
HAL Id: hal-02274434
https://hal.science/hal-02274434

Submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferring the Scale of OpenStreetMap Features
Guillaume Touya, Andreas Reimer

To cite this version:
Guillaume Touya, Andreas Reimer. Inferring the Scale of OpenStreetMap Features. Jokar Arsanjani,
Jamal; Zipf, Alexander; Mooney, Peter; Helbich, Marco. OpenStreetMap in GIScience, Springer
International Publishing, pp.81-99, 2015, Lecture Notes in Geoinformation and Cartography, 978-3-
319-14280-7. �10.1007/978-3-319-14280-7_5�. �hal-02274434�

https://hal.science/hal-02274434
https://hal.archives-ouvertes.fr


Inferring the Scale of OpenStreetMap Features 

Guillaume Touya 1 

Andreas Reimer2 

Abstract  Traditionally, national mapping agencies produced datasets and map 

products for a low number of specified and internally consistent scales, i.e. at a 

common level of detail (LoD). With the advent of projects like OpenStreetMap, 

data users are increasingly confronted with the task of dealing with heterogene-

ously detailed and scaled geodata. Knowing the scale of geodata is very important 

for mapping processes such as for generalization of label placement or land-cover 

studies for instance. In the following chapter, we review and compare two concur-

rent approaches at automatically assigning scale to OSM objects. The first ap-

proach is based on a multi-criteria decision making model, with a rationalist ap-

proach for defining and parameterizing the respective criteria, yielding five broad 

LoD classes. The second approach attempts to identify a single metric from an 

analysis process, which is then used to interpolate a scale equivalence. Both ap-

proaches are combined and tested against well-known Corine data, resulting in an 

improvement of the scale inference process. The chapter closes with a presentation 

of the most pressing open problems  
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1. Introduction 

Studying the quality of OpenStreetMap (OSM) data has been a hot research 

topic in recent years, as OSM has grown and applications flourished. OSM quality 

can be assessed by comparisons with a reference dataset (Haklay 2010, Girres and 

Touya 2010, Zielstra and Zipf 2010), with intrinsic measurements (Barron et al. 

2013), with contributor trust inference (Skarlatidou et al. 2011, Kessler et al. 

2013), or in a fitness for use context, like pedestrian routing (Mondzech and Sester 

2011). The latter method is the concern of this chapter, particularly the assessment 

of the fitness of OSM data for high-quality cartography (Sester et al. 2014). Be-

sides being crucial for automated derivation of cartographic products, scale evalu-

ation also touches issues for the appraisal of OSM data for geographic analyses, 

linking the issue with the bigger problem of scale in Volunteered Geographic In-

formation (VGI) (Jokar 2014, Feick and Robertson 2014). 

OSM data can be very rich in the regions with good completeness, but the level 

of detail of objects is very heterogeneous (Touya 2012). For instance, Figure 1 

shows three very complex religious buildings: the first one is captured with many 

details while the others are captured coarsely. This heterogeneity is a major obsta-

cle for automated cartography, as existing automatic processes, like map generali-

zation processes, are parameterized for a given homogeneous input scale. As a 

consequence, producing smaller scale maps by automatic generalization requires 

the inference of the initial scale or level of detail for every object as it can be dif-

ferent for each. Even for the production of large-scale maps (e.g. city plans) where 

map generalization is not necessary, level of detail is important. By introducing 

confusion in the spatial relations between detailed and less-detailed objects, such 

inconsistency may mislead the map reader. Whether a building is actually in a 

clearing or in a patch of woodland that was imported from a generalized source or 

even incompletely mapped is undecidable without some information on scale 

(Touya and Brando 2013). Apart from cartographic communication, investigations 

into land cover/land use obviously face similar problems. Two concurrent meth-

ods have been proposed to infer the scale/LoD of OSM objects individually 

(Touya and Brando 2013, Reimer et al. 2014). In this chapter, we review and 

compare both methods to improve the quality of scale/LoD inference for OSM. 
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Figure 1. Different levels of detail for three very complex religious buildings 

with similar granularity. (a) Is captured from cadastre data while (b) and (c) are 

captured from Bing images. 

 

The second section discusses the cartographic and geographic notions of scale and 

level of detail. The third section briefly presents both scale inference methods, 

while Section 4 explores how these methods can be combined to improve the scale 

inference of OSM data. Section 5 describes how scale inference can be used to 

enhance the automated mapping techniques for OSM data, to illustrate the useful-

ness of the research. After a discussion in the sixth section, the chapter is conclud-

ed and further research is proposed.  

