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ABSTRACT: Environmentalassessment of pig production systems using local breeds
remains poorly documented in the literature. So far, studies did not account for specificities of
outdoor rearing which is quite common in such systems. The present study aimed at
evaluating the environmental impacts of pig production systems using local breeds in Europe,
while accounting for emissions associated to consumption of grass and mitigation of impacts
through soil-C sequestration. Environmernitapacts were estimated for 48 farmsinglocal

pig breeds: 25 in France (Gascon breed), eight in Italy (Mora Romagnola breed) and 15 in
Slovenia (Krskopolje breed)Assessment was performed with and without accounting for
pasture-intake emissions and poterdiail-C sequestration. The data were obtained foom

farm surveys. Systemwith Gascon pigdad the lowest impacts per kg of live weight

global warming and cumulative energy demashae to lower impacts of feeds. Acidification
potential was highefor KrSkopolje pigsdue to high dietary crude protein contemtd high

AP of feeds while eutrophication potential was higher fGascon pigsdue to higher
phosphorus content of feeds (28% higher than the meé#me other farms When impacts

were expressed per ha of land use, pig production in GasconHadhtke lowest impacts due

to more available area per pigxcept for eutrophicationLow contribution of soil-C
sequestration to climate change mitigation was observed (4.7% on average). However, it may
have a substantial contribution for the most extensive pig systems using large land surfaces.
Emissions resulting from grazing had a rather low contribution to Global Warming Potential

(4%) and Eutrophication (3%), but a substantial one to Acidification impact (9% on average).

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/
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In the frame of our study, the contribution of esiss related to grazing is moderate because
commercial feed supply for outdoor pigs was higthem in extensive systems studied in
literature This study highlighted thahain hotspots include feed composition and suppty a
the origin of feed ingredientf.also suggests that future assessments of exeepgj systems
relying on pig foraging on grasslands or rangelastasuld account for soil-C sequestration

and emissions associated to grazing and foraging.

Keywords. autochthonous breeds, hotspots, life cycle assagspig

1. Introduction

Modern livestock production is considered one o tmain contributors to
anthropogenic-related environmental impacts (Seddnfet al., 2010). Among animal
products, pig systems contribute to various impdigts climate change, eutrophication,
acidification, and energy demand. Studies firsihestied the environmental impacts linked to
pig production (Basset-Mens et al. 2007; DourmadleR014; Noya et al., 2017). Then a
large amount of literature was dedicated to thestigation of various mitigation strategies,
such as the reduction of the crude protein cortémeeds (Garcia-Launay et al., 2014), the
substitution of soyben meal with locally grown sms of protein (van Zanten et al., 2018),
the formulation of feeds with both enconomic andiemmental objectives (MacKenzie et al.
2016; Garcia-Launay et al., 2018), the applicatbprecision feeding (Andretta et al., 2018).
Few authors focused their research on the compartdo conventional systems with
alternative systems including organic or outdo@rirey systems (Basset-Mens and van der
Werf, 2005; Halberg et al., 2010; Dourmad et 0142 Wiedeman et al., 2016). However,
their studies focused either on organic systemi wibdern highly selected breeds or on
indoor rearing systems on deep-litter.

Pig production systems relying on autochtonousafjogig breeds gained interest for
the society in the past 20 years due to positivegmion of the society for their contribution
to the preservation of biotic diversity and to f®duction of high-quality products, often
dry-cured, with local and traditionnal forms of basdry Candek-Potokar et al., 2019a;
Mufoz et al., 2018). The breeds that belong toetlsgstems are usually characterized by high
fat deposition potential and low sow productivityafdek-Potokar et al., 2019b). Breeding
and feeding practices and housing are highly vigiabthese systems, ranging from indoor

on slatted-floor to outdoor housing for all physigical stages. Some of these local breeds
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and the associated systems are particularly undagpegarding environmental issue, only
Dourmad et al. (2014) and Espagnol and Demartidi42 estimated the impacts associated
with traditionnal pig production systems relying local pig breeds. Espagnol and Dematrtini
(2014) highlighted strong variability of environntahimpacts between farms in Corsican
traditional production according to the feedingatgy. Such results support the use of
individual farm data to investigate the practicdsch reduce environmental impacts of these
systems (Rudolph et al., 2018).

Life Cycle Assessment (LCA), which is a highly rgozed methodology (ISO 2006)
for the assessment of environmental impacts otalgural products, was extensively used in
the above-mentioned literature. When focusing dheeiorganic or traditional systems,
studies were limited to the evaluation of averagwirenmental impacts, and to the
identification of hotspots. So far, these studieed on methodologies developed for
conventional systems. Meier et al. (2015) alreadgeulined the lacking methodologies and
models to properly assess the environmental impattsrganic systems, whatever the
considered product. For some European traditioystems using local pig breeds, one of the
specifities is outdoor rearing with consumption oétural resources (grass, acorns,
chestnuts,...). Consequently, nutrient excretionhesé systems do not only result from the
difference between commercial feed consumption baody retention. Moreover, these
systems also contribute to the maintenance of agosystems which are carbon sinks.
Although remaining controversial (Garnett et a012), some studies included the mitigation
potential of soil-C sequestration (Nguyen et all20Salvador et al. 2017) in grass-based
ruminant production. Neither Dourmad et al. (20bdy Espagnol and Demartini (2014)
accounted for nutrient excretion consecutive tourst resources intake or soil-C
sequestration. Rudolph et al. (2018) compared enmiental impacts in three husbandry
systems for organic pig production (indoor, outdgartly outdoor) but did not include these
processes in the perimeter of their LCAs.

