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1 Introduction 

Map generalization is often is often considered as a cognitive task similar to text summary. 

Like text summary, generalization seeks to reduce the level of detail of initial data, 

highlighting the important features regarding a given need, and preserving the main 

characteristics of the initial data (Ruas 2002). The automation of text summarization is key 

research topic for language processing scientists, and it should be interesting to verify if the 

similarities in the human cognitive process lead to similarities in the automation techniques. 

Moreover, text summarization is a part of the multimedia summarization problem that also 

includes video and music summarization, and this complete literature is interesting to 

review. The aim of the paper is also to identify some guidelines for further map 

generalization research that can be derived from the multimedia summarization research 

community. 

This paper first identifies similarities and differences in both automation problems. Then, 

section 3 proposes ideas from multimedia summarization that could be beneficial for the 

map generalization community. Finally, the paper is concluded with some ideas for further 

research opportunities. 

2 Similarities and Differences between Both Problems 

Exhaustive reviews of techniques have been published for text summarization (Mani 1999, 

Das & Martins 2007), video summarization (Truong & Venkatesh 2007), or music 

summarization (Peeters 2004, Jun & Hwang 2013), to go into more details. Some of these 

techniques are presented here only to illustrate the similarities and differences between 

summarization and generalization. 

First, map generalization and text summarization are complex cognitive tasks that do not 

have any exact perfect solution. Different human cartographers may create different 

generalized maps from the same geographic data that can be considered as good. Similarly, 

human summarizers do not agree with each other with a same document and same rules to 

guide them. In both cases, it has been noted that the lack of metrics to globally evaluate a 

solution illustrates the difficulty of the task (Das & Martins 2007, Stöter et al 2014).  

Most summarization techniques are based on the selection of the most important sentences 

in the document, which are extracted to create the summary. For instance, the seminal 

proposition from Luhn (1958) analysed the frequency of words and the position of sentences 

to extract the key sentences (Figure 1). The same mechanisms clearly drive the selection 
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operation in map generalization (McMaster & Shea 1992). So we should be able to use in 

selection processes some methods defined for text extraction. 

 

 
Figure 1. Example of sentence extraction to derive an abstract from a newspaper article (Luhn 1958). 

Furthermore, context is fundamental in both map generalization and summarization, as it 

helps brain to build the comprehension of the map or the text. An isolated building and a 

building in a dense city are not considered similarly in generalization, and in the sentence 

below, only the context of the preceding sentence helps to understand what ”the hat” is 

(MCKeown & Radev 1995). 

 

Bob got a new Stetson. He loves the hat. 

    



Enriching the initial cartographic data with implicit structures and patterns is essential in 

generalization in order to preserve or abstract the structures in the generalization process 

(Mackaness & Edwards 2002). Text summarization has the same requirements, has 

grammatical structure is a key to text meaning. Thus, some text summarization methods first 

analyse the grammatical structures of sentences (Figure 2) before abstracting the document 

into a summary (McKeown et al 1999). 

 

 
Figure 2. Dependency tree structuring the sentence “McVeigh, 27, was charged with the bombing”, example 

from (McKeown et al 1999). 

Other methods first classify the document to summarize into well-known sequences, such as 

verses and choruses in songs (Figure 3), prior to the summarization. Then, for instance, only 

one verse and one chorus are kept (Peeters 2004). For instance, this can be seen as analogous 

to the classification of urban blocks in (Trévisan & Gaffuri 2004) in order to use different 

AGENT parameters for each type of block. 

 
Figure 3. Characteristic sequences in the song “Smell Like Teen Spirit” from Nirvana, detected by the Peeters 

algorithm (2004). 



Added to that, many summarization methods use multiple document as input, for instance 

to summarize news using all the existing news channels, and their different point of view on 

an event. This process can be seen as similar to the conflation process required to make 

mashup maps out of several sources of geographical data. 

 

Despite these similarities, the automatic processes of map generalization and multimedia 

summarization are very different. The main difference lies in the nature of the input data. 

Vector geographical data requires computational geometry techniques to deal with two or 

three dimensions data, while text (one dimension) requires natural language processes and 

videos require image processing techniques.  

The need for generalization mainly derives from the legibility, or eye perception problems 

caused by scale reduction, so the generalization processes mainly seek to derive legible 

maps, where eyes are able to distinguish all details; keeping the main features of the map is 

only one of the objectives. Text summary has no such constraint, and only aims at the 

optimal number of words to grasp the meaning of a text. So, the multimedia summarization 

processes can only be compared to the selection processes in map generalization. 

Finally, generalization seeks to convey more the geography behind the data, and its implicit 

spatial relations and structures, than to convey the precise positioning of objects. As a 

consequence, exaggeration operations (McMaster & Shea 1992) such as typification, 

dilatation, or parallelism enhancement are quite common in generalization (Figure 4), while 

summaries remain faithful to the original source data. Nevertheless, this difference is slightly 

modified when text summary is less literal, and seeks to highlight the important aspects of a 

text like map caricature (McKeown et al 1999). 

 

 
Figure 4. Examples of caricature and exaggeration operations in generalization that cannot be related to 

summarization operations. 