2. Scale and Level of Detail 

All scientific modelling approaches implicitly or explicitly must deal with the 

question of the conceptual and numerical relationships between reality and the 

model being created. In the most straightforward interpretation, a numerical rela-

tionship between reality and the model is the ratio of values in reality to values in 

the model. For all spatial sciences and endeavors, be they model railroads or traf-

fic simulations, informative numerical ratios as an expression of the reality–model 

relationship are based on geometries. For maps as graphical models of geographic 

phenomena, the ratio between distances as measured on the map and as measured 

in reality is called “scale” (International Cartographic Association 1972). As it has 

so far been inefficient to provide maps at an arbitrary scale, mapping agencies 

have prepared maps and map series at certain scale groups. Furthermore, in car-

tography, scale has become shorthand for usage environment for the map and con-

ceptual organization of the subject matter depicted. Freitag (1962) writes: “The 

scale of a map is one of its constitutive elements; it determines information densi-

ty, readability, significant contents and area of application.” Due to this historical 

development, the seemingly objective and quantifiable numerical scale has be-

come attached to precepts about the conceptual relations between geographic re-

ality and its graphical model (Freitag 1962, Bollmann and Koch 2002). This was 

driven by and is congruent with developments in geography (Sudgen and Hamil-

ton 1971) and other geosciences such as ecology (Steinhardt 1999, Levin 1992, 
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Chave 2013). In all cases, ranges of numerical scales are grouped into conceptual 

hierarchies. Consequentially, each level of the hierarchy is understood to be the 

realm of certain phenomena and specialized research methods only applicable 

within the bounds of that level. Haggett et al. (1965) proposed normalization over 

the surface of the earth as the basis for a logarithmic subdivision as a “yardstick” 

(G-scale) for a continuous hierarchy of modelling perspectives. Without any direct 

connection to the geosciences or cartography, computer graphics research saw it-

self confronted with the problem of “enhancing performance and realism” of 

“computer produced pictures” for graphical models of reality (Clark 1976). It is 

not surprising that one of the most enduring solutions was to devise hierarchical 

geometric models, which came to be known as “Levels of Detail” (LoD) (Clark 

1976). As such, LoD and the hierarchical models of space in the geosciences are 

quite similar in purpose and argumentation. Both approaches also share the need 

for a concretization for specific use cases.  

Touya and Brando (2013) define the LoD of a geographical dataset as the con-

junction of several factors, namely the conceptual schema of the data, the semantic 

resolution, the geometric resolution, the geometric precision, and the granularity. 

The conceptual schema component is the way ground truth is represented in the 

geographical database: polygonal features representing forests or point features 

representing individual trees are conceptual schemas that correspond to different 

LoDs. The semantic resolution is the quantity of details in the attribute data at-

tached to geographical features. By analogy with raster resolution, the geometric 

resolution of vector features is approximately the minimum distance between two 

vertices of the geometry. The geometric precision is simply the positional shift be-

tween ground truth and the represented feature. Finally, granularity describes the 

size of the smallest shapes of features, such as the smallest protrusions of build-

ings or the smallest width for sharp bends in a road. Biljecki et al. (2014) pro-

posed a formal framework to measure LoD, but it is applicable for 3D city models. 

As CityGML standard did for 3D city models (Kolbe 2009), LoD categories 

can be defined for maps. Touya and Brando (2013) proposed five LoD categories 

that would be used in this chapter, from the more detailed to the less detailed: 

street, city, county, region, and country. The street LoD contains features repre-

sented for parcel management or street orientation. For example, the British Ord-

nance Survey MasterMap can be considered as a street LoD dataset. The city LoD 

contains features to describe what is visible on the ground (buildings, roads, riv-

ers, forests, etc.). It is the LoD of classical 1:25k topographic maps. The county 

LoD contains features that represent a small region to allow tourist-like displace-

ments (e.g., visits, hiking, cycle rides). The regional LoD is related to the repre-

sentation of a large region and only contains important roads and geographic fea-

tures. Finally, the country LoD is even less detailed, for the representation of 

countries or very large regions. 
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In order to compare LoD and scale inferences, we have to match the LoD cate-

gories used in this chapter with scale values. Table 1 summarizes an attempt at 

such a matching. Although this matching is somewhat subjective, it was used in 

the remainder of the chapter to compare scale and LoD inferences.  

