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Abstract

In order to reach human performance on complex visual tasks, artificial systems
need to incorporate a significant amount of understanding of the world in terms of
macroscopic objects, movements, forces, etc. Inspired by work on intuitive physics
in infants, we propose an evaluation benchmark which diagnoses how much a given
system understands about physics by testing whether it can tell apart well matched
videos of possible versus impossible events constructed with a game engine. The
test requires systems to compute a physical plausibility score over an entire video.
It is free of bias and can test a range of specific physical reasoning skills. We then
describe two Deep Neural Networks systems aimed at learning intuitive physics
in an unsupervised way, using only physically possible videos. The systems are
trained with a future semantic mask prediction objective and tested on the possible
versus impossible discrimination task. The analysis of their results compared to
human data gives novel insights in the potentials and limitations of next frame
prediction architectures.

1 Introduction

Despite impressive progress in machine vision on many tasks (face recognition [42], object recog-
nition [24], [18], object segmentation [34], etc.), artificial systems are still far human performance
when it comes to common sense reasoning about objects in the world or understanding of complex
visual scenes. Indeed, even very young children have the ability to represent macroscopic objects and
track their interactions through time and space. This ability develops at a fast pace: for instance, at
2-4 months, infants are able to parse visual inputs in terms of permanent, solid and spatio-temporally
continuous objects ([20], [39]). At 6 months, they understand the notion of stability, support and
causality ([38], [4], [2]). Between 8 and 10 months, they grasp the notions of gravity, inertia, and
conservation of momentum in collision; between 10 and 12 months, shape constancy [43], and so on.

Reverse engineering the capacity to autonomously learn and exploit intuitive physical knowledge
would help building more robust and adaptable real life applications (self-driving cars, workplace
or household robots). Vice-versa, building models able of learning elementary physical reasoning
would provide developmental scientists with predictive models for normal or pathological cognitive
development in infants. Many roadblocks need to be overturned in order to achieve this objective. In
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Figure 1: Popular end-to-end applications involving scene understanding and proposed evaluation method
based on physical plausibility judgments.

this paper, we address one of them: the evaluation problem. How do we know that a given system
has (or has not) learned a certain level of physical understanding?

One possibility could be to use end-to-end applications. As illustrated in Figure 1, one can distinguish
three classes of machine vision tasks which require at least some understanding of the physical world.
’Visual’ tasks aim at recovering high level structure from low level (pixel) information. For instance,
the recovery of 3D structure from static or dynamic images (e.g., [8, 10]) or object tracking (e.g.,
[23, 7]). ’Motor’ tasks aim at predicting the visual outcome of particular actions (e.g., [14]) or to plan
an action in order to reach a given outcome (e.g. [32]). Language tasks requires the artificial system
to translate input pixels into a verbal description, either through captioning [13] or visual question
answering (VQA [45]). Obviously, depending on the complexity of the question, one touches the
capacity to categorize objects based on their visual appearance (e.g., [37, 18]) to the capacity of
classifying attributes or relations between objects (e.g., [22, 19]) or actions (e.g. [40]).

Using such end-to-end applications for the purpose of evaluation runs into two risks: (a) dataset
bias (b) noisy measure. The first risk (also known as the Clever Hans problem [19]), is that real life
application datasets often contain inherent statistical biases, which make it sometimes possible to
achieve good performance with only minimal involvement in solving the problem at hand. The second
risk is that the overall performance of a system is a complicated function of the performance of its
parts; therefore, if a VQA system has a worse performance than another one, it could be, not because
it better understands physics, but because it has a worse language model. The combined risk of both
overestimating and underestimating the intuitive physical understanding of end-to-end systems could
be alleviated by using a multi-task setup and show that an intermediate physical embedding derived
for one type of task would help with another task.

Here, we take another route and propose an evaluation diagnostic which is completely independent of
any model and end-to-end task. It is conceived as a set of "unit tests", which probe for specific aspects
of intuitive physics independently of how the model has been constructed and what it is used for. We
see three advantages of using such tests: (1) the tests provide directly interpretable results (as opposed
to a composite score reflecting a black box performance), (2) as they are constructed in a careful
counterbalanced way, they control for bias, (3) they enable for direct human-machine comparison.
The proposed tests are based on the "violation of expectation" paradigm, whereby infants or animals
are presented with real or virtual animated 3D scenes which may contain a physical impossibility.
The measure is whether the organism displays a "surprise" reaction to the physical impossibility,
which is taken to reflect a violation of it’s internal predictions [3]. Similarly our "physical plausibility
test" simply requires systems to output a scalar variable upon the presentation of a video clip, which
we will call a ’plausibility score’. We expect the plausibility score to be lower for clips containing the
violation of a physical principle than for matched clips with no violation. By varying the nature of
the physical violation, one can probe different types of reasoning (laws regarding objects and their
properties, laws regarding objects movement and interactions, etc.). Given that most vision systems
are not specifically designed to output a plausibility score (but rather task-specific output), we provide
a small development set to enable researchers to extract this single scalar (which could be relatively
easy to do as many machine vision systems are based on probabilities or error minimization). Apart
from this minor adjustment, the test can be administered to a large variety of models.
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Table 1: List of the conceptual blocks of the Intuitive Physics Framework.

