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Abstract

In order to reach human performance on complex
visual tasks, artificial systems need to incorporate a sig-
nificant amount of understanding of the world in terms
of macroscopic objects, movements, forces, etc. Inspired
by work on intuitive physics in infants, we propose an
evaluation benchmark which diagnoses how much a given
system understands about physics by testing whether it
can tell apart well matched videos of possible versus
impossible events constructed with a game engine. The
test requires systems to compute a physical plausibility
score over an entire video. It is free of bias and can
test a range of basic physical reasoning concepts. We
then describe two Deep Neural Networks systems aimed
at learning intuitive physics in an unsupervised way,
using only physically possible videos. The systems are
trained with a future semantic mask prediction objective
and tested on the possible versus impossible discrimi-
nation task. The analysis of their results compared to
human data gives novel insights in the potentials and
limitations of next frame prediction architectures.

1. Introduction

Despite impressive progress in machine vision on
many tasks (face recognition [1], object recognition [2,3],
object segmentation [4], etc.), artificial systems are still
far from human performance when it comes to common
sense reasoning about objects in the world or under-
standing of complex visual scenes. Indeed, even very
young children have the ability to represent macroscopic

objects and track their interactions through time and
space. Just a few days after birth, infants can parse
their visual inputs into solid objects [5]. At 2-4 months,
they understand object permanence, and recognize that
objects should follow spatio-temporally continuous tra-
jectories [6,7]. At 6 months, they understand the notion
of stability, support and causality [8, 9, 10]. Between
8 and 10 months, they grasp the notions of gravity,
inertia, and conservation of momentum in collision; be-
tween 10 and 12 months, shape constancy [11], and so
on. Reverse engineering the capacity to autonomously
learn and exploit intuitive physical knowledge would
help building more robust and adaptable real life ap-
plications (self-driving cars, workplace or household
robots).

Although very diverse vision tasks could benefit from
some understanding of the physical world (see Figure
1), model of intuitive physics has been mostly developed
through some form of future prediction task []. Being
presented with inputs that can be pictures, video clips
or actions to be performed in the case of a robot, the
task is to predict future states of these input variables.
Future prediction objectives have a lot of appeal because
there is no need for human annotations, and abundant
data can be collected easily. The flip side is that it is
difficult to find the right metric to evaluate these sys-
tems. Even though pixel-wise prediction error can be a
good loss function, it is not particularly interpretable,
depends on the scale and resolution of the sensors mak-
ing cross datasets comparison difficult, may not even
rank the systems in a useful way: a good physics model
could predict well the position of objects, but fail to
reconstruct the color or texture of objects. In addition,
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Figure 1: Popular end-to-end applications involving scene
understanding and proposed evaluation method based on
physical plausibility judgments. ’Visual’ tasks aim at recov-
ering high level structure from low level (pixel) information:
for instance, recovering 3D structure from static or dynamic
images (e.g., [12,13]) or tracking objects (e.g., [14,15]). ’Mo-
tor’ tasks aim at predicting the visual outcome of particular
actions (e.g., [16]) or to plan an action in order to reach a
given outcome (e.g. [17]). ’Language tasks’ requires the artifi-
cial system to translate input pixels into a verbal description,
either through captioning [18] or visual question answering
(VQA [19]). All of these tasks involve indirectly some notion
of intuitive physics. Our proposed test directly measures
physical understanding in a task- and model-agnostic way.

even though the laws of macroscopic physics are deter-
ministic, in practice many outcomes are stochastic (this
is why people play dice). In other words, the outcome
of any interaction between object is a distribution of
object positions, making the evaluation problem even
harder.

Here, we propose to use an evaluation method which
escapes these problems by using the prediction error
not directly as a metric, but indirectly as informing a
forced choice between two categories of events: possible
versus impossible events. The intuition is the following.
If a model has learned the laws of physics, it should be
able to predict relatively accurately the future in video
clips that show possible events, even if these videos are
entirely novel. However, the model should give large
prediction errors when some unlikely or impossible event
happens. In other words, impossible events have a zero
probability in the real world, so a more trained only
with possible events should be able to generalize to
other possible events, while rejecting impossible ones.

This is directly inspired by the "violation of expecta-
tion" (VOE) paradigm in cognitive psychology, whereby
infants or animals are presented with real or virtual
animated 3D scenes which may contain a physical im-
possibility. The "surprise" reaction to the physical
impossibility is measured through looking time or other
physiological measures, and is taken to reflect a vio-
lation of it’s internal predictions [20]. Similarly, our

evaluation requires systems to output a scalar variable
upon the presentation of a video clip, which we will
call a ’plausibility score’ (it could be a log probability,
an inverse reconstruction error, etc). We expect the
plausibility score to be lower for clips containing the
violation of a physical principle than for matched clips
with no violation. By varying the nature of the physical
violation, one can probe different types of physical laws
(conservation of objects properties, objects movement,
etc.).1

As in infant’s experiments, our tests are constructed
in well matched sets of clips, i.e., the possible versus
impossible clips differ minimally, in order to minimize
the possibility of dataset biases, but are quite varied,
to maximize the difficulty of solving the test through
simple heuristics. Three additional advantages of this
method are that (1) they provide directly interpretable
results (as opposed to a prediction error, or a compos-
ite score reflecting an entire pipeline), (2) they enable
to probe generalization for difficult cases outside of
the training distribution, which is useful for systems
that are intended to work in the real world, and (3)
they enable for rigorous human-machine comparison,
which is important in order to quantify how far are
artificial system in matching human intuitive physical
understanding.

Our tests have also limits, which are the flip side
of their advantage: They measure intuitive physics as
looked through the prediction errors of a system, but
do not measure how well a system might be able to use
this kind of understanding. For instance, an end-to-end
VQA system may have superb physical understanding
(as measured by VOE) but fail miserably in connecting
it with language. In this sense, VOE should be viewed
as a diagnostic tool, a kind if unit testing for physics
that needs to be combined with other measures to
fully evaluate end-to-end systems. Similarly these tests
do not exhaustively probe for all aspects of intuitive
physics, but rather break it down into a small set of
basic concepts tested one at a time. Here again, unit
testing does not guarantee that an entire system will
work correctly, but it helps to understand what happens
when it does not.