Table 1. Matching the LoD categories from Touya and Brando (2013) with 

map scale ranges, i.e. the objects with a given LoD category can be mapped within 

this scale range, without significant generalization. 

LoD Cate-

gory 

Street City County Region Country 

Scale range <1:15k 1:15k–

1:50k 

1:50k–

1:150k 

1:150k–

1:750k 

>1:750k 

 

3. Two Methods for the Automatic Inference of Scale 

As we have noted before, information on the scale/LoD of a given dataset is cru-

cial for further geoprocessing operations such as automated generalization. Before 

the rise of datasets like OSM, information on scale/LoD was just part of the 

metadata, but with user generated geodata, capture or intended scale/LoD are not 

documented. To address these problems, we present two different data enrichment 

approaches that attempt to infer the scale/LoD of OSM-data. The first approach 

can be understood as a rationalist (Touya and Brando 2013), the second as an em-

piricist approach (Reimer et al. 2014). 

3.1 Scale Inference with a Multiple Criteria Decision Technique 

3.1.1 Measuring Level of Detail 

The definition of LoD presented in Section 2 showed that it is more complex than 

geometric resolution alone, as many aspects are involved in its characterization. 

Assuming that LoD inference is the aim, rather than scale, several measures have 

to be used to properly infer LoD. Following the definition given in Section 2, 

measures can be used to infer LoD while covering all its aspects (Touya and 

Brando 2013). 
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Measuring the conceptual schema: 

The feature type of the object, in the Open Geospatial Consortium sense, can help 

us to measure the schema aspect of the level of detail. For instance, buildings or 

points of interest have a higher LoD than built-up areas. Although the Resource 

Description Framework (RDF) structure of OSM data prevents deriving of the fea-

ture type from classes, it can be derived from the main tags of objects like high-

way, building, or amenity. 

Measuring the semantic resolution: 

The annotation process to add semantic information on objects improves the level 

of detail of OSM objects by giving specifications on the object, but OSM is 

sparsely tagged (Mooney and Corcoran 2012) and only a few objects contain sev-

eral tags. A very simple measure that counts tags is used. Metadata-like tags, such 

as source, or created_by, are counted as well as property tags like name, and lan-

guage specific tags, such as species:fr that gives the French name of a tree species 

while the generic tag species gives the Latin name. 

 

Measuring the geometric resolution: 

Geometric resolution can be measured by assessing the density of vertices in 

relation to the length of objects. Indeed, we assume that a higher frequency of ver-

tices denotes a digitization of objects at a larger scale or level of detail. The vertex 

density measure has been empirically normalized between 0 and 1 using the max-

imum and minimum values found in French authoritative datasets at different 

LoDs (1:25k, 1:100k and 1:250k). However, such a measure penalizes curvy lines 

that require more vertices to digitize than a straight line. So, curved objects (e.g. 

rivers) may be artificially considered as more detailed. So, we added a measure, 

the median of edge lengths (Figure 2), to better capture the resolution of curved 

objects. It has been proved more effective than vertices density on mountain roads 

by Girres (2011). This measure is also empirically normalized using the same au-

thoritative datasets. 
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Figure 2. The median of edge lengths gives a clearer idea of geometric resolu-

tion for curved objects like mountain roads or rivers. 

Measuring the geometric precision: 

Intrinsically assessing the geometric precision is a complex task and previous 

research giving a geometric precision for OSM objects used a reference dataset 

(Haklay 2010, Girres and Touya 2010). However, the source tag in OSM informs 

on where the contribution comes from (e.g. GPS survey, Bing imagery, imported 

from open datasets). Knowledge on the rough precision of such sources can give 

us a vague but useful insight on geometric precision. The main possible values for 

the source tag have been listed from the TagInfo tool, and a rough LoD equivalen-

cy was derived when possible: a GPS survey is usually quite precise (value set to 

city) while digitization from Landsat creates imprecise objects (value set to re-

gion). 