Therefore, in the framework of the H2020 TREASURGBjgct Candek-Potokar et al.,
2019a), our ambition was to produce knowledge enethvironmental impacts of untapped
traditional pig production systems using local kdieén Europe while adressing the below
mentioned issues:

- How including the specificities of these systemstha LCA methodology? i.e.

accounting for nutrient excretion consecutive t@ ttonsumption of natural
resources and for soil-C sequestration

- What are the hotspots for reduction of environmlanipacts in these systems?
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2. Materialsand methods
2.1. Datasets
Environmental impacts of pig production chains ldase European local pig breeds

were estimated for 48 farms: 25 farms raised thec@a breed in the Noir de Bigorre
production chain in France (FR; these farms reptesg 42% of all farms in the production
chain), eight farms raised Mora Romagnola piggatyI(IT; 26% of farms raising this breed)
and 15 farms raised the Krskopolje breed in SlavéSi; 12% of farms raising this breed).
The farms were classified as farrow-to-feeder (£ 1 in IT and 7 in Sl), feeder-to-finish
(0 in FR, 0in IT and 4 in Sl) and farrow-to-fihig1ll in FR, 7 in IT and 4 in Sl) farms.
Piglets enter in the feeder system with an aveBAyeof 9.3, 11.2 and 12.4 kg in FR, SL and
IT, respectively (Table 1)The assessment was based on responses to survaysedb
through interviews with farmers and/or their em@ey. The survey was based on questions
already used within the Q-PorkChains project (Dadret al., 2014) related to animal

performance, feed chemical composition, animal img®nd manure management.

2.2. Life cycle assessment: goal and scope definition
A cradle-to-farm-gate life cycle assessment (LCAsveonducted for each surveyed
farm. The system boundaries were derived from Dadret al. (2014) and included the
production of piglets (farrowing unit) as well assp-weaning and growing-finishing periods,
land used to produce feed ingredients and raise @igdoors, production and transport of
feed ingredients up to the feed factory, productibreeds on-farm and at the feed factory,
and emissions from animals and manure storage r@-iju Functional units were 1 kg of live

weight (LW) and 1 ha of land used (by crop produgtibuildings and pig production).

2.3. Lifecycleinventory
Resource use and emissions associated with thegirod and delivery of inputs for
crop production came from the ecoinvent database(SithaPro LCA software 8.0, PRé
Consultants, Amersfoort, The Netherlands). Energg for lighting and heat lamps in
farrowing units was calculated, but not the emissi@nd resources used to construct
buildings or outdoor sheds. Veterinary and cleamiraglucts were not included. For the feed
ingredients that are coproducts (e.g. soybean megsseed meal, wheat bran, whey powder),

resource use and emissions were economically &fidca



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

2.3.1. Production of feeds and feed ingredients
Feed composition was collected on farms from tHeelk& on bags. The farmers
provided information about the crude protein (CBmposition and total phosphorus (P)
content of feed mixtures produced on-farm (Tablerd)further calculate nutrient contents of
feeds produced on-farm, feed formulas and nutgentents of feed ingredients provided in
the INRA-AFZ feed tables (Sauvagital., 2004)were used
Life cycle inventories (LCIs) of feed ingredients Ffrance came from the EcoAlim
dataset (Wilfartet al., 2016), while LCls for feed ingredients in Slowerand Italy were
adapted from it based on yields and fertilizaticates in each country (Table AS3;
supplementary material). Additional processes vadrtained from AgriFootPrint® database
to include impacts of processing feed ingrediemd t obtain a complete LCA of feed
ingredients (Table A4; supplementary material).dFegredients that represented less than
0.5% of annual intake and that were absent fronEt@Alim dataset were not included in the
LCI. Feed production at the feed factory was ineliidgh the LCls of commercial feeds by
assuming that it would occur in the same regiothasig production, and would require 41
kWh of electricity and 20.5 kWh of natural gas pesf feed produced, for grinding and
pelleting (Garcia-Launayt al., 2014). For on-farm feed production, grinding anding
required 18 kWh of electricity per t of feed prodddBadouard and Roy, 2011).
2.3.2. Transport specifications
For grain, root and tuber crops, the mean distéimoee fields to farms (southwestern
France, northern Italy and southeastern Slovende) ealculated from survey data (100 km in
FR, 93 km in IT and 10 km in Sl). Products importetb all countries were assumed to be
transported mainly by sea, followed by train andéad (mean distance = 500 km).
2.3.3. Pig production
The performance of sows, post-weaning pigs anerfaty pigs was obtained from
surveys (Table 1). Nutrient (mainly N, P and patasg excretion for each physiological
stage was calculated as the difference betweenenuintake and retention. For growing
animals, retention was calculated as the differdsatereen body content at the beginning and
at the end of a given period. For reproductive sdtes amounts retained in uterine contents
during gestation and in the bodies of suckling giglduring lactation were also considered.
Equations were adapted from the literature reviéwRigolot et al. (2010a) to predict this
retention, assuming a body lean tissue percentaglawghter of 35% for Gascon breed (Sans
et al., 1996), 44 % for Krikopolje breedgndek-Potokaet al., 2003; Furmaret al., 2010)
and 39 % for Mora Romagnola breed (Forehal., 2005).
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For feeder-to-finish farms, we included the impaekated to piglet production by
incorporating an average life cycle inventory (LE9nstructed from farrow-to-feeder farms
surveyed in each system. Farrow-to-feeder farms haw outputs (culled sows/year and

