that

1

2

∥∥∥(u− sk,ihτ) (·, T )
∥∥∥2

Ω
=

1

2

∥∥∥(u− sk,ihτ) (·, 0)
∥∥∥2

Ω
+

∫ T

0

〈
∂t

(
u− sk,ihτ

)
,u− sk,ihτ

〉
(t) dt,

we have ∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣2
Ω,T
≤

2∑
α=1

∫ T

0

µα

(
∇
(
uα − sk,iαhτ

)
,∇
(
uα − sk,iαhτ

))
Ω

(t) dt

+

2∑
α=1

∫ T

0

〈
∂t

(
uα − sk,iαhτ

)
, uα − sk,iαhτ

〉
(t) dt +

1

2

∥∥∥(u− sk,ihτ) (·, 0)
∥∥∥2

Ω
.

We now use the weak formulation (1.2) with v = sk,ihτ ∈ Kt
g and we add and subtract

2∑
α=1

∫ T

0

(
f̃nα , uα −
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sk,iαhτ
)

Ω
(t) dt to get

∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣2
Ω,T
≤

2∑
α=1

∫ T

0

(
f̃nα − ∂ts

k,i
αhτ , uα − s

k,i
αhτ

)
Ω

(t)−
2∑

α=1

∫ T

0

µα

(
∇sk,iαhτ ,∇

(
uα − sk,iαhτ

))
Ω

(t) dt

+

2∑
α=1

∫ T

0

(
fα − f̃nα , uα − s

k,i
αhτ

)
Ω

(t) dt +
1

2

∥∥∥(u− sk,ihτ) (·, 0)
∥∥∥2

Ω
.

Adding and subtracting
2∑

α=1

∫ T

0

(
(−1)αλk,ihτ , uα − s

k,i
αhτ

)
Ω

(t) dt and
2∑

α=1

∫ T

0

(
σk,iαhτ ,∇

(
uα − sk,iαhτ

))
Ω

(t) dt

with σk,iαhτ ∈ L2(0, T ;H(div,Ω)) and using the Green formula with
(
uα − sk,iαhτ

)
(t) ∈ H1

0 (Ω) a.e. t ∈ ]0, T [,
we obtain ∣∣∣∥∥∥u− sk,ihτ ∥∥∥∣∣∣2

Ω,T
≤ A1 +A2 +A3 +A4 +

1

2

∥∥∥(u− sk,ihτ) (·, 0)
∥∥∥2

Ω
(4.35)

with

A1 :=

2∑
α=1

∫ T

0

(
f̃nα − ∂ts

k,i
αhτ −∇·σk,iαhτ − (−1)αλk,ihτ , uα − s

k,i
αhτ

)
Ω

(t) dt,

A2 := −
2∑

α=1

∫ T

0

(
µ

1
2
α∇sk,iαhτ + µ

− 1
2

α σk,iαhτ , µ
1
2
α∇

(
uα − sk,iαhτ

))
Ω

(t) dt,

A3 :=

2∑
α=1

∫ T

0

(
(−1)αλk,ihτ , uα − s

k,i
αhτ

)
Ω

(t) dt,

A4 :=

2∑
α=1

∫ T

0

(
fα − f̃nα , uα − s

k,i
αhτ

)
Ω

(t) dt.

(4.36)

To bound A1, A2, and A4 we proceed as follows. We apply the Cauchy–Schwarz inequality and next the
Poincaré–Friedrichs inequality (4.16a) to get

A1 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,iR,K,α

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− sn,k,ihτ

∥∥∥∣∣∣
Ω,T

, (4.37)

A2 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηn,k,iF,K,α

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− sn,k,ihτ

∥∥∥∣∣∣
Ω,T

, (4.38)

A4 ≤

(
Nt∑
n=1

∫
In

2∑
α=1

∑
K∈Th

(
ηnosc,K,α

)2
(t) dt

) 1
2 ∣∣∣∥∥∥u− sn,k,ihτ

∥∥∥∣∣∣
Ω,T

. (4.39)

It remains to bound the term A3. Observe that

A3 = −
∫ T

0

b(u− sk,ihτ , λ
k,i,neg
hτ )(t) dt−

∫ T

0

b(u− sk,ihτ , λ
k,i,pos
hτ )(t) dt.