This paper is structured as follows. In Section 2, we
present the IntPhys 2019 Benchmark, which tests for 3

1This has a direct parallel in ’black box’ evaluation of language
models in NLP. Language models are typically trained with a
future prediction objective (predicting future characters or words
conditioned on past ones). However, instead of evaluating theses
models directly on the loss function or derivatives like perplexity,
an emerging research direction is to the models on artificially
constructed sentences that violate certain grammatical rules (like
number agreement) measure the ability of the system to detect
these violations [21].
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basic concepts of intuitive physics in a VOE paradigm.
In Section 3, we describe two baseline systems which are
trained with a self-supervised frame prediction objective
on the training set, and in Section 4 we analyse their
performance compared to that of humans participants.
In Section 5 we present related work and conclude in
Section 6 by discussing the next steps in extending
this approach to more intuitive physics concepts and
how they could be augmented to incorporate testing of
decision and planning.

2. Structure of the IntPhys 2019 bench-
mark

IntPhys 2019 is a benchmark designed to address
the evaluation challenges for intuitive physics in vision
systems. It can be run on any of machine vision system
(captioning and VQA systems, systems performing 3D
reconstruction, tracking, planning, etc), be they engi-
neered by hand or trained using statistical learning, the
only requirement being that the tested system should
output a scalar for each test video clip reflecting the
plausibility of the clip as a whole. Such a score can be
derived from prediction errors, or posterior probabilities,
depending on the system.

In this release, which will be the first evaluation of
the DARPA Machine Common Sense project, we have
implemented tests for three basic concepts of the physics
of macroscopic solid objects: object permanence, shape
constancy, spatio-temporal continuity. Each of these
concepts are tested in a series of controlled possible and
impossible clips, which are presented without labels, and
for which models have to return a plausibility score. The
evaluation is done upon submission of these scores in
CodaLab, and the results are automatically presented in
a leaderboard. This benchmark also contains a training
set of videos with random object interactions, in a
similar environment as for the test set. This can be
used either to train predictive systems or to conduct
domain adaptation for systems trained on other datasets
(live videos, virtual environments, robots). Obviously,
the training set only contains physically possible events.

2.1. Three basic concepts of intuitive physics

Behavioral work on intuitive physics in infants and
animal define a number of core conceptual components
which can be tested experimentally using VEO [22].
Figure 2 shows a number of different landmarks in in-
fants. Here, we have selected three of the most basic
components and turned them into three test blocks (see
1), each one corresponding to a core principle of intu-
itive physics, and each raising its particular machine
vision challenge. The first two blocks are related to
the conservation through time of intrinsic properties

Figure 2: Landmark of intuitive physics acquisition in
infants. Each box is an experiment showing a particular
ability at a given age.

of objects. Object permanence (O1), corresponds to
the fact that objects continuously exist through time
and do not pop in or out of existence. This turns
into the computational challenge of tracking objects
through occlusion. The second block, shape constancy
(O2) describes the tendency of rigid objects to pre-
serve their shape through time. This principle is more
challenging than the preceding one, because even rigid
objects undergo a change in appearance due to other
factors (illumination, distance, viewpoint, partial oc-
clusion, etc.). The final block (O3) relate to object’s
trajectories, and posit that each object’s motion has to
be continuous through space and tile (an object cannot
teleport from one place to another). This principle
is distinct from object permanence and requires a to
incorporate smoothness constraints on the tracking of
objects (even if they are not visible). Future releases of
the Benchmark will continue adding progressively more
complex scenarios inpired by Figure 2, including object
interactions and agent motion.

2.2. Pixels matched quadruplets

An important design principle of our evaluation
framework relates to the organization of the possible
and impossible movies in extremely well matched sets
to minimize the existence of low level biases. This is
illustrated in Figure 3 for object permanence. We con-
structed matched sets comprising four movies, which
contain an initial scene at time t1 (either one or two
objects), and a final scene at time t2 (either one or two
objects), separated by a potential occlusion by a screen
which is raised and then lowered for a variable amount
of time. At its maximal height, the screen completely
occludes the objects so that it is impossible to know, in
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Table 1: List of the conceptual blocks of the Intuitive Physics Framework.

Block Name Physical principles Computational challenge
O1.Object permanence Objects don’t pop in and out of existence Occlusion-resistant object tracking
O2. Shape constancy Objects keep their shapes Appearance-robust object tracking
O3. Spatio-temporal continuity Trajectories of objects are continuous Tracking/predicting object trajectories

Figure 3: Illustration of the minimal sets design with object
permanence. Schematic description of a static condition
with one vs. two objects and one occluder. In the two pos-
sible movies (green arrows), the number of objects remains
constant despite the occlusion. In the two impossible movies
(red arrows), the number of objects changes (goes from 1 to
2 or from 2 to 1).

this frame, how many objects are behind the occluder.
The four movies are constructed by combining the

two possible beginnings with the two possible endings,
giving rise to two possible (1→1 and 2→2) and two
impossible (1→2 and 2→1) movies. Importantly, across
these 4 movies, the possible and impossible ones are
made of frames with the exact same pixels, the only
factor distinguishing them being the temporal coherence
of these frames. Such a design is intended to make it
difficult for algorithms to use cheap tricks to distinguish
possible from impossible movies by focusing on low level
details, but rather requires models to focus on higher
level temporal dependencies between frames.

2.3. Parametric task complexity

Our second design principle is that in each block,
we vary the stimulus complexity in a parametric fash-
ion. In the case of the object permanence block, for
instance, stimulus complexity can vary according to
three dimensions. The first dimension is whether the
change in number of objects occurs in plain view (visi-
ble) or hidden behind an occluder (occluded). A change
in plain view is evidently easier to detect whereas a hid-
den change requires an element of short term memory
in order to keep a trace of the object’s through time.
The second dimension is the complexity of the object’s
motion. Tracking an immobile object is easier than
if the object has a complicated motion; we introduce

three levels of motion complexity (static, dynamic 1,
and dynamic 2). The third dimension is the number of
objects involved in the scene. This tests for the atten-
tional capacity of the system as defined by the number
of objects it can track simultaneously. Manipulating
stimulus complexity is important to establish the limit
of what a vision system can do, and where it will fail.
For instance, humans are well known to fail when the
number of objects to track simultaneously is greater
than four [23]. In total, a given block contains 2 by 3
by 3, ie, 18 different scenarios varying in difficulty (see
Table x).