weaners/sow/year). The LCI incorporated the avekggef culled sows produced/piglet/year.

2.4. Life cycleimpact assessment
2.4.1. Emissions from pig production
Emissions to the air were estimated separatelfds, NoO, NO, and CH for sows,
post-weaning piglets, fattening pigs, feed produtti animal housing and manure
management using SAS software (SAS Inst. Inc., Qd€y, USA). Housing condition was
accounted to calculate the gaseous emissions (Ryldt®r the periods in which the animals
were kept outdoors, NI N.O, NO; and NQ emissions were calculated based on emission
factors provided by Basset-Meesal. (2007). For the periods during which the animaésen
kept indoors, gaseous N emissions were calculabedhbusing and storage and field
application of solid manure using the step-by-gtepcedure recommended by EMEP/EEA
(2016). Emission factors for NHand NO came from Rigologt al. (2010b) and Basset-Mens
et al. (2007), for housing and storage of solid manuespectively, from Dammgen and
Hutchings (2008) for NQ and from Nguyermt al. (2011) for NQ. Solid manure composting
on the farms that did s@as also consideragsing emission factors provided by Paikagl.
(2005). Emissions following field application oflsbmanure were calculated according to
EMEP/EEA (2016) for NH IPCC (2006) for MO, and Nemecek and Kagi (2007) for NO
2.4.2. Emissionsfromgrazing
Mean grass intakevas estimateds a function of concentrate intake (per kg LW)
according to previous studies (Jensen and And2@&2; Gustafson and Stern, 2003; Santos e
Silva et al., 2004; Bikker and Binnendjk, 2012). Grass intakg @ry matter (DM)/kg
LW/day) for pigs was estimated as 0.02558 — 0.8383&oncentrate intakékg DM/kg
LW/day) (R* = 0.95; Table A6 and Figure Al; supplementary mafe For sows, grass
intake (kg DM/kg LW/day) did not vary greatly adumction of concentrate intake (Rivera
Ferreet al., 2001); therefore, a mean valoé 4.49 g DM/kg LW/day (Rivera Ferret al.,
2001)was usedThe equations were applied to each animal cagegoeach farm.
The mean botanical composition of pastures wamagtd based on expert knowledge
in each country, and the nutrient composition wadstaioed from INRA (2010)
(Supplementary material). Due to the lack of infation on the nutrient digestibility of pig

forage, mean digestibility coefficients of Sauvahtal. (2004) for dehydrated grassere
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used CP digestibility of 46% and 59%, and organic ma(OM) digestibility of 43% and
51%, for pigs and sows, respectively. To considgemtial uncertainty in these coefficients, a
range around each mearas definedbased on previous studies (Lindberg and Andersson,
1998; van der Peet-Schweriggal., 2006; van Krimpert al., 2013), expressed as grass with
high digestibility (+25% of the mean) or with lowgdstibility (-50% of the mean).herefore,

for emissions from grazing we obtained two différecenarios: grass intake of forages with
high (HighD) and low (HighL) digestibility coeffient for CP and OM for pigs.

Consumption of acorndy finishing pigs’ was not consideredue to its low
contribution to CP, crude fiber and crude fat iet§Rodriguez-Estévet al., 2012).

2.4.3. Potential carbon sequestration

Potential C sequestration was estimated for pastue not for forests, because most
studies indicate higher organic C content in passwils than in forest soils (Wetial., 2012).
Thus, two methods were used to estimate C seqtiestaf permanent pastures, because
estimates of the latter have high uncertainty aawl feference values are available, giving
scenarios of “low potential” and “high potentialf © sequestration.

The low potential scenario was based on Dellél. (2009), from measurements of
soil C summarized by Arrouays al. (2002). Since all three countries are part of io@mtal
Europe and have a temperate climate, the same seggestration rate of permanent pasture
was appliedo all farms: 730 kg of carbon dioxide (©cq./ha/year (Nguyedt al., 2012).
The high potential scenario was based on the Fdioth& Research Network report (Garnett
etal., 2017): 1,800 kg of C&eq./halyear.