Next, adding and subtracting b(uk,ihτ , λ
k,i,pos
hτ ) and noting that −b(u, λk,i,pos

hτ ) ≤ 0 since u ∈ Kt
g and

λk,i,pos
hτ (t) ≥ 0 for all t ∈ ]0, T [, we have

A3 ≤ A31 +A32 +A33

with

A31 := −
∫ T

0

b(u−sk,ihτ , λ
k,i,neg
hτ )(t) dt, A32 :=

∫ T

0

b(sk,ihτ−u
k,i
hτ , λ

k,i,pos
hτ )(t) dt, A33 :=

∫ T

0

b(uk,ihτ , λ
k,i,pos
hτ )(t) dt.
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The Cauchy–Schwarz inequality and the Poincaré–Friedrichs inequality (4.16a) yield

A31 ≤ hΩCPF

(
1

µ1
+

1

µ2

) 1
2

(
Nt∑
n=1

∫
In

∑
K∈Th

∥∥∥λn,k,i,neg
h

∥∥∥2

K
(t) dt

) 1
2 ∣∣∣∥∥∥u− sn,k,ihτ

∥∥∥∣∣∣
Ω,T

=

(
Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,1,K

)2

(t) dt

) 1
2 ∣∣∣∥∥∥u− sn,k,ihτ

∥∥∥∣∣∣
Ω,T

.

(4.40)

Next, we have

A32 =
1

2

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,inonc,3,K(t) dt. (4.41)

Furthermore, we have

A33 =
1

2

Nt∑
n=1

∫
In

∑
K∈Th

2
(
λn,k,i,pos
h , un,k,i1hτ − u

n,k,i
2hτ

)
(t) dt =

1

2

Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,i,pos
C,K (t). (4.42)

Finally, combining (4.35)–(4.42), employing the Young inequality ab ≤ 1
2

(
a2 + b2

)
, (a, b) ≥ 0, and us-

ing (4.34) provides the desired result.

5 Distinguishing the error components and adaptive stopping cri-
teria

In Section 4.5, we have derived an a posteriori error estimate between the exact solution and approximate
solution at each semismooth Newton step k ≥ 1 and each algebraic iterative solver step i ≥ 0. We now
provide an a posteriori error estimate distinguishing the different error components when p = 1 and define
an adaptive algorithm.

5.1 Distinguishing the error components for p = 1

Definition 5.1. We define the total discretization error estimator ηk,idisc, the total semismooth linearization
error estimator ηk,ilin , and the total algebraic error estimator ηk,ialg respectively by

ηk,idisc :=

3

{ Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,iR,K,α

)2
} 1

2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

∥∥∥µ 1
2
α∇sn,k,iαhτ + µ

− 1
2

α σn,k,iαhτ,disc

∥∥∥2

Ω

} 1
2

2

+

∣∣∣∣∣
Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,i,pos
C,K

∣∣∣∣∣


1
2

,

ηk,ilin :=

{
3

Nt∑
n=1

∫
In

∑
K∈Th

(
ηn,k,inonc,1,K

)2

+

∣∣∣∣∣
Nt∑
n=1

∫
In

∑
K∈Th

ηn,k,inonc,3,K

∣∣∣∣∣
} 1

2

+

{
Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

(
ηn,k,inonc,2,K,α

)2
} 1

2

,

ηk,ialg :=

{
3

Nt∑
n=1

∫
In

∑
K∈Th

2∑
α=1

∥∥∥µ− 1
2

α σn,k,iαhτ,alg

∥∥∥2

K
(t) dt

} 1
2

, ηinit :=

{∥∥∥(u− sk,ihτ) (·, 0)
∥∥∥2

Ω

} 1
2

.