2.4. Procedurally generated variability

Our final design principle is that each scenario within
each block is procedurally generated in 200 examplars
with random variations in objects shapes and textures,
distances, trajectories, occluder motion and position
of the camera. This is to minimize the possibility of
focusing on only certain frames or parts of the screen
to solve the task. Note that the dynamic 2 condition
contains two violations instead of one. These violations
are inverses of one another, such that the first and last
segment of the impossible video clips are compatible
with with the absence of any violation in the central
part of the video (for instance, the initial and final
number of objects is the same, but varies in the middle
of the clip). This insures that physical violations occur
in unpredictable moments in a video clip.

Figure 4: Illustration of the ’dynamic 2’ condition. In
the two possible movies (green arrows), the number
of objects remains constant despite the occlusion. In
the two impossible movies (red arrows), the number of
objects changes temporarily (goes from 0 to 1 to 0 or
from 1 to 0 to 1).
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Figure 5: Examples of frames from the training set.

2.5. The possible versus impossible discrimination
metric

Our evaluation metrics depend on the system’s abil-
ity to compute a plausibility score P (x) given a movie x.
Because the test movies are structured in N matched
k-uplets (in Figure 3, k = 4) of positive and negative
movies Si=1..N = {Pos1i ..Poski , Imp1i ..Impki }, we de-
rive two different metrics. The relative error rate LR

computes a score within each set. It requires only that
within a set, the positive movies are more plausible
than the negative movies.

LR =
1

N

∑
i

1∑
j P (Posji )<

∑
j P (Impj

i )
(1)

The absolute error rate LA requires that globally,
the score of the positive movies is greater than the score
of the negative movies. It is computed as:

LA = 1−AUC({i, j;P (Posji )}, {i, j;P (Impji )}) (2)

Where AUC is the Area Under the ROC Curve,
which plots the true positive rate against the false posi-
tive rate at various threshold settings.

2.6. Implementation

The video clips in IntPhys 2019 are constructed
with Unreal Engine 4.0 ((UnrealEnginePython 4.19;
See Figure 5 for some examples). They are accessible
in https://intphys.com/.

2.6.1 The training set

The training set contains a large variety of objects
interacting one with another, occluders, textures, etc.
It is composed of 15K videos of possible events (around
7 seconds each at 15fps), totalling 21 hours of videos.
There are no video of impossible events, but the training
set contains the objects and occluders presented in the
test set. Each video is delivered as stacks of raw image
(288 x 288 pixels), totalling 157Gb of uncompressed data.
We also release the source code for data generation,
allowing users to generate a larger training set if desired.

2.6.2 The dev and test sets

As described above, each of the three blocks contain
18 different scenario. In the dev set, each scenario is
instantiated by 20 different renderings resulting in 360
movies per block (30 min, 3.7Gb). In the test set, a
scenario has 200 different renderings of these scenarios,
resulting in a total of 3600 movies per block (5h,37Gb).
All of the objects and textures of the dev and test sets
are present in the training set.

The purpose of the dev set released in IntPhys 2019
V1.0 is to help in the selection of an appropriate plau-
sibility score, and in the comparison of various archi-
tectures (hyper-parameters), but it should not serve
to train the model’s parameters (this should be done
only with the training set). This is why the dev set
is kept intentionally small. The test set has more sta-
tistical power and enables a fine grained evaluation of
the results across the different movie subtypes. Video
examples of each blocks are available on the project
page www.intphys.com/.

2.6.3 Metadata

Even though the spirit of IntPhys 2019 is the unsu-
pervised learning of intuitive physics, we do provide in
the test set additional information which may help the
learner. The first one is the depth field for each image.
This is not unreasonable, given that in infants, stereo
vision and motion cues could provide an approximation
of this information. The second one is object instance
segmentation masks, which are helpful to recover ab-
stract object positions but only provide local low-level
information. Importantly, these masks are not linked
to a specific object ID, and are randomly shuffled at
each time frame. Linking instance segmentation masks
to unique object IDs through time is indeed part of
the object permanence problem that systems are sup-
posed to solve. Similarly, if an object is partly occluded
and appears as two pieces of object the two pieces will
receive a different instance mask.

In the train set, we do provide additional metadata
about the ground truth 3D position of each object, the
position of the camera, and the link between object IDs
and instance masks. These metadata are not present
in the dev or test sets.

2.6.4 Submission procedure

For each movie in the dev or test set, the model should
issue a scalar plausibility score. This number together
with the movie ID is then fed to the evaluation software
which outputs two tables of results, one for the absolute
score and the other for the relative score.
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The evaluation software is provided for the dev set,
but not the test set. For evaluating on the test set, par-
ticipants are invited to submit their system and results
on CodaLab (see www.intphys.com) and their results
will be registered and time-stamped on the website
leaderboard.

3. Two baseline learning models

In this section, we present two learning sys-
tems which attempt to learn intuitive physics in an
unsupervised/self-supervised observational setting. One
can imagine an agent who only sees physical interactions
between objects seen from a first-person perspective,
but cannot move nor interact with them. Arguably, this
is a much more empoverished learning situation than
that faced by infants, who can explore and interact with
their environment, even with the limited motor abili-
ties of their first year of life. It is however interesting
to establish how far one can get with such simplified
inputs, which are easy to gather in abundant amounts
in the real world with video cameras. In addition, this
enables an easier comparison between models, because
they all get the same training data.

In a setup like this, a rich source of learning in-
formation resides in the temporal dependencies be-
tween successive frames. Based on the literature on
next frame prediction, we propose two neural network
models, trained on a future frame objective. Our first
model has a CNN encoder-decoder structure and the
second is a conditional Generative Adversarial Network
(GAN, [24]), with a similar structure as DCGAN [25].
For both model architectures, we investigate two differ-
ent training procedures: in the first, we train models to
predict short-future images with a prediction span of
5 frames; in the second, we predict long-future images
with a prediction span of 35 frames.

Preliminary work with predictions at the pixel level
revealed that our models failed at predicting convincing
object motions, especially for small objects on a rich
background. For this reason, we switched to computing
predictions at a higher level, using object masks. We use
the metadata provided in the benchmark training (see
section ??) set to train a semantic mask Deep Neural
Network (DNN). This DNN uses a resnet-18 pretrained
on Imagenet to extract features from the image, from
which a deconvolution network is trained to predict the
semantic mask (distinguishing three types of entities:
background, occluders and objects). We then use this
mask as input to a prediction component which predicts
future masks based on past ones.

To evaluate these models on our benchmark, our
system needs to output a plausibility score for each
movie. For this, we compute the prediction loss along

the movie. Given past frames, a plausibility score for
the frame ft can be derived by comparing ft with the
prediction f̂t. Like in [26], we use the analogy with an
agent running an internal simulation (“visual imagina-
tion”); here we assimilate a greater distance between
prediction and observation with a lower plausibility. In
subsection 3.2 we detail how we aggregate the scores of
all frames into a plausibility score for the whole video.