2.4.4. Impact categories

Theanalysiswas base@n the CML 2001 (baseline) method V3.02 as implaetkm
SimaPro software V8.03 and added the following gaties: land occupation from CML
2001 (all categories) V2.04 and total cumulativergg demand V1.8 (non-renewable fossil +
nuclear). The CML method was chosen because itusad in most pig LCA studies in the
literature, which allows for comparison of our résuo previous results. Thus, potential
impacts of pig production on global warming potah(GWP, kg C@-eq.; 100-year horizon),
eutrophication potential (EP, g R@q.), acidification potential (AP, g $€@q.), cumulative

energy demand (CED, MJ), and land occupation (L&gear)were assessed



233 3. Results
234 3.1. Environmental impacts of pig production
235 Environmental impacts of the systems per kg of pW produced per year are

236 presented in Tabld. Systems had large differences in impacts. Overein GWP wag.19
237 kg CO-eq; mean GWP was highest in thie and S| systems 4.35and 7.16 kg COx-eq.,
238 respectively) and lowesb(07kg CO-eq.) in theFR system. Mean AP was highest in the
239 system 49.0 g SQ-eq.), lowest in theFR and IT systems §2.6 and 32.99 SQ-eq,
240 respectively. Mean EP was highest in the FR systeif.gg PQ-eq.) and lowest in the Sl
241 and IT systems30.5and35.5g PQ-eq., respectively). Mean CED wag% and8% higher
242 in the Sl system than in those the FR didsystems, respectively éble 3. Mean LO was
243 highest in the FRind Slsystems (11.@ind 10.9m%year)andlowest in thelT system (.55
244  mPyear).

245 When expressed per ha of land used, the IT systehthe highest impacts in almost
246 all categories (Tabl&). Overall mean GWP wa3,070kg CO--eq., with the highest mean
247 GWP (@2411kg CO»-eq.) in the IT system and the lowegtq79 kg CO-eq.) in the FR
248 system. Mean AP in th8l system was$3% and 4%higher than in the FRnd IT systens,
249 respectively(Table3). Mean CED wasgl9% and20% higher in the IT system than those in
250 the FR and Sl systems, respectively (Tab)lerhe overall mean amount of LW produced per
251 ha land used (Tabl8) was 1,151 kg/ha, with the highest mean amount in thesystem
252  (1,336kg/ha) and the lowest in the FR system (944 kg/ha).

253
254 3.2.Effect of carbon sequestration and emissions resulting from grazing
255 When consideng only potential C sequestration of the soil, GWRrdased in all

256 systems, especially in FR. Mean GWP in the FRn8ll& systems decreased 5, 2% and
257 1%, respectively, in the low potential sequestratiscenario. In the high potential
258 sequestration scenario, mean GWP in the FR, SI'aisgstems decreased h{%, 5% and
259 3%, respectively (Tablé), with the IT system having the highest mean GWP.

260 Conversely, wheronsideringemissionsesulting from grass intake and subsequent N
261 and OM excretions by the animalmean GWP in the FR, Sl and IT systems increagedd
262 2% and4%, respectively, for grass with low digestibilignd5%, 2% and 4%, respectively,
263 for grass with high digestibility (Tabl®. Mean AP in the FR, Sl and IT systems increased b
264 12%, 6% and 18%, respectively, for grass with low digestibilitywda 7%, 3% and 10%,
265 respectively, for grass with high digestibility @@la4). Mean EP in the FR, Sl and IT systems
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increased by 3%%% and5%, respectively, for grass with low digestibilitpnca 1%,1% and
3%, respectively, for grass with high digestibil{iyable4).

4. Discussion
4.1. Environmental impacts of pig production

GWP estimated in the present studyO9.35kg CO-eq/kg LW) were higher than
those estimated by Espagnol and Demartini (201d)otdadoor pig production in Corsica
(3.03-4.09 kg CO2-eqg/kg LW) and those obtained byimadet al. (2014) for traditional pig
production (mean = 3.47 kg G@q/kg LW). Fattening pigs in the present study ewver
slaughtered at a mean weight of 170 kg, whereag)lstar weights ranged from 110-140 kg
in previous studies. Additionally, the longer faitey period in the present study (mean age at
slaughter of 415 days) induced higher enteric fetateon and OM excreted per pig, both of
which contribute to Chiemissions (Rigologt al., 2010a). Since CHs 25 times as potent as
CGO, in trapping heat in the atmosphere (Guisgal., 2002), higher GWP of local pig breeds
was expected. Additionally, the higher feed sup@guired for local breeds increased the
impact. As previously reported for traditional ®yss, feed production and intake can
represent 65-75% of GWP (Dourmetdal., 2014).

The higher AP of thé&l system was due to the high BJHN,O and NQ emissions
from sows and fattening pigs four farms due to the higher CP content of its feeds rasuyllti
in higher N excretiorand due to higher AP impacts of feeds in Sl sysfEmese four farms
are the reason why there is a much higher stardiarihtion in AP values for S| system in
comparison with the FR and IT systems (TableTBg same trend was predicted for dietary P
and EP. For all animal categories, the FR systeththa highest P content in feeds, which
resulted in greater P excretion than those in thersystems.