Using Definition 5.1, we have:

Corollary 5.2. For p = 1, we have the following a posteriori error estimate distinguishing the error
components: ∣∣∣∥∥∥u− uk,ihτ ∥∥∥∣∣∣

Ω,T
≤ ηk,idisc + ηk,ilin + ηk,ialg + ηinit.
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Proof. The triangle inequality gives ηn,k,iF,K,α ≤
∥∥∥µ 1

2
α∇sn,k,iαhτ + µ

− 1
2

α σn,k,iαhτ,disc

∥∥∥
K

+
∥∥∥µ− 1

2
α σn,k,iαhτ,alg

∥∥∥
K
. Next, using

the Minkowski inequality to separate the algebraic contribution from the discretization one and employing
after the result (A1 +A2 +A3)

2 ≤ 3
(
A2

1 +A2
2 +A2

3

)
for A1, A2, A3 ≥ 0 to gather the discretization terms,

we obtain the desired result.

5.2 Adaptive inexact semismooth Newton algorithm
We finally present our adaptive inexact semismooth Newton algorithm. Following the concept of [16, 58, 55],
it is designed to only perform the linearization and algebraic resolutions with minimal necessary precision,
and thus to avoid unnecessary iterations. Let γlin and γalg be two positive parameters, typically of order 0.1,
representing the desired relative sizes of the algebraic and linearization errors. Note that as the estimators
of Definition 5.1 are global, we consider their restrictions ηn,k,idisc , ηn,k,ilin , and ηn,k,ialg to the time interval In as
follows:

ηn,k,idisc :=

(∫
In

∑
K∈Th

(
2∑

α=1

6

((
ηn,k,iR,K,α

)2

+
∥∥∥µ 1

2
α∇sn,k,iαhτ + µ

− 1
2

α σn,k,iαhτ,disc

∥∥∥2

K

)
+ |ηn,k,i,pos

C,K |

)
(t) dt

) 1
2

, (5.1)

ηn,k,ilin :=

(∫
In

2

( ∑
K∈Th

(
3
(
ηn,k,inonc,1,K

)2

+ |ηn,k,inonc,3,K |
)

+
∣∣∣∥∥∥sn,k,ihτ − un,k,ihτ

∥∥∥∣∣∣2
Ω

)
(t) dt

) 1
2

, (5.2)

ηn,k,ialg :=

(
3∆tn

∑
K∈Th

2∑
α=1

∥∥∥µ− 1
2

α σn,k,iαhτ,alg

∥∥∥2

K

) 1
2

. (5.3)

Let n ≥ 1 be fixed. Supposing that ηinit and ηn,k,iosc,α are negligible, we propose:

Algorithm 1 Adaptive inexact semismooth Newton algorithm at each time step n

0. Choose an initial vector Xn,0
h ∈ R3Np,intd and set k = 1.

1. From Xn,k−1
h define An,k−1 ∈ R3Np,intd ,3Np,intd and Bn,k−1 ∈ R3Np,intd by (3.27).

2. Consider the linear system

An,k−1Xn,k
h = Bn,k−1. (5.4)

3. Set Xn,k,0
h = Xn,k−1

h as initial guess for the iterative linear solver and set i = 0.
4a. Perform ν ≥ 1 steps of a chosen linear solver for (5.4), starting from Xn,k,i

h .
Set i = i+ ν. This yields on step i an approximation Xn,k,i

h to Xn,k
h satisfying

An,k−1Xn,k,i
h = Bn,k−1 −Rn,k,i.

4b. Compute the estimators of (5.1)–(5.3) and check the stopping criterion for the linear
solver in the form:

ηn,k,ialg ≤ γalg max
{
ηn,k,idisc , η

n,k,i
lin

}
. (5.5)

If satisfied, set Xn,k
h = Xn,k,i

h . If not go back to 4a.
5. Check the stopping criterion for the nonlinear solver in the form

ηn,k,ilin ≤ γlinη
n,k,i
disc . (5.6)

If satisfied, return Xn
h = Xn,k

h . If not, set k = k + 1 and go back to 1.
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6 Numerical experiments
This section illustrates numerically our theoretical developments in the case of affine finite elements p = 1.
We first assume that our semismooth Newton solver as well as our iterative algebraic solver have converged,
i.e., we apply the “exact semismooth Newton” method as described in Section 3.5. In this scenario, the
semismooth Newton index k and the linear iterative algebraic solver index i will be discarded. We extend
to the parabolic setting the test case given in [47] in which the domain Ω is given by the unit disk: Ω :=
{(r, θ) ∈ [0, 1]× [0, 2π]}. We are interested in the shape of the numerical solution after several time steps
and in the behavior of the estimators at convergence of the solvers given by Theorem 4.3.