3.1. Models

Through out the movie, our models take as input
two frames (fi1 , fi2) and predict a future frame
ftarget. The prediction span is independent from the
model’s architecture and depends only on the triplets
(fi1 , fi2 , ftarget) provided during the training phase.
Our two architectures are trained either on a short term
prediction task (5 frames in the future), or a long term
prediction task (35 frames). Intuitively, short-term
prediction will be more robust, but long-term prediction
will allow the model to grasp long-term dependencies
and deal with long occlusions.

3.1.1 CNN encoder-decoder

We use a resnet-18 [3] pretrained on Imagenet [27]
to extract features from input frames (fi1 , fi2). A
deconvolution network is trained to predict the
semantic mask of future frame ftarget conditioned to
these features, using a L2 loss. See details in Table 2

Table 2: CNN for forward prediction (13941315 param-
eters). BN stands for batch-normalization.

Input frames
2 x 3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
applied to each frame
Reshape 1 x 16384
FC 16384 → 512
FC 512 → 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask

3.1.2 Generative Adversarial Network

As a second model, we propose a conditional generative
adversarial network (GAN, [28]) that takes as input
predicted semantic masks from frames (fi1 , fi2), and

6
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predicts the semantic mask of future frame ftarget. In
this setup, the discriminator has to distinguish between
a mask predicted from ftarget directly (real), and a
mask predicted from past frames (fi1 , fi2). Like in
[29], our model combines a conditional approach with
a similar structure as of DCGAN [25]. At test time, we
derive a plausibility score by computing the conditioned
discriminator’s score for every conditioned frame. This
is a novel approach based on the observation that the
optimal discriminator D computes a score for x of

D(x) =
Pdata(x)

PG(x) + Pdata(x)
(3)

For non-physical events x̂, Pdata(x̂) = 0; therefore,
as long as PG(x̂) > 0, D(x̂) should be 0 for non-physical
events, and D(x) > 0 for physical events x. Note that
this is a strong assumption, as there is no guarantee
that the generator will ever have support at the part
of the distribution corresponding to impossible videos.
The generator and discriminator are detailed in Table
3 and 4, respectively.

Table 3: Generator G (14729347 parameters). SFConv
stands for spatial full convolution and BN stands for
batch-normalization.

Input masks
2 x 3 x 64 x 64

4 x 4 conv 64 - 2 str., BN, ReLU
4 x 4 conv 128 - 2 str., BN, ReLU
4 x 4 conv 256 - 2 str., BN, ReLU
4 x 4 conv 512 - 2 str., BN, ReLU

4 x 4 conv 512, BN, ReLU

Noise ∈ R100

∼ Unif(−1, 1)

stack input and noise
4 x 4 SFConv. 512 - 2 str., BN, ReLU
4 x 4 SFConv. 256 - 2 str., BN, ReLU
4 x 4 SFConv. 128 - 2 str., BN, ReLU
4 x 4 SFConv. 64 - 2 str., BN, ReLU
4 x 4 SFConv. 3 - 2 str., BN, ReLU

3 sigmoid
Target mask

3.1.3 Training Procedure

We separate 10% of the training dataset to control the
overfitting of our forward predictions. All our models
are trained using Adam [30]. For the CNN encoder-
decoder we use Adam’s default parameters and stop
the training after one epoch. For the GAN, we use the
same hyper-parameters as in [25]: we set the generator’s
learning rate to 8e− 4 and discriminator’s learning rate
to 2e− 4. On the short-term prediction task, we train
the GAN for 1 epoch; on the long-term prediction task
we train it for 5 epochs. Learning rate decays are set

Table 4: Discriminator D (7629698 parameters). BN
stands for batch-normalization.

history input
2 x 3 x 64 x 64 3 x 64 x 64

Reshape 3 x 3 x 64 x 64
4 x 4 convolution 512 - 2 strides, BN, LeakyReLU
4 x 4 convolution 254 - 2 strides, BN, LeakyReLU
4 x 4 convolution 128 - 2 strides, BN, LeakyReLU
4 x 4 convolution 64 - 2 strides, BN, LeakyReLU
4 x 4 convolution 5 - 2 strides, BN, LeakyReLU

fully-connected layer
1 sigmoid

to 0 and beta1 is set to 0.5 for both generator and
discriminator.

The code for all our experiments is available on
https://github.com/rronan/IntPhys-Baselines.

3.2. Video Plausibility Score

From forward models presented above, we can com-
pute a plausibility score for every frame ftarget, condi-
tioned to previous frames (fi1 , fi2). However, because
the temporal positions of impossible events are not
given, we must decide of a score for a video, given the
scores of all its conditioned frames. An impossible event
can be characterized by the presence of one or more
impossible frame(s), conditioned to previous frames.
Hence, a natural approach to compute a video plausi-
bility score is to take the minimum of all conditioned
frames’ scores:

Plaus(v) = min
(fi1 ,fi2 ,ftarget)∈v

Plaus(ftarget|fi1 , fi2) (4)

where v is the video, and (fi1 , fi2 , ftarget) are all the
frame triplets in v, as given in the training phase.

3.3. Results

3.3.1 Block O1

Short-term prediction The first training proce-
dure is a short-term prediction task; it takes as input
frames ft−2, ft and predicts ft+5, which we note
(ft−2, ft) → ft+5 in the following. We train the two
architectures presented above on short-term prediction
task and evaluate them on the test set. For the relative
classification task, CNN encoder-decoder has an error
rate of 0.09 when impossible events are visible and
0.49 when they are occluded. The GAN has an error

7

https://github.com/rronan/IntPhys-Baselines


rate of 0.15 when visible and 0.48 when occluded. For
the absolute classification task, CNN encoder-decoder
has a LA (see eq. 2) of 0.33 when impossible events
are visible and 0.50 when they are occluded. The
GAN has a LA of 0.38 when visible and 0.50 when
occluded. Results are detailed in Supplementary
Materials (Tables 1, 2, 3, 4).
We observe that our short-term prediction models show
good performances when the impossible events are
visible, especially on the relative classifications task.
However they perform poorly when the impossible
events are occluded. This is easily explained by the fact
that they have a prediction span of 5 frames, which is
usually lower than the occlusion time. Hence, these
models don’t have enough "memory" to catch occluded
impossible events.