Measuring granularity: 

Granularity captures the minimum size of details in an object shape. The detail 

can be the whole shape, a simple protrusion, or a bend in a linear object. To cap-

ture granularity in all three cases, three measures are proposed: size, smallest 

edge, and coalescence. First, small areas indicate a high granularity for small-sized 

objects but do not indicate anything about the granularity of large objects. The 

measure was calibrated with the smallest sizes found in the authoritative datasets 

at several LoDs used before. The size criterion is only applied to polygons. Then, 

the smallest edge criterion analyzes the length of the shortest edge between two 

vertices to infer granularity. This criterion is a classical measure to assess building 

granularity in cartographic generalization (Stoter et al. 2009). Note that when used 

on raw data, shortest edge values can become infinitesimally small due to nigh-

double clicks and other digitization errors. A clean-up step is suggested when used 

on OSM data, for example. Finally, the coalescence (i.e. symbol overlap in a 

curve) criterion is used for the inference of linear features’ granularity. This crite-
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rion is based on the principle that if a linear feature symbol coalesces at a given 

symbol width, the feature cannot be displayed at a scale that requires such a width 

for eye perception (Girres 2011). It could also be used on polygons but it has not 

been tested. 

 

To summarize, eight criteria can be used to infer LoD in OpenStreetMap: 

 Feature type (conceptual schema). 

 Number of tags (semantic resolution). 

 Vertex density (geometric resolution). 

 Median edge length (geometric resolution). 

 Capture source (geometric precision). 

 Size (granularity). 

 Smallest edge (granularity). 

 Coalescence (granularity). 

3.1.2 Combining Criteria to Infer a LoD Category 

The eight proposed criteria are quite diverse, and hardly comparable, so their 

aggregation to infer a LoD category is challenging. Multiple-criteria decision-

making is a computer science domain that researches methods to that are able to 

cope with diverse and intuitively hard-to-compare measurements (Figueira et al. 

2005a). Such techniques can help us to infer LoD from the eight proposed criteria. 

Among the large number of existing techniques, we chose the ELECTRE TRI 

method (Figueira et al. 2005b) as its properties match our needs: 

 The decision is a classification into categories. 

 There are more than three criteria. 

 The criteria are hardly comparable (i.e. how to compare the vertex density 

measure with the capture source criterion?). 

 The criteria give fuzzy results that may be insignificant taken individually. 

In ELECTRE TRI, the comparison between two vectors of measures (that 

gather the measures for all criteria) is not made by aggregating the measures. 

Comparisons are made criterion by criterion, and according to this comparison, 

each criterion votes for or against the assertion that “vector u outranks vector v”. 

To make a classification, each category is assigned a lower-bound vector and an 

upper-bound vector to which the vectors to classify are compared. Therefore, we 

had to define, the lower-bound and upper-bound vectors for each category: e.g., 

the feature type “building” is the feature type criterion value for the lower-bound 

vector of the category City LoD. The bounds definition is based on the authorita-

tive datasets. The criteria are able to vote indifference when the criterion alone is 
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not sufficient to decide what outranks what. For instance, the criterion “feature 

type” is indifferent when the values up for comparison are “footpath” and “resi-

dential road”. The criteria are also able to vote a veto, i.e. the outranking decision 

is based only on this criteria. For instance, the granularity criterion will put a veto 

if a 1-m smallest edge is compared to a 500-m smallest edge. 

As the importance of any single criterion in the global method is hard to assess, 

a sensitivity analysis was conducted. We compared the global result (i.e. with all 

criteria) with results derived from only a subset of the criteria. The sensitivity 

analysis shows stability for some objects (e.g. building and forest), i.e. whatever 

the criteria used, the LoD category is the same. Other objects show more variabil-

ity: for the tested streets or rivers, the choice of the criteria among the eight avail-

able significantly impacts the LoD category that is inferred. 

As a strategy to make the method more robust against such feature type-

dependent sensitivity, we compute the LoD for all the possible permutations of 

criteria (with at least four criteria to all criteria). The geometric mean of all the in-

ferred categories is used as the new LoD value, robust against outliers and chang-

ing sensitivity.  

The multiple criteria decision method and all the criteria have been implement-

ed in the open source research platform GeOxygene (Grosso et al. 2012), which is 

able to load OSM datasets. Some results automatically computed on built-up are-

as, like in Reimer et al. (2014), are presented in Figure 3. 