Second, we will focus on our adaptive inexact semismooth Newton strategy given by Algorithm 1 of
Section 5.2. For this purpose, we will consider the geometry given in the first test case with different source
terms. We will test our adaptive strategy with two semismooth Newton solvers: the Newton-min solver
(see (3.23)) and the Newton–Fischer–Burmeister solver (see (3.24)). The iterative algebraic solver that we
employ at each semismooth Newton step k ≥ 1 is GMRES (see [65, 53, 66]) with an ILU preconditioner with
zero level fill-in. For each semismooth method, we compare two different approaches: the exact Newton
method and the adaptive inexact Newton method. In the exact Newton case, we simulate an exact resolution
in the sense that the nonlinear stopping criterion (3.30) is considered with εlin = 10−9 and the linear stopping
criterion (3.32) is used with εkalg = 10−11 for all Newton iterations k. For the adaptive inexact semismooth
Newton strategy, we consider the stopping criteria (5.5) and (5.6) with γlin = γalg = 10−3.

For these two studies, the parameters µ1 and µ2 are set to 1 and the boundary condition for the first
unknown g is equal to 0.05. We consider a mesh containing approximately 21 000 elements. For the sake of
simplicity, we consider a constant time step ∆tn = ∆t = 0.001 for all 1 ≤ n ≤ Nt = 300 and the final time
of simulation tF = 0.3. The initial guess X0

h ∈ R2N int
h has its first N int

h components equal to g and its next
components equal to zero.

6.1 Exact semismooth Newton method
Following [47], we take

f1(r, θ, t) :=

{
−10g if r ≤ 1/

√
2,

−8g if r ≥ 1/
√

2,
f2(r, θ, t) :=


−6g if r ≤ 1/

√
2,

−g 1 + 8r − 18r2

r

√
2√

2− 1
if r ≥ 1/

√
2.

In this case, fα|In = f̃nα , so the data oscillation estimator ηnosc,α is zero.
Figure 1 displays for three time values t = 0.02, t = 0.17, and t = 0.3 the behavior of the numerical

solution (un1h, u
n
2h, λ

n
h), as well as the behavior of the constraint estimator ηnC,K . In the first situation,

corresponding to the beginning of the simulation t = 0.02 (see the top of Figure 1), the complementarity
constraint un1h − un2h > 0 is satisfied, and then the discrete Lagrange multiplier λnh as well as the constraint
estimator ηnC,K vanish. Next, we represent the numerical solution at the time value t = 0.17 where un1h and
un2h coincide in a subset of Ω. The constraint estimator detects at each time step the elements where un1h
and un2h become in contact (or detach from one another). Finally, at the end of the simulation t = 0.3, see
the bottom of Figure 1, the discrete Lagrange multiplier λnh is positive in the whole area r ≤ 1√

2
, recovering

the numerical result of the stationary case [47]. We note that the constraint estimator ηnC,K take very small
values.

Figure 2 displays the behavior of the flux estimator ηnF,K,2 and of the residual estimator ηnR,K,2 (see
Theorem 4.3) associated to the second discrete unknown un2h at the final simulation time t = 0.3. We
observe that the residual estimator ηnR,K,2 is small with respect to the flux estimator ηnF,K,2. Furthermore,
in several elements K ∈ Th, the estimator ηnF,K,2 is quite large which corresponds to zones where the finite
element discretization error is important.
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Figure 1: Numerical solution and constraint estimators at convergence for approximately 21 000 elements.
First column: approximations un1h and un2h, second column: Lagrange multipliers λnh, third column: con-
straint estimators; all respectively at times t = 0.02, t = 0.17, and t = 0.3.
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Figure 2: Estimators at convergence for approximately 21 000 elements at t = 0.3. Left: flux estimator
ηnF,K,2. Right: residual estimator ηnR,K,2.
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Figure 3: Numerical solution at convergence for approximately 21 000 elements. First row: un1h and un2h at
the time values t = 0.001, t = 0.03, and t = 0.3. Second row: Lagrange multiplier λnh at the time values
t = 0.001, t = 0.03, and t = 0.3.