Long-term prediction The second training
procedure consists in a long-term prediction task:
(ft−5, ft) → ft+35. For the relative classification task,
CNN encoder-decoder has an error rate of 0.07 when
impossible events are visible and 0.52 when they are
occluded. The GAN has an error rate of 0.17 when
visible and 0.48 when occluded. For the absolute
classification task, CNN encoder-decoder has a LA

of 0.37 when impossible events are visible and 0.50
when they are occluded. The GAN has a LA of
0.40 when visible and 0.50 when occluded. Results
are detailed in Supplementary Materials (Tables 5,
6, 7, 8). As expected, long-term models perform
better than short-term models on occluded impossible
events. Moreover, results on absolute classification
task confirm that it is way more challenging than the
relative classification task. Because some movies are
more complex than others, the average score of each
quadruplet of movies may vary a lot. It results in
cases where one model returns a higher plausibility
score to an impossible movie M{imp, easy} from an easy
quadruplet than to a possible movie M{pos, complex}
from a complex quadruplet.

Aggregated model On the relative classification
task, the aggregated CNN encoder-decoder has an error
rate of 0.07 when impossible events are visible and 0.52
when they are occluded. For the absolute classifica-
tion task, CNN encoder-decoder has a LA of 0.37 when
impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 6, 7, 8 and
Supplementary Materials (Tables 9, 10).

3.3.2 Block O2

Short-term prediction For the first training
procedure (ft−2, ft) → ft+5: CNN encoder-decoder
has an relactive classification error rate of 0.16 when
impossible events are visible and 0.49 when they are
occluded. The GAN has an error rate of 0.30 when
visible and 0.52 when occluded. For the absolute
classification task, CNN encoder-decoder has a LA of
0.40 when impossible events are visible and 0.50 when
they are occluded. The GAN has a LA of 0.43 when
visible and 0.50 when occluded. Results are detailed in
Supplementary Materials (Tables 11, 12, 13, 14).

Long-term prediction For the second training pro-
cedure (ft−5, ft) → ft+35: the CNN encoder-decoder
has an error rate of 0.11 when impossible events are
visible and 0.52 when they are occluded. The GAN
has an error rate of 0.31 when visible and 0.50 when
occluded. For the absolute classification task, CNN
encoder-decoder has a LA of 0.43 when impossible
events are visible and 0.50 when they are occluded.
The GAN has a LA of 0.33 when visible and 0.50
when occluded. Results are detailed in Supplementary
Materials (Tables 15, 16, 17, 18).

Aggregated model On the relative classification
task, the aggregated CNN encoder-decoder has an error
rate of 0.11 when impossible events are visible and 0.52
when they are occluded. For the absolute classifica-
tion task, CNN encoder-decoder has a LA of 0.43 when
impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 6, 7, 8 and
Supplementary Materials (Tables 19, 20).

3.3.3 Block O3

Short-term prediction For the first training
procedure (ft−2, ft) → ft+5: CNN encoder-decoder
has an relactive classification error rate of 0.28 when
impossible events are visible and 0.49 when they are
occluded. The GAN has an error rate of 0.26 when
visible and 0.48 when occluded. For the absolute
classification task, CNN encoder-decoder has a LA (see
eq. 2) of 0.40 when impossible events are visible and
0.50 when they are occluded. The GAN has a LA of
0.42 when visible and 0.50 when occluded. Results are
detailed in Supplementary Materials (Tables 21, 22, 23,
24).
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Figure 6: Results of our baselines on block O1, in cases where the impossible event occurs in the open (visible) or
behind an occluder (occluded). Y-axis represents the losses LR (see Equation 1) for the relative performance and
LA (see Equation 2) for the absolute performance.

Figure 7: Results of our baselines on block O2, in cases where the impossible event occurs in the open (visible) or
behind an occluder (occluded). Y-axis represents the losses LR (see Equation 1) for the relative performance and
LA (see Equation 2) for the absolute performance.

Long-term prediction For the second training pro-
cedure (ft−5, ft) → ft+35: the CNN encoder-decoder
has an error rate of 0.32 when impossible events are
visible and 0.51 when they are occluded. The GAN
has an error rate of 0.34 when visible and 0.52 when
occluded. For the absolute classification task, CNN
encoder-decoder has a LA of 0.46 when impossible
events are visible and 0.50 when they are occluded.
The GAN has a LA of 0.44 when visible and 0.50
when occluded. Results are detailed in Supplementary
Materials (Tables 25, 26, 27, 28).

Aggregated model On the relative classification
task, the aggregated CNN encoder-decoder has an error

rate of 0.32 when impossible events are visible and 0.51
when they are occluded. For the absolute classifica-
tion task, CNN encoder-decoder has a LA of 0.46 when
impossible events are visible and 0.50 when they are
occluded. Results are detailed in Figures 6, 7, 8 and
Supplementary Materials (Tables 29, 30).

As expected, we observe that models’ performance
decrease when impossible events are occluded. This en-
lightens the difficulty to perform long-term predictions
in videos. We also observe that their performances vary
with the types of impossible events tested. Results are
the highest when testing presence / absence of object,
and the lowest when testing the temporal continuity of
trajectories.
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Figure 8: Results of our baselines on block O3, in cases where the impossible event occurs in the open (visible) or
behind an occluder (occluded). Y-axis represents the losses LR (see Equation 1) for the relative performance and
LA (see Equation 2) for the absolute performance.

4. Human Judgements Experiment

To give a second reference to evaluate physical un-
derstanding in models, and provide a good description
of human performance on this benchmark, we presented
the 3600 videos from each block to human participants
using Amazon Mechanical Turk. Participants were first
presented 8 examples of possible scenes from the train-
ing set, some simple, some more complex. They were
told that some of the test movies were incorrect or
corrupted, in that they showed events that could not
possibly take place in the real world (without specifying
how). Participants were each presented with 40 ran-
domly selected videos, and were asked to score them
from 1 (most implausible) to 6 (most plausible). They
completed the task in about 7 minutes, and were paid
$1. A total of 540 persons participated, such that every
video tested was seen by 2 different participants. A
mock sample of the AMT test is available on http:
//129.199.81.135/naive_physics_experiment/.