 
Figure 3. LoD inference results for built-up areas in France: LoD is globally 

low because built-up areas are imported from Corine Land Cover. 
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3.2 Empiric Scale Inference 

The empiric approach as presented in Reimer et al. (2014) is based on an inver-

sion of Töpfer’s radical law (Töpfer and Pillewizer, 1966). The basic idea is to 

create a specific radical law applicable to a specific class of objects by empirically 

determining a measurable constant and inverting it, to determine the scale equiva-

lency of a given object. The scale equivalency is then expressed as if it was a car-

tographic scale. This empiric scale inference method is thus divided into three 

phases: 

1. Identification of a suitable measure. 

2. Determination of the specific constant. 

3. Automated application. 

Phases 1 and 2 are currently not fully automated, but conceivably could be au-

tomated, assuming some further work in defining criteria for selecting suitable 

measures. Note that phase 2 needs to be informed by the relation of the selected 

measure to the object, potentially modifying the degree of power of the equation. 

Area-based measures will most likely be of third degree and linear measures of 

second-degree complexity, disregarding other factors such as a drop or increase in 

apparent density. For a detailed discussion of the determination of the exponent x 

in the equation: 

 

nF=nA∙√(
MA

MF
)
x

, 

where n_F is a measure in the follow-up scale, n_A is a measure at the original 

scale and M_A and M_F are the scale factors at original and follow-up scale re-

spectively, please see Töpfer (1979, pp. 43). 

 For the case of urban area polygons, the vertex frequency was identified from 

many other potential measures generated for urban area polgyons for 1:250k scale 

map products from three different national mapping agencies. Note that vertex 

frequency was used for a related purpose by Dutton (1999). Other potential 

measures such as minimum edge length, area, vertex per area, angular resolution, 

minimum angle, etc. were tested and discarded either due to being too different 

across the tested maps or due to being statistically dependent on the area of the 

polygon. The vertex frequency tested negatively for dependence on the area of the 

polygon, i.e. there is no statistically significant correlation between frequency and 

polygon size. Furthermore, the measure showed very stable distributions with low 

standard deviations around a concrete value of 1 vertex per millimeter drawing 

space across a wide range of maps of the same scale produced by different organi-

zations. We thus set up the scale equivalency S_E as: 
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SE=250000∙ (
1.0

v
mm
nF

)

2

. 

 Note how this is equivalent to the 1st degree (x = 1) selection equation based 

on Töpfer (1979): 

 

MF=MA∙ (
nA
nF
)
2

. 

Contrary to common experience, no significant numerical difference could be 

detected whether curvy rivers and coastlines were part of the urban area polygons 

or not. We highlight this as an example of the conceptual difference compared to 

the multi-criteria analysis, where the choice of criteria is made a priori, i.e. with-

out a preceding statistical–empirical analysis. Whereas intuition and expert 

knowledge suggest that there is a strong influence on the artificial/natural form di-

chotomy of polygons on vertex frequency, these effects are not measurable for this 

specific object type and scale range. 
 

4 Combining Both Methods to Improve Scale Inference 

4.1 Compared Evaluation of Both Inference Methods 

To compare both methods, scale was used and the improved LoD inference (the 

mean of category inferences when criteria vary) was interpolated to scale, using 

the scale ranges from Table 1, and a linear interpolation inside each category (i.e. 

a 2.5 LoD mean corresponds to a 1:50000 scale). Then, five test areas were select-

ed with only built-up areas as the empiric scale inference is only tuned for such 

objects. Four of the test areas come from areas of interest highlighted in Reimer et 

al. (2014): Africa, western Ukraine, Australia, and Belgium. A test area in France, 

where the multiple criteria method was initially tested, was also added. Figure 4 

clearly highlights the general trend on all tested datasets, that both methods do not 

infer scale the same way. The scale equivalency (SE) tends to infer larger scale 

than the multiple criteria method (SL). The results are summarized for all built-up 

areas of all five test datasets in Table 2. 
 