The range of ARor FR and IT system2.6-32.9g SQ-eq.) wasower than values
calculated by Dourmaet al. (2014) (54 g S®eq./kg LW) and Espagnol and Demartini
(2014) (39-52 g S&eq.). This difference could be due to the higheri@ the diets in the
previous studies. The range of EP in the presemtys35.546.9 g PQ-eq.), howeveris
slightly higher tharthe mean EP calculated by Dournmetcl. (2014) (34 g P@eq./kg LW)
for traditional pig production.

The higher CED predicted in the Bihd Sisystems than in the FR system was due to
the high CED of feeds in the IT systeand the high feed supply in some farms from Sl

system. According to Garcia-Launay al. (2014), feed production accounts for more than
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75% of CED, meaning that the impact of feed andféfeel supply are the main drivers of
CED impactIT system feeds had high CED because soybean nasaineluded in almost all

of its diets. The LCI assumed that soybean was itaganainly fromBrazil, since Europe is

the world’s second largest importer of soybeansOdS2017). Indeed, the high impact of

soybean meal on CED is associated to both defdi@stand high transportation demand
(both road and across the oceaRjevious research showed that reducing the comten

Brazilian soybean meal in diets could reduce CED, regardie#ise pig production context

considered in the LCA (Kebreabal., 2016; Monteircet al., 2016).

The FR system had the highest LO among systemsodhe high LO of its feeds and
because its fattening pigs and most of its gegfatows were raised outdoors (TaBland
Table A4 supplementary material). According to Dourngadl. (2014), outdoor fattening of
pigs contributes almost 50% of the LO per kg LWeR&\vhough pigs are raised outdoors in
some farms othe S| and IT systems, the Protected Designatio®rgjin label in the FR
system ensures a minimum area of pasture for égqB@0 nf).

Having more area available for pigs in the FR sysi® one reason it had the lowest
impacts per ha of land uséekcept EU).The same effect of the functional unit on resulésw
reported by Basset-Mens and van der Werf (2005)Cxoutmadet al. (2014) for traditional
pig production, which uses land for grazing anddé&sv stocking density.

Mean GWP per ha of land used predicted in the ptegedy 8,070kg CO»-eq./ha)
was higher than those predicted by Basset-Menyvamdler Werf (2005) for thieabel Rouge
quality label (5,510 kg C&£eq./ha) and Dourmaet al. (2014) for a traditional system (3,672
kg CO-eg./ha). Conversely, mean AP in the present s{iéy836g SQ-eq./ha) lay close to
that predicted by Basset-Mens and van der Werf§00 36,000 S@eq., although the EP
(42,5189 PQ-eqg./ha) and CED3@,685MJ-eq./ha) in the present study were higher than
those they predicted (29,300 g €. and 28,503 MJ per ha, respectively).

Mean kg of pig LW produced per ha in the presemti\sin the SI1 {,173kg LW/ha)
and IT (,336kg LW/ha) systems were similar to those predictgdasset-Mens and van der
Werf (2005) (1,592 kg LW/ha) and Dourmeical. (2014) (1,229 kg LW/ha). The mean of the
FR system (944.4 kg LW/ha), however, was much Iawan those previously predicted. This
result agreed with the low stocking density (> B0%pig) in the FR system, which was even
lower than that in theabel Rouge quality label system (2.6 Tper pig) (Halbergt al., 2005).
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4.2. Effect of carbon sequestration and emissions resulting from grazing
The decrease in GWP per kg LW among the systema Wheequestration in pasture

was included was a result of removing J@m the atmosphere and incorporating it into the
terrestrial pool via plants growing in the soil (Gett et al., 2017). Similar results were
reported by Halbergt al. (2010), who found that C sequestration decreasaiP Gy 0.40-
0.60 kg CQ-eq. per kg LW in organic pig production. Similarip the present study this
decrease ranged from 0.2&9kg COy-eq. per kg LW in the FR system (highest effect) to
0.120.28 kg CO»-eq. per kg LW in the IT system (lowest effect)disating that C
sequestration has more effect in extensive systeithslow stocking density, and can vary
greatly according to the factor used (high or lovteptial C sequestrationjccounting for
soil carbon sequestration in LCA of animal prodoietsystems is controversial (Garrgtsl .,
2017) and mainly applied in grass-based cattleegyst(Stanlet al., 2018). Moreover, for
temperate grassland, values reported in literaamge from 200 kg C/ha/year (Nguyetral .,
2012) up to 3590 C/halyear (Stanktyal., 2018) obtained for rotational grazing systems. In
this study, conservative hypotheses have been wgbd®200 and 490 kg C/hal/year for low
and high soil carbon sequestrations scenario, césply. So, the low contribution of soil
carbon sequestration to climate change mitigatian be explained by such hypotheses.
Better knowledge of soil carbon sequestration byperate grassland would improve the
guality of assessment of animal production systeghgng on grazing and foraging. This is
particularly important for systems using large aaefs. In our study, the system with highest
proportion of outdoor rearing (French system) iaralterized by land occupation impact of
11mz2.year per kg BW which is much higher than valaktained in conventional systems but
still much lower than land occupation impact per Bg/ for grass-based cattle systems
(Stanleyet al., 2018). However, some European extensive systamsruch larger areas as
reported by Gaspaat al. (2007) for Iberian pigs in dehesa (maximum stogkiate of 1 pig
per ha).