6.2 Adaptive inexact algorithms
The domain Ω is here still the unit disk but we consider the data f1 and f2 given by

f1(r, θ, t) :=



−20g if r ≤ 1/5,

−50g if 1/5 ≤ r ≤ 2/5,

+50g if 2/5 ≤ r ≤ 3/5,

−50g if 3/5 ≤ r ≤ 4/5,

+50g if 4/5 ≤ r ≤ 1,

f2(r, θ, t) :=



+90g if r ≤ 1/5,

−40g if 1/5 ≤ r ≤ 2/5,

+70g if 2/5 ≤ r ≤ 3/5,

−30g if 3/5 ≤ r ≤ 4/5,

+40g if 4/5 ≤ r ≤ 1.

Here again ηnosc,α vanish.
First of all, we display for several time steps the behavior of the numerical solution. Next, for a fixed time

value, we represent the estimators as a function of the Newton iterations. Furthermore, for one selected
Newton iteration, we also present the evolution of the various estimators as a function of the GMRES
iterations. Finally, we test for each adaptive inexact semismooth Newton solver its overall performance and
we compare the results with the classical exact resolution.

Figure 3 displays the numerical solution at three time values when the Newton-min solver and GMRES
solver have converged. There are three different phases in the simulation: at first, there is no contact, see
the left column of Figure 3. In the second period, the contact occurs in a disk around the center of the
domain and we observe in the discrete Lagrange multiplier λnh a peak indicating the elements where un1h and
un2h coincide. In the last period (top right and bottom right of Figure 3), there exist two separate contact
zones, a disk for 0 ≤ r ≤ 1/5 and a ring for 2/5 ≤ r ≤ 3/5. Furthermore, these contacts occur at t ≈ 0.011
and t ≈ 0.060; we will see below in Figures 5 and 8 (left) that more Newton-min iterations will be required
at these transition periods.

6.2.1 Newton-min linearization

Figure 4 presents the evolution of the various estimators as a function of the Newton-min iterations (left)
and the behavior of the various estimators as a function of the GMRES iterations at the first Newton-
min step (right) at the fixed time value t = 0.084. From the left part of Figure 4, we observe that
the discretization estimator globally dominates and coincides with the total estimator (the two curves
are roughly superimposed). The linearization estimator (blue curve) is small from the first Newton-min
iteration (around 10−6) and next increases at the second iteration (around 10−3) and afterwards decreases
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Figure 4: At t = 0.084. Left: estimators as a function of the Newton-min iterations. Right: estimators as
a function of the GMRES iterations on 1st Newton-min iteration.
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Figure 5: Left: number of Newton-min iterations at each time step. Right: cumulated number of Newton-
min iterations as a function of time.

rapidly to reach the value 10−11 at the third Newton-min iteration. From the first Newton-min iteration,
the discretization estimator (coinciding with the total estimator) stagnates which means that the other
components of the error do not influence the behavior of the total error estimator. Then, the Newton-
min algorithm performs unnecessary iterations and can be stopped at the first iteration. In right part of
Figure 4, we test our adaptive inexact Newton-min strategy in terms of the GMRES iterations for the first
Newton-min iteration. We observe that the discretization estimator as well as the linearization estimator
roughly stagnate after few iterations. The algebraic estimator is large at the beginning of the iterations and
influences the behavior of the total estimator but decreases rapidly to reach at i = 53 the value 10−12. The
adaptive inexact Newton-min algorithm stops the GMRES after i = 24 iterations, when the total estimator
almost coincides with the discretization estimator. Note that the curve of the algebraic estimator is here
close to the curve of the algebraic residual.

Figure 5 provides the number of Newton-min iterations and the cumulated number of Newton-min
iterations required to satisfy the given stopping criteria at each time step of the simulation. In particular,
the first graph shows that for almost all time steps, our adaptive strategy is cheaper in terms of Newton-min
iterations than the exact resolution. Observe that at some (rare) time steps (13 and 57 for instance), the
adaptive approach requires more iterations than the classical resolution: it detects automatically when a
few more iterations are necessary to preserve the accuracy. Interestingly, this occurs at times when un1h
and un2h enter in contact. The second graph presents the cumulated number of Newton-min iterations as a
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Figure 6: Left: number of GMRES iterations per time and Newton-min steps. Right: cumulated number
of GMRES iterations as a function of time.

γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3∥∥∥µ 1
2
1 ∇(un,exact

1h − un,adapt
1h )

∥∥∥
Ω

1.41× 10−7 1.81× 10−7 8.83× 10−8 2.03× 10−7 3.44× 10−7∥∥∥µ 1
2
2 ∇(un,exact

2h − un,adapt
2h )

∥∥∥
Ω

1.32× 10−7 1.63× 10−7 8.82× 10−8 1.71× 10−7 3.43× 10−7∥∥∥λn,exact
h − λn,adapt

h

∥∥∥
Ω

0 2.77× 10−4 3.19× 10−4 4.25× 10−4 8.07× 10−8

Table 1: Accuracy of the adaptive inexact Newton-min solution for several time values.

function of the time step. We observe a substantial benefit for our adaptive inexact Newton-min approach
as it saves at the end of the simulation roughly 50% of the iterations.

In Figure 6, left, we plot the number of GMRES iterations per time and Newton-min steps, between time
steps 22 and 72. We can observe that significantly fewer iterations are needed in the adaptive approach. We
illustrate the overall performance of the two approaches in Figure 6, right, where we display the cumulated
number of GMRES iterations for the two methods as a function of the time steps. The second graph
shows that the adaptive inexact Newton-min algorithm requires approximately 7000 cumulated iterations
to converge whereas the classical algorithm requires roughly 19 000 iterations. Our adaptive algorithm thus
saves many unnecessary iterations.

In Table 1, we give the global energy norm of the difference between the approximate resolution given by
the exact solution and the approximate solution provided by the adaptive inexact Newton-min algorithm.
We observe that for several time values, the three numerical solutions are close to each other, which confirms
that our adaptive strategy does not violate the accuracy of the numerical solution.

6.2.2 Newton–Fischer–Burmeister linearization

In this part, we proceed as in Section 6.2.1 employing this time the C-function of Fischer–Burmeister.
Figure 7 represents the evolution of the various estimators as a function of the Newton–Fischer–Burmeister

iterations (left) and the behavior of the various estimators as a function of the GMRES iterations at the
first Newton–Fischer–Burmeister step (right), at the fixed time value t = 0.011. From the left plot, we
observe that the discretization estimator globally dominates and almost coincides with the total estimator
(the two curves are roughly superimposed). The linearization estimator (blue curve, squares) is small and
decreases rapidly after k = 5 steps (adaptive stopping criterion) to reach the value of 10−11 at k = 11
(classical stopping criterion). Taking γlin = 10−2 instead of γlin = 10−3 in (5.6) will reduce the number
of Newton–Fischer–Burmeister iterations at this instant to 4. In the right plot, we take the first Newton–
Fischer–Burmeister iteration and we observe that the discretization estimator as well as the linearization
estimator stagnate from the beginning of the iterations, while the algebraic estimator is dominant at the
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Figure 7: At t = 0.11. Left: estimators as a function of the Newton–Fischer–Burmeister iterations. Right:
estimators as a function of the GMRES iterations at the first Newton–Fischer–Burmeister step.

0 50 100 150 200 250 300

Time step

1

3

5

7

9

11

13

15

N
u

m
b

e
r 

o
f 

N
e

w
to

n
-F

is
c
h

e
r-

B
u

rm
e

is
te

r 
it
e

ra
ti
o

n
s

exact Newton-Fischer-Burmeister

adaptive inexact Newton-Fischer-Burmeister

0 50 100 150 200 250 300

Time step

0

500

1000

1500

C
u
m

u
la

te
d
 n

u
m

b
e
r 

o
f

N
e
w

to
n
-F

is
c
h
e
r-

B
u
rm

e
is

te
r 

it
e
ra

ti
o
n
s

exact Newton-Fischer-Burmeister

adaptive inexact Newton-Fischer-Burmeister

Figure 8: Left: number of Newton–Fischer–Burmeister iterations at each time step. Right: cumulated
number of Newton–Fischer–Burmeister iterations as a function of time.

beginning of the iterations. The adaptive inexact Newton–Fischer–Burmeister algorithm stops the GMRES
iterations at i = 9, whereas the classical criterion stops at i = 33. Note that as for the Newton-min case,
the behavior of the algebraic estimator follows here closely the one of the algebraic residual.