Table 2. Comparison of scale inferences from both methods in all five datasets 

(17402 objects). 
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 LoD 

Mean 

Scale from LoD 

(SL) 

Scale from equivalency 

(SE) 

Scale gap 

(SL/SE) 

mean 3.94 1:18996375 1:81368 638.9 

max 5.00 1:75375000 1:32017460 11499.7 

min 1.93 1:14475 1:5 0.3 

median 3.94 1:411549 1:11149 61.1 

 

Occasionally, SL is larger than SE, but the mean scale gap is around 40 in most 

datasets (the gap is only significantly bigger in the French dataset). However, both 

methods are quite consistent in assessing the wide diversity of scales for built-up 

areas across the test datasets. When such a difference is measured, it is necessary 

to assess which one is closer to some form of ground truth. For this purpose, we 

used the French dataset where almost all built-up areas are derived from an auto-

matic import of the Corine Land Cover European dataset, which is confirmed by 

the source tag on the objects. Corine Land Cover is produced by remote sensing 

for a scale of 1:100k. So, the both scale inferences should tend to 1:100k on the 

French dataset. SE appears to be the more accurate scale: it slightly underestimates 

the scale with a mean scale of 1:43k, while SL is much further with a mean scale 

of 1:2.5M. 

The large bias of SL may have several explanations. First, the multiple criteria 

method was not intended to infer scale but LoD, being a different and fuzzier no-

tion (see Section 2). Measurements on geometry are balanced with measures on 

feature type, or metadata, which significantly impacts the inferred scale. Moreo-

ver, the geometry measurements were not calibrated on built-up areas but mostly 

on roads and buildings (Touya and Brando 2013), and they were not changed for 

this comparison to see if it mattered. Finally, the interpolation between LoD cate-

gories and scales is quite fuzzy and inaccurate. The ranges used for each category 

could be tuned and a non-linear interpolation could be used for small scales, where 

the scale-range is very large compared to the scale ranges of street and city catego-

ries. On the other hand, the scale equivalency also appears to be biased, as the only 

consideration of vertex density tends to increase scale equivalency too much. Tak-

ing granularity into account would maybe make SL more accurate. 
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Figure 4. (a) Reimer et al.’s (2014) scale equivalency on built-up areas in Tuni-

sia. (b) Interpolated scale from multiple criteria LoD inference on the same da-

taset. 
 

Although the exemplary scale equivalency was calibrated with built-up areas in 

authoritative datasets, it was computed on other map types of objects, as well as 

the multiple criteria LoD inference, in order to further explore both methods. Such 

evaluations can help us to know if the scale equivalency really has to be calibrated 

several times for several types of objects, which is the baseline assumption. Tests 

were carried out on rivers (tag waterway = river), forest (tag landuse = forest) that 

are geographically far from built-up areas and industrial areas (tag landuse = in-

dustrial), which is a type of object close to built-up areas (Figure 5). Two areas 

with good completeness in France and Germany were selected. 

In all three cases, the scale gap between SL and SE is less pronounced, particu-

larly on rivers that are quite different objects, while forest and industrial areas are 

considered as land use areas. The gap decrease is partly due to the inference of 

smaller scales by SL compared to the inference for built-up areas. Indeed, vertex 

density is correlated to the shape of objects, and curved shapes like forests and riv-

ers tend to be composed of more vertices than built-up or industrial areas with the 

same length 
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Figure 5. LoD inference on industrial areas in (a) Germany, (b) forests in 

France, and (c) rivers in Germany.  
 

4.2 Mixing Both Inference Methods 

The exemplary scale equivalency for polygons as a function of the vertex densi-

ty measure is naturally quite similar to the vertex density criterion used by Touya 

and Brando (2013), normalized by benchmarking on existing datasets. Hence, we 

tried to compute the multiple criteria scale inference replacing the vertex density 

criterion by the scale equivalency measure. The previous section showed that the 

multiple criteria method tended to yield much smaller scales compared to Reimer 

et al.’s (2014) scale equivalency, so adding the scale equivalency as a criterion 

could plausibly improve inference results. 
 

Table 3. Comparison of LoD inference with and without Reimer et al.’s (2014) 

scale equivalency as a criterion, on 4858 built-up areas from the French and Afri-

can datasets (tag landuse = residential). 

 
Mean LoD with vertex 

density 

Mean LoD with Scale Equiva-

lency 

LoD differ-

ence 

mean 4.18 3.12 1.06 

max 5.00 4.20 1.72 

min 1.98 1.98 -0.03 

median 4.64 3.06 0.94 
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The scale inference was computed with the vertex density criterion and with the 

scale equivalency instead on the same datasets of built-up areas (Table 3). The 

comparison was also computed on three buildings datasets (Table 4) in different 

parts of the world in order to assess the impact of the scale equivalency criterion 

on geographical data it was not calibrated for. The result for built-up areas shows 

that replacing the vertex density criterion clearly influences the LoD inference 

with a mean decrease of the LoD of 1 category, giving a mean scale of approxi-

mately 1:90k, which is consistent with the computation of scale equivalency on the 

same datasets. As most built-up areas in the tested datasets are imported from 

Corine Land Cover, a dataset specified for 1:100k scale, the scale inference is 

more accurate with Reimer et al.’s (2014) scale equivalency for these objects. 