Therefore, when considering pig production systentis low land occupation related
to grazing and foraging, contribution of soil cambsequestration can be considered
negligible. However, when assessing extensive mdyction systems this contribution has to
be accounted for, even more when comparing indedmoatdoor systems.

When emissions from grazing were considered, GWP,aAd EP increased in all
systems, with larger increases in the IT systempreviously mentioned, grass intake was
calculated as a function of feed intake; thus, famith the lowest feed supply (such as IT)

would have the highest grass intake and, conselguembre emissions because ofktom
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results obtained in Tables 3 and 4, contributiormissions related to grazing to GWP, AP
and EP impacts were calculated. For all systems sowharios of grass digestibility,
contribution ranged from 2.1% to 4.7% for GWP, 1.i%%.3% for EP, and 3.0% to 17.5%
for AP. Therefore, the contribution was rather lftow GWP and EP, but substantial for AP
impact. This resulted from the application of enassfactors for outdoor pigs from Basset-
Mens et al. (2007) but it is noteworthy that veewfinformation on these emission factors is
available in the literature. Contribution of em@ss related to grazing is not negligible but
quite uncertain because of lack of knowledge. I ftame of our study, the contribution of
emissions related to grazing is moderate becausieeisystems considered commercial feed
supply for outdoor pigs is higher than in extengystems studied in literature. Indeed, in FR,
Sl and IT systems investigated, the average comatdeed supply ranged from 620 to 908
kg/fattening pig/year on average whereas Espagmol@emartini (2014) reported for the
most extensive Corsican pig systems a commercgal $eipply lower than 200 kg/fattening
pig/year. Therefore, for extensive systems, pddrtpwhen comparing systems with various
levels of feed supply, accounting for the emissi@ssociated to grazing is relevant.
Moreover, when evaluating practices aiming at matiitgg environmental impacts through the
utilization of natural resources, this is importaatinclude all the consequences of these
different practices into the assessment (when ipigsst and utilize grass and/or acorns they
need less concentrate per kg weight gain). Igndhegemissions resulting from grazing pigs
may lead to wrong conclusions on different systemsirategies.

The lower AP and ERotentialswhen considering grass with high digestibilityarnh
when considering grass with low digestibility, wehee to pigs’ slightly lower N excretion,
resulting in lower N emissions. Conversely, grag Wwigh digestibility increased the GWP.
This was influenced by the amount of £ptoduced via enteric fermentation, which varies
according to the amount of digestible fiber ingdst{®igolot et al., 2010a): the more
digestible fiber ingested, the higher the {&thissions. This seems to indicate that grass with
high digestibility in outdoor pig production couldduce AP and EP of this system; however,
it increases Cliemissions, which increases GWP at the farm gate.

EstimatingC sequestratioms challenging given the large variation in its estimates
among publicationsiccording to the chosamethod. This highlights the need for additional
studies to describe this potential more adequagsiyecially in agricultural soils. Even though
we considered effects of C sequestration and eomsdrom grazing in the present study,
there is a lack of references on these topics, datdrmining their parameters is highly

complex. We used two extreme values of potentigseQuestration but did not consider soil
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399 tillage/land management practices, climate varigbitultivation techniques, vegetation type,
400 or N content of the soil. These factors may infieeethe conversion of OM into stable below-
401 ground C, i.e. potential C sequestration (Garetedt., 2017).

402 Anothermethodologicatoncern is the digestibility of grass for piggnceGWP, AP
403 and EP varied according to the digestibility ofsgiadetermining the digestibility of grass for
404 pigs more accurately is critical to quantify theigsrons caused by grazing, mainly for pig
405 production in outdoor or organic systems. Althoggass is a common ingredient in organic
406 pig production, its digestibility varies greatly ang studies, grass species and grass stages.
407 Few studies on this topic exist, which makes itficlift to accurately estimate grass
408 digestibility for pigs. More accurate estimategyodss digestibility and C sequestration could
409 reduce uncertainties associated with LCA of outgmgrproduction and provide more precise
410 estimates of environmental impact.

