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ABSTRACT 
This paper deals with the problem of 3D human tracking in 
catadioptric images using particle-filtering framework. While 
traditional perspective images are well exploited, only a few 
methods have been developed for catadioptric vision, for the 
human detection or tracking problems. We propose to extend 
the 3D pose estimation in the case of perspective cameras to 
catadioptric sensors. In this paper, we develop an original 
likelihood functions based, on the one hand, on the geodetic 
distance in the spherical space SO3 and, on the other hand, on 
the mapping between the human silhouette in the images and 
the projected 3D model. These likelihood functions combined 
with a particle filter, whose propagation model is adapted to the 
spherical space, allow accurate 3D human tracking in 
omnidirectional images. Both visual and quantitative analysis of 
the experimental results demonstrate the effectiveness of our 
approach 
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1 Introduction 
Omnidirectional cameras are commonly used in computer vision 
and robotics. Their main advantage is their wide field of view, 

allowing them to get an omnidirectional (360-degree) image with 
a single sensor. In this paper, we propose to perform a 3D 
human tracking using this kind of camera. The potential 
applications are numerous, including human behavior 
recognition, 3D human motion and human-machine interaction. 
There exist several techniques in the literature to localize in 3D a 
moving human with a visual sensor. A classical approach is to 
use several images captured by synchronized cameras [1]. 
However, deploying a multi-camera system in an uncontrolled 
environment remains very complicated, which limits the 
applicability of these methods. Furthermore, estimating 3D 
human pose from a single RGB image is a very difficult task. 
Over the years, the 3D human pose estimation problem using a 
monocular camera has received a lot of attention from the 
computer vision community. State of the art approaches can be 
classified in two main categories: model-based and Non-model-
based methods. Methods without a model often use machine 
learning [2][3] to learn the mapping relationship between the 
human's appearance in images and their 3D posture in the 
workspace. These approaches are generally fast and accurate; 
however, they are limited by the need to use a large database for 
learning 3D poses. In addition, model-based approaches often 
use the geometry of the human body, which can be represented 
in different ways: articulated body, truncated cylinder, conical, 
etc. Constraints related to the mechanical structure of the human 
body and its kinematics make it possible to reduce the research 
space and thus to provide robust and accurate 3D human pose 
estimation. For example, in [4][ 5] the authors determine, in the 
current image, the 2D pose of the human using a "Flexible 
Mixtures of Parts" detector [6][7][8], then they use a regression 
technique to estimate the 3D pose in space. Moreover, cameras 
with large field of views (FOV) remains rarely used in the field of 
the 3D tracking, even if they have a real advantage by stretching 
the field of view to 360 azimuth. Several works have allowed the 
setting up of a precise model for the creation of images from 
omnidirectional sensors [9]. However, omnidirectional cameras 
remain mainly used to solve particular problems like visual 
servoing [10], navigation and motion estimation [11][12]. Only 
few works have studied the use of the omnidirectional camera 
for 3D tracking with catadioptric images. To our knowledge, the 
only works concerning 3D object tracking are of Caron et al.  



Figure 1: Data flow diagram of the proposed 3D tracking approach 

[13], where several cameras are used to estimate the 3D object 
position, and the works of Yang et al. [14], which perform the 3D 
pose recognition without the pose estimation. In this research 
work, we make two main contributions: firstly, we develop an 
original likelihood functions based on geodesic distances in the 
SO3 space, to make more robust the human tacking in the 
omnidirectional images. Secondly, we developed a new database 
that contains omnidirectional images. Each image is associated 
with a 3D posture of the filmed person, captured using an 
external tracking system. 3D data are used as ground truth data 
to validate the developed approaches 

2 3D Human tracking algorithm 
Our 3D tracking approach is composed of several steps as 
illustrated in the figure 1. The first step concerns the detection of 
the region of interest (ROI) from the input image. To do this, we 
have implemented a human detection algorithm based on the 
HOG descriptors in omnidirectional images and using the 
gradient calculation in the Riemannian space. This step allows 
then the initialization of the tracking. From this initial pose, we 
can generate several positions thanks to the particular filter. 
Hence, each particle represents a posture of the 3D model 
respecting the possibilities of movement of the human body, and 
will be used to estimate the 3D pose in the next image. 