On the contrary, the LoD inference on building remains nearly the same with or 

without Reimer et al.’s (2014) scale equivalency, which means that the calibration 

of both measures for small and detailed features like buildings produce quite simi-

lar results. 

 

Table 4. Comparison of LoD inference with and without Reimer et al.’s (2014) 

scale equivalency as a criterion, on 9153 buildings from the three chosen datasets. 

 Mean LoD with vertex 

density 

Mean LoD with Scale Equiva-

lency 

LoD differ-

ence 

mean 2.05 1.99 0.05 

max 4.66 3.95 1.48 

min 1.64 1.61 -0.25 

median 2.02 2.00 0.03 

 

5 LoD Harmonization for Large-Scale Automatic Mapping 

When OSM is an input for the automatic derivation of large-scale maps (e.g. 

1:10k), highly detailed objects are displayed with less detailed objects. When 

these objects share spatial relation (e.g. inclusion) in reality, the LoD difference 

may alter this spatial relation and blur the map readability (Touya 2012). In this 

case, the automatic inference of scale/LoD for individual objects is very useful. It 

helps identifying those spatial relations that are damaged because of LoD differ-

ence (Touya and Brando 2013). The spatial relations are identified by spatial rela-



16  

 

 

 

tions algorithms and stored as complex objects of the dataset. Then, the LoD in-

ference is a required input for an automatic LoD harmonization process that could 

restore the spatial relation (Touya and Baley 2014); here spatial relations could be 

made explicit as map objects in order to assure their restoration. 

For instance, OSM built-up areas are often poorly detailed (see experiments 

above, Section 4.1) while buildings are quite detailed in France (imported from 

cadastral data). So, buildings may lie just outside built-up areas. The harmoniza-

tion process extends the geometries of built-up areas to include those buildings, 

restoring the spatial relation of buildings included in a built-up area (Figure 6). 
 

 
Figure 6. Automatic harmonization of a built-up area (in red), extended (in 

grey) to include buildings with higher LoD. 
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6 Open Problems 

6.1 Scale Inference for Point Objects 

Both methods rely on some kind of point density estimation based on the series 

of vertices that describe objects’ geometry, which is not immediately applicable to 

point objects (Dutton 1999, Bereuter and Weibel 2013). So, how can we infer the 

scale or LoD of point objects? 

In the multiple criteria method, all criteria related to geometric resolution and 

granularity become meaningless, and the conceptual schema, semantic resolution 

and geometric precision criteria remain. We tested the method with the remaining 

criteria on several point features in OSM: trees, aerial way pylons, bicycle_rental, 

bus stops, towers, peaks, and power poles. These features are diverse in terms of 

real extent and geographical neighborhood. A fourth criterion, called version 

number, was added to assess the features with a crowdsourcing approach (Good-

child and Li 2012): although the Linus’ law (i.e. quality increases with the number 

of active contributors) has not been completely proved for VGI (Haklay et al. 

2010), the number of versions of a feature gives hints on the number of times a 

feature has been improved by OSM contributors. This criterion assesses the ob-

jects with many versions as detailed objects. 

As the source tag is seldom filled, the most differentiating criterion is the fea-

ture type criterion. The point objects that represent a small object like a tree, bus 

stop or a pylon are attributed to a detailed LoD, while objects representing a large 

(and fuzzy) extent like peaks or bicycle rental places are given less detailed LoD. 

Within a feature type, the three other criteria (source, number of tags, and version 

number) make the objects more or less detailed: for instance, a peak captured by 

GPS with elevation and name tags is given a higher LoD than a peak captured 

from Bing imagery (Figure 7). 
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Figure 7. Peaks (triangle symbols) and passes (square symbols) extracted from 

OSM in the French Alps. Scale inference (computed from the multiple criteria 

method) varies according to the tags on the objects. 
 

These results show that the LoD inference of point objects could be improved. 