The average error rates were computed across condi-
tion, number of objects and visibility and are shown in
Tables 5, 6, 7. In general, observers missed violations
more often when the scene was occluded; we observe
error rates going from 18% (visible) to 30% (occluded)
for block O1, from 22% (visible) to 30% (occluded) for
block O2, from 28% (visible) to 47% (occluded) for
block O3. An interesting result is that the score of
humans on block O3 is close to chance when objects
are visible. This shows that humans have trouble to de-
tect changes in velocity of objects, when these changes
occur when the object is occluded. We also observe an
increase in error going from static to dynamic 1 (one
occlusion) and from dynamic 1 to dynamic 2 (two occlu-

sions), but this pattern was only consistently observed
in the occluded condition. For visible scenario, the
dynamic 1 appeared more difficult than the dynamic 2.
This was probably due to the fact that when objects
are visible, the dynamic 2 impossible scenarios contain
two local discontinuities and are therefore easier to spot
than when one discontinuity only is present. When
the discontinuities occurred behind the occluder, the
pattern of difficulties was reversed, presumably because
participants started using heuristics, such as checking
that the number of objects at the beginning is the same
as at the end, and therefore missed the intermediate
disappearance of an object.

These results suggest that human participants are
not responding according to the gold standard laws of
physics due to limitations in attentional capacity - and
this, even though the number of objects to track is below
the theoretical limit of 4 objects. The performance of
human observers can thus serve as a reference besides
ground truth, especially for systems intended to model
human perception.

Interestingly, we observe similar patterns of perfor-
mance between models and humans (see Figures 6, 7,
8), with increasing error rates from blocks O1 to O3. As
expected, both humans and models show higher error
rates when the considered impossible event is occluded.

5. Related work

The modeling of intuitive physics has been addressed
mostly through systems trained with some form of fu-
ture prediction as a training objective. Some studies
have investigated models for predicting the stability
and forward modeling the dynamics of towers of blocks
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Table 5: Average error rate on plausibility judgments collected in humans using MTurk for the IntPhys 2019(Block
O1) test set.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.13 0.14 0.09 0.12 0.32 0.34 0.28 0.31
Dynamic (1 violation) 0.15 0.29 0.27 0.24 0.24 0.30 0.33 0.29
Dynamic (2 violations) 0.14 0.20 0.23 0.19 0.28 0.26 0.36 0.30

Total 0.14 0.21 0.20 0.18 0.28 0.30 0.32 0.30

Table 6: Average error rate on plausibility judgments collected in humans using MTurk for the IntPhys 2019(Block
O2) test set.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.13 0.18 0.15 0.16 0.22 0.33 0.28 0.28
Dynamic (1 violation) 0.29 0.24 0.27 0.27 0.29 0.35 0.29 0.31
Dynamic (2 violations) 0.21 0.27 0.26 0.24 0.32 0.32 0.29 0.31

Total 0.21 0.23 0.23 0.22 0.28 0.33 0.29 0.30

( [31,32, 33, 34,35,36]). [31] proposes a model based on
an intuitive physics engine, [32] and [34] follow a super-
vised approach using Convolutional Neural Networks
(CNNs), [33] makes a comparison between simulation-
based models and CNN-based models, [35] improves
the predictions of a CNN model by providing it with
a prediction of a generative model. In [37], authors
propose different feature learning strategies (multi-scale
architecture, adversarial training method, image gradi-
ent difference loss function) to predict future frames in
raw videos.

Other models use more structured representation
of objects to derive longer-term predictions. In [38]
and [39], authors learn objects dynamics by modelling
their pairwise interactions and predicting the resulting
objects states representation (e.g. position / velocity
/ object intrinsic properties) . In [40], [41] and [42]
authors combine factored latent object representations,
object centric dynamic models and visual encoders.
Each frame is parsed into a set of object state represen-
tations, which are used as input of a dynamic model.
In [41] and [42], authors use a visual decoder to recon-
struct the future frames, allowing the model to learn
from raw (though synthetic) videos.

Regarding evaluation and benchmarks, apart from
frame prediction datasets, which are not strictly speak-
ing about intuitive physics, one can distinguish the
Visual Newtonian Dynamics (VIND) dataset which in-
cludes more than 6000 videos with bounding boxes on

key objects across frames, and annotated with a 3D
plane which would most closely fit the object trajec-
tory [43]. There is also recent dataset proposed by a
DeepMind team [44]. This last dataset seems very sim-
ilar to ours. It is also inspired by the developmental
literature and based on the violation of expectation
principles and is structured around 3 blocks similar to
our first 3 blocks (object permanence, shape constancy,
continuity) and two other ones (solidity and contain-
ment). The number and characteristics of this dataset
is not known at present. From the sample videos, two
differences emerged: our dataset is better matched in
terms of quadruplets of clips controlled at the level of
the pixels, and our dataset has a factorial manipula-
tion of scene and movement complexity. It would be
interesting to explore the possibility to merge these two
datasets, as well as add more blocks in order to increase
the diversity and coverage of the physical phenomena.

6. Discussion

We presented IntPhys 2019, a benchmark for measur-
ing intuitive physics in artificial vision systems inspired
by research on conceptual development in infants. To
pass the benchmark, a system is asked to return a
plausibility score for each video clip. The system’s
performance is assessed by measuring its ability to dis-
criminate possible from impossible videos illustrating
several types of physical principles. Naive humans were
tested on the same dataset, to give an idea of what
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Table 7: Average error rate on plausibility judgments collected in humans using MTurk for the IntPhys 2019(Block
O3) test set.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.29 0.32 0.27 0.29 0.36 0.36 0.45 0.39
Dynamic (1 violation) 0.28 0.33 0.30 0.30 0.49 0.55 0.49 0.51
Dynamic (2 violations) 0.23 0.23 0.26 0.24 0.47 0.53 0.55 0.52

Total 0.27 0.29 0.28 0.28 0.44 0.48 0.50 0.47

performance could be expected by a good model. These
results show error rates increasing with the presence
of occlusion, but not with number of objects. This is
congruent with data showing that humans can track
up to three objects simultaneously. We presented two
unsupervised learning models based on semantic masks,
which learn from a training set only composed of physi-
cally plausible clips, and are tested on the same block
as the humans.

The computational system generally performed
poorly compared to humans but obtained above chance
performance using a mask prediction task, with a very
strong effect of the presence of occlusion. The rela-
tive success of the semantic mask prediction system
compared to what we originally found with pixel-based
systems indicates that operating at a more abstract
level is a worthwhile pursuing strategy when it comes
to modeling intuitive physics. Future work will explore
alternative ways of constructing this abstract representa-
tion in particular instance masks and object detection
bounding boxes. In addition, enriching the training
through embedding the learner in an interactive version
of the environment could add more information for the
learning of the physics of macroscopic objects.