2.1 3D Human model 
In the literature, there exists several 3D articulated models to 
represent the human body. The number of degrees of freedom 
(dof) can vary from 82, as in [15] to 14 as in [16]. In most cases 
32 dof are considered [17]. The choice of the number of degrees 
of freedom of the model is important, because it represents the 
number of parameters to be estimated for 3D tracking. 
Consequently, this number must be well chosen so that the 
tracking is accurate and real time. In our case, we chose a model 
with 34 degrees of freedom (figure 2). The upper and lower limbs 
are represented by truncated cylinders/cones. 
This kind of representation is quite common in the literature 
[18][19] because it is easy to manipulate and to project on the 

images. The model is composed of 11 parts: pelvis, torso, head, 
arms, forearms, legs and thighs. The parameters of this model 
describe two complementary information about the body: the 3D 
pose and the shape. The shape is given by the length and width 
of the limbs, which in our case are supposed to be known. 30 
parameters are used to define the model posture; they 
correspond to the position and global orientation of the pelvis 
and the relative articular angles between the neighboring limbs. 
Thus, the vector that gives a complete configuration of the 
kinematic model is 𝑥 = ሾ𝑥(1), 𝑥(2), ⋯ , 𝑥(29), 𝑥(30)ሿ. 

Figure 2: Degrees of freedom of the 3D model 

2.2 Filtering 
The 3D tracking problem can be modeled in a stochastic 
Bayesian framework [20] as an estimation problem of a 
conditional probability distribution (also called a posteriori) 𝑝(𝑥௧|𝑦ଵ:௧). In our case, the state vector describes the 3D posture
of the human body at time t (𝑡 ∈ 𝑁)  and 𝑦ଵ:௧ ≡ ሼ𝑦ଵ, ⋯ , 𝑦௧ሽ
represent the observations extracted from the images. The 
distribution of the initial condition 𝑥 is assumed to be known 
and given by 𝑝(𝑥|𝑦) = 𝑝(𝑥). Such a process is considered to
be a first-order Markov process because the state at the next 
time period is only reliant on the current state of the system. 
Hence, the dynamic equation can be given by 𝑝(𝑥௧|𝑥ଵ:௧) =
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𝑝(𝑥௧|𝑥௧ିଵ). Using the Bayes rule, the filter distribution can be
calculated in two steps: 
- Prediction step: 𝑝(𝑥௧|𝑦ଵ:୲ିଵ) =  𝑝(𝑥௧|𝑥௧ିଵ). 𝑝(𝑥௧ିଵ|𝑦ଵ:௧ିଵ). 𝑑𝑥௧ିଵ (1)

- Filtering step: 𝑝(𝑥௧|𝑦ଵ:௧) ∝ 𝑝(𝑦௧|𝑥୲). 𝑝(𝑥௧|𝑦ଵ:௧ିଵ) (2) 

Several approaches can be used to resolve the filtering problem 
described above. The most popular is the Kalman filter [14]. In 
our case, we considered a refinement approach based on the 
simulated annealed particle filter (APF). This filter is based on 
Sequential Importance Resampling (SIR) algorithms [21][22] or 
CONDENSATION algorithm [23]. The APF filter was used for 
the first time for human tracking by Deutscher and Rei [24]. The 
main idea of the APF filter consists in iterating the state estimate 
several times in order to better localize the maximum of the 
likelihood function. For that, a set of steps (Layer) are iterated 
from layer M to layer 1. Thus, in the same image, the APF 
calculates the points associated with all the particles, it selects 
the particle with the highest weight, makes a finer sampling, and 
then re-estimates the weight of the new particles. The 
probability density at layer m + 1 is then represented by a set of 
N particles with their associated normalized weights: 𝑆௧,ାଵ =൛𝑥௧,ାଵ , 𝜋௧,ାଵ ൟୀଵே

. For the prediction step, a Gaussian diffusion

model is considered and the Monte Carlo method used to 
resample the particles from the probability density in the 
previous layer m+1 as follows: ቄ𝑥௧,() ቅୀଵே ~ ∑ 𝜋௧,ାଵ()ேୀଵ 𝒩 ቀ𝑥௧,ାଵ() , 𝛼ெି𝐶ቁ (3) 

Where C is the covariance matrix and M the number of layers. 
The parameter  allows the covariance matrix to be gradually 
reduced during the successive iterations in order to drive the 
particles to the overall maximum of the likelihood function. The 
remaining particles that respect the body pose constraints (joint 
angle limits, no limb interpenetration) receive new normalized 
weights based on the "annealed" version of the likelihood 
function: 

𝜋௧,ାଵ() = ൬𝑦௧ฬ𝑥௧,() ൰ഁ
∑ ൬𝑦௧ฬ𝑥௧,() ൰ഁೕಿసభ , 𝑖 ∈ 1, ⋯ , 𝑁 (4) 

Where 𝛽  is a parameter introduced to optimize the filter 
behavior so that about half of the particles are propagated to the 
next layer using the sampling equation (3). However, the choice 
of parameters  and  remains difficult. Heuristics can be used. 
In our case we took 𝛼 = 0.4 as recommended by [24]. 