First, the version number criterion only uses the version number, so there is no in-

formation about the number of contributors that improved the object, and it may 

be a single contributor. However, the wisdom of crowd theory assumes that better 

decisions can be made when there are multiple independent contributors 

(Surowiecki 2004). Using the full history OSM database, as proposed by Barron et 

al. (2013), could further enhance the version number criterion with the number of 

different contributors involved in the object improvement. Moreover, the peaks 

example is the ideal case for introducing what Goodchild and Li (2012) call the 

geographic approach of VGI quality assurance. If we could cross the peaks with 

digital terrain model information, it would be easy to assess the proximity of the 

feature and a peak in the relief as modelled in the DTM. 
 

6.2 Does Feature Density Alter Scale Level? 

Inferring the LoD of objects individually is sometimes insufficient, as the legi-

bility of the object can be affected by the local density of objects. It is plausible to 

assume that certain dense patterns alter the LoD/scale of its composite object, po-

tentially raising partonomic questions. Figure 8 shows the example of a cross-

country ski resort in the Pyrenees. Individually, the paths are approximately in-

ferred as 1:100k scale objects by the improved multiple criteria method. However, 



19 

 

 

 

the density of such paths prevents any legible display at this scale (Figure 8c). In 

this case, the scale inferred is not the scale at which the paths could be mapped, 

but the scale at which they could be individually mapped. 
 

 
Figure 8. (a) Multiple paths in a cross-country ski resort in the Pyrenees. (b) In-

dividual scale inference tells that paths should be mapped at 1:100k, but (c) there 

are too many close paths at this scale. 
 

Regarding the multiple criteria method, two kinds of criterion could be added 

to integrate such density issues. First, clutter measures (Rosenholtz et al. 2007) at 

several scales could be made to assess at which scales the density of objects from 

one feature type causes clutter problems. Then, the principles from the coales-

cence criterion could be extended to the neighborhood of objects: as symbol size 

increases when scale decreases, when does the object symbol overlap with sym-

bols from its neighbors? 

6.3 The Scale of Objects with Simple Shapes 

In a dataset with a homogeneous scale, simple objects like rectangular-shaped 

buildings are captured with simple geometries, but we know the scale is similar to 

all the other buildings that may have complex shapes. In OpenStreetMap, if an ob-

ject has a very simple shape, it is hard to know if its scale is small, or if it is just a 

simple geometry that has been accurately captured. The scale equivalency measure 

will infer that such simple objects have a small scale, as the number of vertices to 

capture them is small (Figure 9). Within the empirical scale equivalency approach 

one must come up with coping strategies for individual object types separately, as 

was done for city blocks (Reimer et al. 2014). LoD inference too, provides quite 

different results for buildings depending on the complexity of their original shape 

(Touya and Brando 2013). 
 



20  

 

 

 

 
Figure 9. Two buildings captured from the source (French cadastre) by the 

same contributor with quite different scale equivalency because the upper one has 

a much simpler shape. 

When the application is the production of small-scale maps with a generaliza-

tion process, this issue will not alter the generalization result. Indeed, if the in-

ferred scale is small, the impact will only be a slight generalization, but if the 

shape is simple, it does not require as much generalization as a building with a 

complex shape. However, this can be an issue when the application is the produc-

tion of a large-scale map, with LoD consistency checking (see Section 5). Then, 

objects with simple shapes should be identified before consistency checking, for 

instance, by analysis of the neighbors of the objects: if only one has a low resolu-

tion, the shape is probably simple. This analysis can be related to the geographic 

approach of quality of Goodchild and Li (2012). 

7 Conclusions 

Until the widespread availability and success of VGI and OSM specifically, 

scale was an easily determined metadatum. With non-government grassroots geo-

data becoming more encompassing by the day, users are confronted with rich but 

scale-wise inhomogeneous data. This is as true for geometries as it is on a concep-

tual level. This chapter reviewed the first two attempts at automatized scale infer-

ence for OSM and showed their relative strengths and weaknesses and ways to 

improve both by combining them. Both approaches currently and purposefully 

work on an individual object level. The open problems such as point features and 

feature density could plausibly be approached with meso-regions as intermediate 

steps, as it has been done in agent-based automated generalization. A more fun-

damental problem seems to be the further automation of parameterization. The 
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current approaches make extensive use of tacit and explicit cartographic 

knowledge in selecting the measures and/or criteria. It is unclear at the moment 

how or if automation of these fundamental steps is attainable at all in the near fu-

ture. 
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