Block Name Physical principles Computational challenge
O1. Object permanence Objects don’t pop in and out of ex-

istence
Occlusion-resistant object tracking

O2. Shape constancy Objects keep their shapes Appearance-robust object tracking
O3. Spatio-temporal conti-
nuity

Trajectories of objects are con-
tinuous

Tracking/predicting object trajecto-
ries

O4. Energy / Momentum Constant kinetic energy and mo-
mentum

Tracking/predicting object trajecto-
ries

The contribution of this paper is in two parts. The first part explains the logic of the intuitive physics
tests and presents the IntPhys Benchmark containing several blocks, each of which testing for different
aspects of macroscopic physics (object permanence, shape constancy, spatio-temporal continuity,
etc). The second part describes two simple ’infant’ models which attempt to pass the first block of
IntPhys after a phase of self-supervised observation learning, on a training set containing on random
videos of interacting objects, but which only contain physically possible examples. We compare the
performance of this rather simple model to that of humans participants.

2 IntPhys: a set of diagnostic tests for Intuitive Physics

IntPhys is a benchmark designed to address the evaluation challenges for intuitive physics in vision
systems. It can be run on any of machine vision system (captioning and VQA systems, systems
performing 3D reconstruction, tracking, planning, etc), be they engineered by hand or trained using
statistical learning, the only requirement being that the tested system should output a scalar for each
test video clip reflecting the plausibility of the clip as a whole. Such a score can be derived from
prediction errors, or posterior probabilities, depending on the system.

The Benchmark consists of synthetic videos constructed with a python interfaced game engine
(UnrealEngine 4), enabling both realistic physics and precise control. It consists in a dev set and a
test set is constructed according to similar principles. The dev set is kept intentionally very small
because its sole purpose is to verify the validity of the plausibility score and, importantly, not to fine
tune the system on a possible vs impossible classification task.

We present four intuitive physics reasoning problems studied in this framework, as well as the design
features of our test: minimal sets, parametric task difficulty, and evaluation metric.

2.1 A hierarchy of intuitive physics problems

Taking advantage of behavioral work on intuitive studies [1], we organize the tests into four blocks
(see 1), each one corresponding to a core principle of intuitive physics, and each raising its particular
machine vision challenge. The first two blocks are related to the conservation through time of intrinsic
properties of objects. Object permanence (O1), corresponds to the fact that objects continuously exist
through time and do not pop in or out of existence. This turns into the computational challenge of
tracking objects through occlusion. The second block, shape constancy (O2) describes the tendency
of rigid objects to preserve their shape through time. This principle is more challenging than the
preceding one, because even rigid objects undergo a change in appearance due to other factors
(illumination, distance, viewpoint, partial occlusion, etc.). The other two blocks (O3-4) relate to
object’s movement through time, and the conservation laws which govern these movements for rigid
inanimate macroscopic objects. These principles map into progressively more challenging problems
of trajectory prediction.

2.2 Minimal sets design

An important design principle of our evaluation framework relates to the organization of the possible
and impossible movies in extremely well matched sets to avoid the Clever Hans problem. This is
illustrated in Figure 2 for object permanence. We constructed matched sets comprising four movies,
which contain an initial scene at time t1 (either one or two objects), and a final scene at time t2 (either
one or two objects), separated by a potential occlusion by a screen which is raised and then lowered
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Figure 2: Illustration of the minimal sets design with object permanence. Schematic description of a static
condition with one vs. two objects and one occluder. In the two possible movies (green arrows), the number of
objects remains constant despite the occlusion. In the two impossible movies (red arrows), the number of objects
changes (goes from 1 to 2 or from 2 to 1).

for a variable amount of time. At its maximal height, the screen completely occludes the objects so
that it is impossible to know, in this frame, how many objects are behind the occluder.

The four movies are constructed by combining the two possible beginnings with the two possible
endings, giving rise to two possible (1→1 and 2→2) and two impossible (1→2 and 2→1) movies.
Importantly, across these 4 movies, the possible and impossible ones are made of the exact same
frames, the only factor distinguishing them being the temporal coherence of these frames. Such a
design is intended to make it difficult for algorithms to use cheap tricks to distinguish possible from
impossible movies by focusing on low level details, but rather requires models to focus on higher
level temporal dependencies between frames.

2.3 Parametric manipulation of task complexity

Our second design principle is that in each block, we will vary the stimulus complexity in a parametric
fashion. In the case of the object permanence block, for instance, stimulus complexity can vary
according to three dimensions. The first dimension is whether the change in number of objects
occurs in plain view (visible) or hidden behind an occluder (occluded). A change in plain view is
evidently easier to detect whereas a hidden change requires an element of short term memory in order
to keep a trace of the object’s through time. The second dimension is the complexity of the object’s
motion. Tracking an immobile object is easier than if the object has a complicated motion. The third
dimension is the number of objects involved in the scene. This tests for the attentional capacity of
the system as defined by the number of objects it can track simultaneously. Manipulating stimulus
complexity is important to establish the limit of what a vision system can do, and where it will fail.
For instance, humans are well known to fail when the number of objects to track simultaneously is
greater than four [35].