2.3 Likelihood functions 
In particle filter, the weights of the particles are proportional to 
the likelihood function. Thus, a high/low value of this function 
reflects whether the particle is in a region with a low/high 
posterior probability. In the context of 3D human tracking, the 
likelihood function must be able to measure the degree of 
similarity between the projection of the 3D human model and 

the image-segmented silhouette. In this work, we propose to 
combine three likelihood functions in order to make the tracking 
as robust as possible. Two functions are edge-based; they use 
gradient calculation in omnidirectional and spherical images, as 
well as geodesic distance to determine the distance between each 
pixel and the edge. The third likelihood function is silhouette-
based and uses the projection of the 3D model in the spherical 
space. 

2.3.1 Edge likelihood. to calculate the gradient in 
omnidirectional images we apply a differential operator on the 
Riemannian manifold [18][19]. Let 𝒮 be a parametric surface on ℛଷwith an induced Riemannian metric 𝑔  that encodes the 
geometrical properties of the manifold. The corresponding 
inverse Reimanian metric is defined as: 𝑔 = 𝛾 ൬−𝑥ଶ(𝜉 − 1) + 𝜉 + 1 𝑥𝑦(𝜉 − 1)𝑥𝑦(𝜉 − 1) −𝑦ଶ(𝜉 − 1) + 𝜉 + 1൰ (5) 

With 𝛾 = (𝑥ଶ + 𝑦ଶ + (1 + 𝜉)ଶ)ଶ(1 + 𝜉)ቀ𝜉 + 𝜉ଶ + ඥ1 − (𝑥ଶ + 𝑦ଶ)(𝜉ଶ − 1) + 2𝜉 + 𝜉ଶቁଶ
   (6)

The Riemannian metric can be seen as a weighing function of 
the classical gradient computed in the omnidirectional image: ∇𝑓 = 𝑔 డడ௫ೕ (7)

For spherical images, the gradient is given by: ∇ௌమ𝐼௦(𝜃, 𝜙) = డூೞ(ఏ,థ)డఏ 𝑒ఏ + ଵ௦ఏ డூೞ(ఏ,థ)డథ 𝑒థ (8) 

Where 𝐼௦(𝜃, 𝜙) is a spherical image, (𝜃, 𝜙)  are the longitude and
colatitude angles respectively, and 𝑒ఏ and 𝑒థ are unit vectors. 
Once the gradient is calculated, the distance between the 
projections of the model in the spherical image and the contour 
can be obtained. In omnidirectional images unlike the 
perspective images, the distance between a pixel and its 
neighborhood depends on the position of the pixel in the image. 
Therefore, to compute the distance map we propose to use the 
geodesic distance. Let 𝒫 be the projection that transforms an 
omnidirectional image ℛଶ into a spherical image. The geodesic 
distance between two points in 𝑆ଶ, 𝑥ଵ = (𝜃ଵ, 𝜙ଵ) and (𝜃ଶ, 𝜙ଶ), is
given by: 

𝑑ௌమ(𝑥ଵ, 𝑥ଶ) = 𝑎𝑟𝑐𝑜𝑠 ቌcos(𝜙ଵ) . sin (𝜃ଵ)sin(𝜙ଵ) . cos (𝜃ଵ)cos (𝜃ଵ)  . cos(𝜙ଶ) . sin (𝜃ଶ)sin(𝜙ଶ) . cos (𝜃ଶ)cos (𝜃ଶ) ቍ 

(9)

Thus, the edge distance map 𝑀௧can be calculated at time t. The
likelihood function is then estimated by projecting the visible 
parts of the 3D human model into the edge map and calculating 
the mean squared error : 𝑃(𝑦௧|𝑥௧) ∝ ଵకೣ () ∑ ቀ1 − 𝑀௧൫𝜉௫ (𝑗)൯ቁଶ

 (10) 

Where 𝜉௫ (𝑗)  represents the coordinates of the pixels
corresponding to the projected 3D points along the different 
parts of the body, generated by the pose 𝑥௧. 