In brief, the systematic way of constructing the Int-
Phys 2019 Benchmark shows that it is possible to adapt
developmental paradigm in a machine learning setting,
and that the resulting benchmark is a relatively chal-
lenging one. The three blocks that we present here could
be extended to cover more aspects of object perception,
including more difficult ones like interactions between
objects, or prediction of trajectories of animated agents.
As we discussed in the introduction, this benchmark
only provides unit tests regarding the computation of
prediction probabilities of object positions based on
past frames. Further work will be needed to construct
benchmarks testing how theses probabilities can be used
by a system to make decision or plan trajectories.
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Appendices
7. Model results (detailed)
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Table 8: Block O1 | Model: CNN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.49 0.52 0.41 0.47
Dynamic (1 violation) 0.00 0.22 0.27 0.17 0.51 0.47 0.49 0.49
Dynamic (2 violations) 0.00 0.13 0.20 0.11 0.50 0.50 0.49 0.50

Total 0.00 0.12 0.16 0.09 0.50 0.50 0.46 0.49

Table 9: Block O1 | Model: CNN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.15 0.17 0.19 0.17 0.50 0.50 0.49 0.50
Dynamic (1 violation) 0.32 0.44 0.47 0.41 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.33 0.43 0.47 0.41 0.50 0.50 0.50 0.50

Total 0.26 0.35 0.38 0.33 0.50 0.50 0.50 0.50

Table 10: Block O1 | Model: GAN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.44 0.45 0.53 0.48
Dynamic (1 violation) 0.00 0.35 0.39 0.25 0.44 0.50 0.47 0.47
Dynamic (2 violations) 0.00 0.21 0.39 0.20 0.51 0.50 0.49 0.50

Total 0.00 0.18 0.26 0.15 0.46 0.48 0.50 0.48

Table 11: Block O1 | Model: GAN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.23 0.31 0.32 0.28 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.33 0.47 0.50 0.43 0.49 0.49 0.50 0.49
Dynamic (2 violations) 0.34 0.44 0.46 0.41 0.50 0.50 0.50 0.50

Total 0.30 0.41 0.43 0.38 0.49 0.50 0.50 0.50

Table 12: Block O1 | Model: CNN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.52 0.55 0.51 0.53
Dynamic (1 violation) 0.00 0.13 0.22 0.12 0.49 0.53 0.48 0.50
Dynamic (2 violations) 0.00 0.06 0.20 0.09 0.53 0.48 0.60 0.54

Total 0.00 0.06 0.14 0.07 0.51 0.52 0.53 0.52
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Table 13: Block O1 | Model: CNN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.30 0.34 0.36 0.33 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.30 0.43 0.44 0.39 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.32 0.40 0.43 0.39 0.50 0.50 0.50 0.50

Total 0.31 0.39 0.41 0.37 0.50 0.50 0.50 0.50

Table 14: Block O1 | Model: GAN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.01 0.00 0.00 0.41 0.58 0.57 0.52
Dynamic (1 violation) 0.00 0.28 0.45 0.24 0.39 0.56 0.54 0.50
Dynamic (2 violations) 0.01 0.29 0.46 0.25 0.43 0.46 0.40 0.43

Total 0.00 0.19 0.30 0.17 0.41 0.54 0.50 0.48

Table 15: Block O1 | Model: GAN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.26 0.33 0.37 0.32 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.36 0.46 0.49 0.44 0.49 0.50 0.50 0.50
Dynamic (2 violations) 0.35 0.47 0.48 0.43 0.50 0.50 0.50 0.50

Total 0.32 0.42 0.45 0.40 0.50 0.50 0.50 0.50

Table 16: Block O1 | Model: CNN aggregated | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.52 0.55 0.51 0.53
Dynamic (1 violation) 0.00 0.13 0.22 0.12 0.49 0.53 0.48 0.50
Dynamic (2 violations) 0.00 0.06 0.20 0.09 0.53 0.48 0.60 0.54

Total 0.00 0.06 0.14 0.07 0.51 0.52 0.53 0.52

Table 17: Block O1 | Model: CNN aggregated | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.30 0.34 0.36 0.33 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.30 0.43 0.44 0.39 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.32 0.40 0.43 0.39 0.50 0.50 0.50 0.50

Total 0.31 0.39 0.41 0.37 0.50 0.50 0.50 0.50
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Table 18: Block O2 | Model: CNN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.18 0.26 0.40 0.28 0.50 0.49 0.50 0.50
Dynamic (2 violations) 0.12 0.16 0.32 0.20 0.50 0.50 0.50 0.50

Total 0.10 0.14 0.24 0.16 0.49 0.49 0.49 0.49

Table 19: Block O2 | Model: CNN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.22 0.29 0.28 0.26 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.46 0.48 0.48 0.48 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.46 0.47 0.48 0.47 0.50 0.50 0.50 0.50

Total 0.38 0.42 0.42 0.40 0.50 0.50 0.50 0.50

Table 20: Block O2 | Model: GAN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.54 0.55 0.47 0.52
Dynamic (1 violation) 0.44 0.38 0.47 0.43 0.56 0.52 0.54 0.54
Dynamic (2 violations) 0.38 0.52 0.51 0.47 0.50 0.50 0.48 0.49

Total 0.27 0.30 0.33 0.30 0.53 0.52 0.50 0.52

Table 21: Block O2 | Model: GAN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.29 0.30 0.32 0.30 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.48 0.49 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.42 0.43 0.44 0.43 0.50 0.50 0.50 0.50

Table 22: Block O2 | Model: CNN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.01 0.00 0.50 0.47 0.52 0.50
Dynamic (1 violation) 0.13 0.22 0.25 0.20 0.51 0.50 0.55 0.52
Dynamic (2 violations) 0.11 0.10 0.17 0.13 0.56 0.49 0.53 0.53

Total 0.08 0.11 0.14 0.11 0.52 0.49 0.54 0.52
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Table 23: Block O2 | Model: CNN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.34 0.41 0.40 0.38 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.43 0.45 0.46 0.45 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.43 0.44 0.46 0.45 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.44 0.43 0.50 0.50 0.50 0.50

Table 24: Block O2 | Model: GAN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.02 0.02 0.00 0.01 0.49 0.55 0.53 0.52
Dynamic (1 violation) 0.35 0.42 0.54 0.44 0.50 0.40 0.45 0.45
Dynamic (2 violations) 0.44 0.51 0.53 0.50 0.56 0.44 0.53 0.51