411

412  4.3. Hotspots for improvement

413 For animal performance, farms with high feed supmplpoor FCR generally tended to
414 have the highest impacts per kg LW, because envieoal impacts depend greatly on feed
415 intake and were expressed per kg LW. The feed gugggms high, given that pigs were
416 raised outdoors (in FR) with access to grazing eokdsumed acorns and/or chestnuts in
417 autumn period. Hodgkinsost al. (2017) observed that wild boar and domestic plgsioed
418 20% and 7%, respectively, of their total daily kdaof dietary energy from grazing. This
419 seems to indicate that outdoor pigs could alsoiomkdaconsiderable portion of nutritional
420 requirements from grazing, which reduces the neec thigh feed supplygiven their lower
421 amino acid requirements. For digestible lysinentfrdé0 to 100 kg of BW), for example, it was
422 demonstrated that European local breeds have aageveequirement between 5.2 and 12.8
423 g/d (Brossarcet al., 2019), much lower than the 14.8 and 16.9 g/d nedofor genetically
424 improved pig breeds (NRC, 2012). This can be erplhiby thelow potential for protein
425 deposition of local pig breeds (Baretal., 2007). After a certain LW, extra nutrient and
426 energy intake is deposited into non-lean carcassi¢i (de Greef and Verstegen, 1993, van
427 Milgen and Noblet, 2003), which suggests that Idwakeds did not use the extra CP and L-
428 lysine for protein depositiort was recently demonstrated that in European lboetds, only
429 a small proportion of total body energy retentisrdedicated to protein deposition (between
430 0.97 and 2.77 MJ/d); the greatest proportion (betw@22 and 16.88 MJ/d) is in the form of
431 lipids (Brossarckt al., 2019). However, as in some situations and foresonpact categories
432 such as GWP, the reduction on dietary CP doesedlice the impact (Monteiet al., 2016),
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it could be explored the use of co-products. The afsmeat meal in pig diets increased the
dietary CP compared to a control feed based onevaaid soybean meal (147 vs. 133g CP/kg,
respectively), and consequently increase AC and lgP7% and 10%, respectively
(Mackenzieet al., 2016). However, it decreased simultaneously bytl284WP per kg of pig
carcass.

Other options have been investigated in literatorégeduce environmental impacts
such as the replacement of imported feedstuffobglly produced or local natural resources.
Indeed, van Zantest al. (2018) showed that the replacement of importedeprasources
such as soybean for locally produced rapeseed caealecrease the impact of pig production
in 14% on land occupation, and in 3% on G\EBpagnol and Demartini (2014) demonstrated
that using natural feed resources (acorns and ralitgsin extensive systemmay reduce

environmental impacts per kg LW.

5. Conclusions

This study provides one of the first life cycle essment of traditional pig production
systems using local breeds in Europe. The impaat&ifpgram of live weight in the systems
investigated in this study were in the upper liofithe range of values reported in literature
for pig production. To our knowledge, it addreskasthe first time the effect of emissions
associated to the consumption of natural resowreagable on grasslands on the level of the
environmental impacts. It is also one of the onMickes accounting for soil carbon
sequestration in the assessment of pig producyisterss with outdoor rearing.

This study supports the following recommendati®al carbon sequestration should
be accounted for when assessing pig systems wige [Boraging area dedicated to pigs.
Emissions associated to grazing should be inclunléde perimeter of the assessment when
natural resources have a significant contributmithie coverage of nutritional requirements.
Both these recommendations should be particulapiglied when comparing contrasted
systems (e.g. indoor feed-bassdoutdoor natural resources-based).

The findings of this study have two practical apalions. Environmental impacts of
these systems may be mitigated by reducing feed@magids and crude protein contents of
feeds in accordance with the low nutritional regmients of local breeds. Better knowledge
on nutrients contents and digestibility of freslagg and acorns in pigs is needed for better
management of these systems, and more precissEs#f the emission associated to their
consumption. Further investigation should improlie estimation of the potential of soil

carbon sequestration to mitigate climate changeaahpf these systems.
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Table 1. Performance of sows, post-weaning pigs and fattepigs, and the average diet

composition among the local pig production syststudied.

France Slovenia Italy
Mean s.d. Mean s.d. Mean s.d.
Number of farms
Farrow-to-feeder 4
Feeder-to-finish 10 4 0
Farrow-to-finish 11 4 7
Number of sows/farm 30 11.4 10 5.8 17 16.7
Number of fattening pigs/farm 252 119.7 81 51.9 267275.8
Sows
Weaned/year, number 13.1 2.97 12.6 3.56 12.9 2.09
Weaning weight, kg 9.3 1.80 11.2 2.40 12.4 1.47
Age at weaning, days 36.3 4.29 51.9 8.84 43.1 11.9
Feed supply, kg/sow/year 1,262 119.2 1,637 269.71201, 108.8
Feed composition
CP, g/kg 128 13.3 116 19.0 147 16.3
Total P, g/kg 4.7 0.78 3.4 1.31 3.6 0.13

Estimated grass intake (kg/sow/year) 173 23.3 1606.6 5 23.3 6.39

Post-weaning

Final BW, kg 40 11.4 29 1.3 30 0.0
Days in weaner system 87 25.7 65 28.1 66 7.8
Mortality rate, % 4.7 2.82 1.3 0.25 20 11.4
FCR, kg/kg 249 0.761 347 0849 3.02 0.853
Feed composition
CP, g/kg 160 22.3 144 43.7 141 10.7
Total P, g/kg 5.3 0.97 3.4 1.52 3.7 0.37

Estimated grass intake (kg/piglet/year)0.00 0.00 115 0.00 3.37 1.41
Fattening pigs