2.3.2 Silhouette likelihood. Firstly, we used the unified spherical 
model [11] in order to project our 3D human model onto the unit 
sphere. Then, a Gaussian mixture model is implemented to 
estimate the scene background. The silhouette map 𝑀௧௦  is
generated by subtracting the estimated background at each time 
t. The likelihood function associated to this map can be written
as follows: 𝑃௦(𝑦௧|𝑥௧) ∝ ଵకೣೞ () ∑ ቀ1 − 𝑀௧௦൫𝜉௫௦ (𝑗)൯ቁଶ

(11)

This function requires however that the 3D model be always 
projected inside the silhouette. In order to avoid this constraint. 
In order to avoid this constraint, we propose to extend the 
previous likelihood function in order to penalize regions that do 
not overlap. Let 𝑀 be the binary silhouette map of the model 
projection. We then define three regions: 𝑅௧ଵ the intersection of
the maps 𝑀௧  and𝑀௧௦ , 𝑅௧ଶ  the difference between the map 𝑀௧௦
and𝑅௧ଵ, 𝑅௧ଷ the difference between the map 𝑀௧ and 𝑅௧ଵ. The size
of each region can be computed by summing all the pixels that 
compose it, as follows: 𝑅௧ଵ = ∑ 𝑀௧(𝑖) . 𝑀௧௦(𝑖) (12) 𝑅௧ଶ = ∑ 𝑀௧௦(𝑖). ቀ1 − 𝑀௧(𝑖)ቁ (13) 𝑅௧ଷ = ∑ 𝑀௧(𝑖). ൫1 − 𝑀௧௦(𝑖)൯  (14) 

Thus, the dual likelihood function will be defined as follows: 𝑃௦ௗ(𝑦௧|𝑥௧) ∝ ଵଶ ⋅ ቀ ோమோభାோయ + ோయோభାோయቁ (15)

Finally, assuming that the likelihood functions are independent 
of each other conditionally to the pose x, we can merge them 
using the multiple probability formulation, which gives : 𝑃(𝑦௧|𝑥௧) = ଵ|| ∑ ቀ−𝑙𝑜𝑔𝑃(𝑦௧|𝑥௧)ቁ∈  (16)

Where 𝑦௧ is the observation at time t and 𝐿 = ሼ𝑒, 𝑠, 𝑠𝑑ሽ is the set
of the developed likelihood functions.  

3 Experimental results 
In this section, we present the performance of our 3D tracking 
algorithm applied on real data. The truth data is obtained 
through the SmartTrack tracking system of a Smarttrack system 
[25]. 

3.1 Performance criteria 
Various 2D and 3D evaluation methods have been proposed in 
the literature to evaluate human motion tracking and pose 
estimation. Several research studies propose to use the difference 
between the joint angles as an error measure [26] [27]. For our 
experiments, we use two comparison criteria. The first one 
concerns the 3D data; it uses the mean square error on the poses 
of the targets placed on the joints and extremities of the limbs. 
The 3D error is calculated as follows: 𝐷ଷ(𝑥, 𝑥ො) = ଵே ∑ |𝑚(𝑥) − 𝑚(𝑥ො)|ଶேୀଵ  (13) 

Where 𝑚(𝑥) ∈ ℝଷ is the position of the 3D target according to
the pose 𝑥. Thus, the 3D error represents the distance in (mm) 
between our estimate and the ground truth data. 
The second comparison criteria is based on the 2D error between 
the model projection and ground truth, measured directly in 
omnidirectional images. We used this criterion on the 2D ground 
truth video sequences. 

3.2 Evaluation of likelihood functions 

In this experiment, we tested the 3D tracking behavior according 
to the likelihood function used. We considered four likelihood 
functions (as defined in section 2.3): Spherical Gradient with 
Geodetic Distance (GG), Omnidirectional Gradient (OG), Dual 
Silhouette (DS), and a combination of DS and GG likelihood 
functions. The results obtained for sequence 1 and 2 are shown 
in the figure 3. We found that the (GG) function improves the 
results by about 11% compared to the (OG) approach. This is 
because the spherical image allows a better representation of 
omnidirectional images. In addition, the use of geodetic distances 
seems to give better results, and demonstrates that the distance 
calculated between the contour of the extracted person and the 
contour of the project model is better adapted and therefore 
more precise. This figure  also shows that the combination of DS 
and GS likelihood functions gives best results 

a) Sequence 1 b) Sequence 2
Figure 3: Performance of likelihood functions 

4 Conclusion 

In this paper, we described a new technique for the 3D body 
tracking using a catadioptric camera. The key feature of our 
approach is the development of several likelihood functions that 
take into account the geometry of omnidirectional images and 
spherical space. For that, we adapted the calculation of the 
gradient and used the geodesic distances, defined on the unit 
sphere, to generate the distance map for the gradient-based 
likelihood function. In addition, the 3D model projection and the 
silhouette extraction are performed in the spherical space in 
order to robustly construct the silhouette-based likelihood 
functions. We evaluated our method over several sequences. The 
obtained results are convincing and demonstrate the relevance of 
our tracking strategy. The further work includes : using a 
deformable model to improve the human detection; combining 
tracking results of an omnidirectional camera with other 
localisation sensors (like inertia sensors) for robust tracking; 
extending the work carried out by integrating a deep learning 
approach to improve the 3D tracking performance. 
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