Total 0.27 0.32 0.36 0.31 0.52 0.46 0.51 0.50

Table 25: Block O2 | Model: GAN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.40 0.39 0.38 0.39 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.47 0.49 0.50 0.49 0.50 0.49 0.50 0.50
Dynamic (2 violations) 0.47 0.50 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.45 0.46 0.46 0.46 0.50 0.50 0.50 0.50

Table 26: Block O2 | Model: CNN aggregated | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.01 0.00 0.50 0.47 0.52 0.50
Dynamic (1 violation) 0.13 0.22 0.25 0.20 0.51 0.50 0.55 0.52
Dynamic (2 violations) 0.11 0.10 0.17 0.13 0.56 0.49 0.53 0.53

Total 0.08 0.11 0.14 0.11 0.52 0.49 0.54 0.52

Table 27: Block O2 | Model: CNN aggregated | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.34 0.41 0.40 0.38 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.43 0.45 0.46 0.45 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.43 0.44 0.46 0.45 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.44 0.43 0.50 0.50 0.50 0.50
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Table 28: Block O3 | Model: CNN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.48 0.43 0.46 0.46
Dynamic (1 violation) 0.34 0.38 0.46 0.39 0.47 0.48 0.50 0.49
Dynamic (2 violations) 0.47 0.45 0.45 0.45 0.52 0.51 0.53 0.52

Total 0.27 0.27 0.30 0.28 0.49 0.47 0.49 0.49

Table 29: Block O3 | Model: CNN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.22 0.21 0.23 0.22 0.50 0.49 0.50 0.50
Dynamic (1 violation) 0.49 0.49 0.49 0.49 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.49 0.49 0.50 0.49 0.50 0.50 0.50 0.50

Total 0.40 0.40 0.41 0.40 0.50 0.50 0.50 0.50

Table 30: Block O3 | Model: GAN (short-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.00 0.00 0.00 0.47 0.43 0.37 0.43
Dynamic (1 violation) 0.31 0.45 0.43 0.40 0.50 0.47 0.54 0.50
Dynamic (2 violations) 0.34 0.42 0.43 0.40 0.48 0.52 0.54 0.51

Total 0.22 0.29 0.29 0.26 0.48 0.48 0.48 0.48

Table 31: Block O3 | Model: GAN (short-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.29 0.33 0.30 0.31 0.50 0.49 0.50 0.50
Dynamic (1 violation) 0.46 0.49 0.49 0.48 0.50 0.50 0.51 0.50
Dynamic (2 violations) 0.44 0.47 0.47 0.46 0.50 0.50 0.50 0.50

Total 0.40 0.43 0.42 0.42 0.50 0.50 0.50 0.50

Table 32: Block O3 | Model: CNN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.02 0.00 0.00 0.01 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.45 0.52 0.43 0.47 0.54 0.48 0.53 0.52
Dynamic (2 violations) 0.56 0.45 0.44 0.48 0.51 0.59 0.52 0.54

Total 0.35 0.32 0.29 0.32 0.51 0.52 0.51 0.51
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Table 33: Block O3 | Model: CNN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.35 0.36 0.40 0.37 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.45 0.45 0.47 0.46 0.50 0.50 0.50 0.50

Table 34: Block O3 | Model: GAN (long-term prediction task) | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.01 0.00 0.00 0.00 0.53 0.53 0.59 0.55
Dynamic (1 violation) 0.53 0.50 0.60 0.54 0.55 0.55 0.48 0.53
Dynamic (2 violations) 0.42 0.51 0.54 0.49 0.43 0.52 0.52 0.49

Total 0.32 0.34 0.38 0.34 0.50 0.53 0.53 0.52

Table 35: Block O3 | Model: GAN (long-term prediction task) | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.29 0.33 0.35 0.32 0.50 0.50 0.51 0.50
Dynamic (1 violation) 0.50 0.49 0.52 0.50 0.50 0.51 0.50 0.50
Dynamic (2 violations) 0.50 0.49 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.43 0.44 0.46 0.44 0.50 0.50 0.50 0.50

Table 36: Block O3 | Model: CNN aggregated | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.02 0.00 0.00 0.01 0.48 0.49 0.47 0.48
Dynamic (1 violation) 0.45 0.52 0.43 0.47 0.54 0.48 0.53 0.52
Dynamic (2 violations) 0.56 0.45 0.44 0.48 0.51 0.59 0.52 0.54

Total 0.35 0.32 0.29 0.32 0.51 0.52 0.51 0.51

Table 37: Block O3 | Model: CNN aggregated | Absolute classification (LA)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.35 0.36 0.40 0.37 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Total 0.45 0.45 0.47 0.46 0.50 0.50 0.50 0.50
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8. Human results (detailed)
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Table 38: Block O1 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.01 0.06 0.00 0.02 0.12 0.22 0.20 0.18
Dynamic (1 violation) 0.04 0.19 0.18 0.14 0.06 0.12 0.17 0.12
Dynamic (2 violations) 0.04 0.25 0.09 0.13 0.26 0.10 0.13 0.16

Total 0.03 0.17 0.09 0.10 0.15 0.15 0.17 0.15

Table 39: Block O2 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.03 0.02 0.02 0.14 0.18 0.17 0.16
Dynamic (1 violation) 0.16 0.04 0.22 0.14 0.12 0.23 0.09 0.15
Dynamic (2 violations) 0.17 0.25 0.33 0.25 0.20 0.23 0.18 0.20

Total 0.11 0.11 0.19 0.14 0.15 0.21 0.15 0.17

Table 40: Block O3 | Human evaluation | Relative classification (LR)

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.23 0.10 0.24 0.19 0.32 0.17 0.40 0.30
Dynamic (1 violation) 0.24 0.29 0.32 0.28 0.44 0.60 0.50 0.51
Dynamic (2 violations) 0.06 0.21 0.20 0.16 0.38 0.57 0.44 0.46

Total 0.18 0.20 0.25 0.21 0.38 0.45 0.45 0.42
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Detailed mask predictor

Table 41: Mask predictor (9747011 parameters). BN
stands for batch-normalization.

Input frame
3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
Reshape 1 x 8192
FC 8192 → 128
FC 128 → 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask

Figure 9: Output examples of our semantic mask pre-
dictor. From left to right: input image, ground truth
semantic mask, predicted semantic mask.
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