Slaughter LW, kg 174 57 164 14.6 167 6.1
Age at slaughter, days 415 17.4 404 62.0 451 9.4
Mortality rate, % 1.4 0.66 6.0 1.00 7.0 4.00

FCR, kg/kg 6.04 0784 466 1660 499 0.010



23

Feed composition
CP, g/kg 126 13.3 142  24.5 158 7.1

Total P, g/kg 4.9 1.12 3.1 1.39 4.2 0.58
Estimated grass intake (kg/pig/year) 147 104 185 3 12 591 122

676 For farms with sows.
677 s.d., standard deviation; CP, dietary crude protBintotal phosphorus content; LW, body

678 weight; FCR, feed-conversion ratio.
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679 Table 2. Frequency (%) of housing conditions on farms stidiieeach local pig production

680 system.
France Slovenia Italy
Gestating sows
Housing
Indoor 0.0 37.5 54.5
Outdoor 93.3 12.5 18.2
Indoor with outdoor access 6.7 50.0 27.3
Floor (when indoors)
Slatted or concrete floor 0.0 42.9 33.3
Deep litter 100 57.1 66.7
Lactating sows
Housing
Indoor 86.7 100 90.9
Outdoor 6.7 0.0 9.1
Indoor with outdoor access 6.7 0.0 0.0
Floor (when indoors)
Slatted or concrete floor 7.2 100 40.0
Deep litter 85.7 0.0 60.0
Concrete and deep litter 7.2 0.0 0.0
Weaner pigs
Housing
Indoor 100 57.1 78.6
Outdoor 0.0 14.3 7.1
Indoor with outdoor access 0.0 28.6 14.3
Floor (when indoors)
Slatted or concrete floor 0.0 100 42.9
Deep litter 100 0.0 57.1
Fattening pigs
Housing
Indoor 0.0 71.4 58.3
Outdoor 100 28.6 16.7
Indoor with outdoor access 0.0 0.0 25.0
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Table 3. Potential environmental impacts per kg of live virti-W) and per ha of land used

in each local pig production system

France Slovenia Italy
Mean s.d. Mean s.d. Mean s.d.
Number of farms 21 9 7
Per kg LW
GWP, kg CQ-eq. 5.07 0.791 6.94 253 9.35 3.92
AP, g SG-eq. 32.6 4.21 47.3 21.1 32.9 2.73
EP, g PQeq. 46.9 7.49 37.9 15.7 35.5 6.17
CED, MJ 24.7 4.12 35.6 13.0 33.7 4.49
LO, ntyear 11.0 1.88 10.4 5.03 7.55 0.713
Per ha of land uséd
GWP, kg CQ-eq. 4,679 573.3 7,119.9 1,851.3 12,441 5,142.0
AP, g SQ-eq. 30,276 4,329.2 45,519 8,560.0 43,714 2,243.2
EP, g PQeq. 43,055 3,245.6 37,442 6,186.0 47,058 7,544.8
CED, MJ 22,830 3,259.0 36,174 10,194 45,052 7,920.4
kg of LW produced 944.4 208.0 1,183 606.5 1,336 133.7

s.d., standard deviation; LW, live weight; GWP, liibwarming potential; AP, acidification
potential; EP, eutrophication potential; CED, cuatie energy demand; LO, land
occupation.

! For farrow-to-finish and feeder-to-finish farms.

2 For each farm, the impact was calculated as: (D& (1 ha) * Impact per kg of LW] / LO

per kg of LW (nfyear). LO per kg LW and LW produced per ha usetlife off-farm and

on-farm LO.
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Table 4. Potential environmental impacts expressed per kgigflive weight produced in

each local pig production system according to carf@) sequestration and grass digestibility

scenarios
France Slovenia Italy
Mean s.d. Mean s.d. Mean s.d.
Number of farm$ 21 9 7
GWP, kg CQ-eq.
Low potential C sequestration 483 0.790 6.79 2481 9.23 3.921
High potential C sequestration 448 0.796 6.58 2436 9.07 3.919
High digestibility of grasg§Highp)? 532 0734 7.09 2474 9.73 3.663
Low digestibility of grasgLowp) 531 0.718 7.09 2472 9.73 3.661
AP, g SQ-eq.
High digestibility of grasg¢Highp) 35.0 358 488 204 36.7 4.77
Low digestibility of grasgLowp) 369 359 50.1 200 399 8.50
EP, g PQeq.
High digestibility of grasg¢Highp) 476 7.28 383 156 36.6 7.29
Low digestibility of grasgLowp) 48.2 7.07 387 156 375 8.28

s.d., standard deviation; GWP, global warming piaeénAP, acidification potential; EP,

eutrophication potential.

L For farrow-to-finish and feeder-to-finish farms.

2 This scenario considers grass intake with highglis)i and low (High) digestibility

coefficients for CP and OM for pigs and the subsedqexcretion of N and OM.
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703 Figure 1. System boundaries for local pig breeds in Frafteyenia and Italy, with main

704 processes used to produce crop inputs, cropsjrigeedients and feeds, and pig production.
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