3 What Can Be Learned for Map Generalization Research 

This short review and the differences highlighted in section 2 show that multimedia 

summarization techniques cannot directly be applied to map generalization. However, some 

lessons can be learned from this research domain, and some are presented in this section. 

3.1 A Massive Use of Machine Learning 

Although the machine learning techniques have been tested to automate generalization (e.g. 

Weibel et al 1995, Mustière et al 2000, Kilpelainen 2000, Burghardt & Neun 2006), it appears 

that this technique has been under-used when compared to the diversity of learning 

techniques used in text summarization (Das & Martins 2007). 

For instance, the orchestration and the parametrization of generalization processes is one of 

the main difficulties remaining in generalization research, but is it possible to learn in 

already generalized maps how to guide the orchestration, or the parametrization of 

algorithms? Taillandier et al (2011) used learning similarly to optimize the parametrization of 



the AGENT generalization model, but this could be made in a broader way. I believe that the 

community needs to look once again at the machine learning research, to see if their recent 

outcomes could help us (e.g. LeCun et al 2015). 

3.2 The Notions of Importance and Redundancy 

The parallel between text extraction and the selection operation highlighted in section 2 

make the criteria used in text extraction interesting to study. Importance and redundancy are 

two key notions in the text extraction methods. Several proposals exist to infer importance 

and redundancy of words or expressions, and could be transferred through analogies to map 

generalization. Mackaness and Gould (2014) pleaded for a better consideration of geographic 

saliency in map generalization, and such analogies could help us to do so.  

Road selection processes are an interesting case study for highlighting the usefulness of the 

notion of redundancy. Most main contributions in the domain tried to identify the main 

roads with graph theory based methods, and/or Gestalt based methods, and provide quite 

satisfying results. But thinking the other way round, i.e. removing the roads identified as 

redundant, would maybe improve the existing methods (Figure 5). 

 

 
Figure 5. Three redundant roads in a network as they provide neither shortcut nor additional connectivity.  

3.3 A Major Focus on Evaluation 

The generalization research community has clearly neglected the evaluation step compared 

to the number of papers regarding algorithms for instance, and recent papers highlighted 

this lack of major contribution (Stöter et al 2014, Mackaness & Gould 2014). On the contrary, 

multimedia summarization research significantly focused on evaluation protocols, with 

standards for manual and automatic evaluation, and many metrics to evaluate a summary 

and compare alternative methods (Lin 2004). The agreement on standards to evaluate a text 

summary in comparison to one or several references greatly helped the development of 

automatic summarization techniques. I believe that the research presented in Stöter et al 

(2014) should pushed further and that the community should make similar agreements for 

standardizing the evaluation of automatic generalization, with for instance a standard set of 

constraints to satisfy to maximize legibility and a set of metrics to assess global readability.  



3.4 Benchmarks to Allow Reproducible Science 

Reproducible science is a key factor of scientific thinking (Peng 2011), as it allows scientists to 

compare each other methods with reproducible experiments. In map generalization, sharing 

algorithms in a web platform, such as the web services framework proposed in (Foerster et al 

2008), would help comparing algorithms to each other. 

In order to promote reproducible science, to compare the large number of proposed 

methods, and also to provide datasets to academic researchers, the text summarization 

community soon organized workshops to develop evaluation competitions (Das & Martins 

2007). TREC1, DUC2 and MUC3 promoted evaluation baselines on chosen training datasets. 

For instance, guidelines for manual evaluation of summaries have been defined with such 

initiatives (Lin & Hovy 2002), and the same could be made for generalization benefiting from 

the knowledge of the cartographers working in the national mapping agencies. The need for 

such standard has been recently acknowledged by Stöter et al (2014). 

As mentioned earlier, such as generalization, there is not a unique good solution to 

multimedia summarization problems, but several. Text summarization benchmarks evolved 

to propose now several acceptable summaries for training texts, and this diversity of 

solutions is used by evaluation systems (Lin 2004). 

The EuroSDR project on the state-of-the-art of commercial software in generalization was a 

first step to the creation of benchmark datasets with sets of constraints related to each of the 

four datasets (Stöter et al 2010). We should now go further by providing open datasets with 

sets of constraints to satisfy, good results, and existing processes to compare to. The recent 

research on sharing the generalization knowledge in ontologies (Gould et al 2014) is also a 

step forward. 

4 Conclusion 

Although texts and maps are different kinds of information, the cognitive processes of 

summarization and generalization are similar. So it is interesting for the generalization 

research community to learn from the research on text/multimedia summarization. The main 

feedbacks are the under-use of machine learning in generalization, the lack for importance, 

saliency and redundancy definitions, the lack of focus on generalization evaluation, and 

finally the importance of benchmarks to allow reproducible research. Although the 

techniques used in multimedia summarization cannot be directly used in map 

generalization, I believe that generalization researchers should regularly review the 

summarization community outcomes in order to integrate major trends. 

More generally, the effort presented in this paper of reviewing a new field of science and 

relating it to map generalization could be done for other interesting domains. For instance, 

the research on visual search, tries to understand the mechanics the brain uses to optimize 

visual search (see Eckstein 2011 for a review). It would be useful to understand how the 

brain searches information in a map to better generalize it. 

                                                   
1 http://trec.nist.gov 
2 http://duc.nist.gov 
3 http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_toc.html 
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