Figure 8 focuses on the number of Newton–Fischer–Burmeister iterations required to satisfy the various
stopping criteria at each time step. We observe from the first figure that the adaptive strategy (red curve)
is economic in comparison with the classical resolution (blue curve) especially from t = 0.1 onwards, where
the adaptive algorithm requires 1 Newton–Fischer–Burmeister iteration at each time step. Furthermore,
the right plot depicts the overall performance in terms of Newton–Fischer–Burmeister iterations. With
no surprise, the adaptive resolution requires at the end of the simulation much fewer semismooth Newton
iterations (approximately 700 for the adaptive algorithm and 1500 for the classical resolution). Thus, our
adaptive semismooth approach reduces by 50% the number of Newton–Fischer–Burmeister iterations.

Figure 9 illustrates the overall performance of the two approaches. We display the number of GMRES
iterations for each linear system solved as a function of time/Newton–Fischer–Burmeister step between
t = 0.014 and t = 0.057 (left) and the cumulated number of GMRES iterations as a function of time step
(right). In particular, we see that our adaptive strategy is very economic in terms of the total algebraic
iterations as it requires at the end on the simulation approximately 7000 iterations whereas the classical
resolution requires roughly 27 000 iterations. To close this section, we present in Table 2 the energy norm of
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Figure 9: Left: number of GMRES iterations per time and Newton–Fischer–Burmeister step. Right: cu-
mulated number of GMRES iterations per time step.

γalg = γlin = 10−3 tn = 0.001 tn = 0.011 tn = 0.07 tn = 0.15 tn = 0.3∥∥∥µ 1
2
1 ∇(un,exact

1h − un,adapt
1h )

∥∥∥
Ω

9.9× 10−6 1.7× 10−5 5.8× 10−5 7.7× 10−5 2.1× 10−3∥∥∥µ 1
2
2 ∇(un,exact

2h − un,adapt
2h )

∥∥∥
Ω

5.5× 10−6 2.1× 10−5 7.1× 10−5 1.8× 10−4 2.1× 10−3∥∥∥λn,exact
h − λn,adapt

h

∥∥∥
Ω

0 7.9× 10−3 3.3× 10−4 2.3× 10−2 2.2× 10−7

Table 2: Accuracy of the adaptive inexact Newton–Fischer–Burmeister solution for several time values.

the difference between the exact solution given by the classical Newton–Fischer–Burmeister algorithm and
the adaptive inexact one for several time values. In particular, it measures the accuracy and precision of
our adaptive strategy. We observe that each numerical unknown obtained by the adaptive strategy is close
to the unknown given by the classical resolution. Thus, our adaptive algorithm saves many iterations and
does not deteriorate the numerical solution.

7 Conclusion
In this work, we focused on deriving a posteriori error estimates for a model parabolic variational inequality.
We employed the conforming Pp finite element method for the discretization in space and the backward
Euler scheme for the discretization in time. We designed a posteriori error estimates when p = 1 valid at
convergence of the semismooth Newton solver and of the iterative algebraic solver. In this case, we estimate
both energy and time derivative errors. Next, we extended the study to all polynomial degrees p ≥ 1 and
for each semismooth Newton step k ≥ 1 and each iterative linear algebraic solver step i ≥ 0. Here, we only
estimate the energy error. We finally proposed an adaptive inexact semismooth Newton algorithm based
on the a posteriori error estimators that we derived whose main idea is to stop the two involved iterative
solvers at a suitable moment decided adaptively. We have presented numerical experiments for two inexact
semismooth Newton solvers for p = 1 and we showed that our adaptive inexact semismooth strategy saves
many iterations while preserving the accuracy of the numerical solution.
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