2.4 The physical possibility metrics

Our evaluation metrics depend on the system’s ability to compute a plausibility score P (x) given
a movie x. Because the test movies are structured in N matched k-uplets (in Figure 2, k = 4)
of positive and negative movies Si=1..N = {Pos1i ..Poski , Imp1i ..Impki }, we derive two different
metrics. The relative error rate LR computes a score within each set. It requires only that within a
set, the positive movies are more plausible than the negative movies.

LR =
1

N

∑
i

1∑
j P (Posji )<

∑
j P (Impj

i )
(1)

The absolute error rate LA requires that globally, the score of the positive movies is greater than the
score of the negative movies. It is computed as:

LA = 1−AUC({i, j;P (Posji )}, {i, j;P (Impji )}) (2)
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Figure 3: Examples of frames from the training set.

Where AUC is the Area Under the ROC Curve, which plots the true positive rate against the false
positive rate at various threshold settings.

2.5 Implementation

Each of these four blocks consists in a set of videos constructed with Unreal Engine 4.0 (See
Figure 3 for some examples), containing 18 types of movies (3 objects, 2 occlusions and 3 types of
movements). A dev set block is instantiated by 20 different renderings of these 18 scenarios, objects
positions, shapes, trajectories, resulting in 360 movies. A test set block is instantiated by 200 different
renderings of these scenarios (for a total of 3600 movies) and uses different objects, textures, motions,
etc. All of the objects and textures of the dev and test sets are present in the training set.

The purpose of the dev set released in IntPhys is to help in the selection of an appropriate plausibility
score, and in the comparison of various architectures (hyper-parameters), but it should not serve to
train the model’s parameters (this should be done only with the training set). This is why the dev set is
kept intentionally small. The test set has more statistical power and enables a fine grained evaluation
of the results across the different movie subtypes. This benchmark along with video examples are
available on the project page http://www.intphys.com.

3 Two ’infant’ learning models

In this section, we present two learning systems which attempt to learn intuitive physics in an
unsupervised/self-supervised observational setting. One can imagine an agent who only sees physical
interactions between objects seen from a first-person perspective, but cannot move nor interact with
them. Arguably, this is a much more empoverished learning situation than that faced by infants,
who can to a limited extent, explore and interact with their environment even with the limited motor
abilities of their first year of life. It is however interesting to establish how far one can get with such
simplified inputs, which are easy to gather in abundant amounts in the real world with video cameras.
In addition, this enables an easier comparison between models, because they all get the same training
data. We only presented here the results of the model on the easiest block (O1) of the Benchmark.

In a setup like this, a rich source of learning information resides in the temporal dependencies between
successive frames. Based on the literature on next frame prediction, we propose two neural network
models, trained on a future frame objective. Our first model has a CNN encoder-decoder structure
and the second is a conditional Generative Adversarial Network (GAN, [17]), with a similar structure
as DCGAN [36]. For both model architectures, we investigate two different training procedures: in
the first, we train models to predict short-future images with a prediction span of 5 frames; in the
second, we predict long-future images with a prediction span of 35 frames.

Preliminary work with predictions at the pixel level revealed that our models failed at predicting
convincing object motions, especially for small objects on a rich background. For this reason, we
switched to computing predictions at a higher level, using object masks. We use the metadata provided
in the benchmark training (see section 3.1) set to train a semantic mask Deep Neural Network (DNN).
This DNN uses a resnet-18 pretrained on Imagenet to extract features from the image, from which a
deconvolution network is trained to predict the semantic mask (distinguishing three types of entities:
background, occluders and objects). We then use this mask as input to a prediction component which
predicts future masks based on past ones.

5
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To evaluate these models on our benchmark, our system needs to output a plausibility score for each
movie. For this, we compute the prediction loss along the movie. Given past frames, a plausibility
score for the frame ft can be derived by comparing ft with the prediction f̂t. Like in [16], we use the
analogy with an agent running an internal simulation (“visual imagination”); here we assimilate a
greater distance between prediction and observation with a lower plausibility. In subsection 3.3 we
detail how we aggregate the scores of all frames into a plausibility score for the whole video.

3.1 Training set

We constructed a training set of videos constructed with the same software as the benchmark.
However, object textures, dynamics as well as camera positions are sampled in a much richer (i.e.
less controlled) distribution than videos in the test and dev sets. Since this is supposed to model
unsupervised obervational learning, these videos are all physically possible. However, we do provide
additional information which may help the learner: depth flow and instance segmentation masks.

This training set is composed of 15K videos of 100 frames, totalling 21 hours of videos (at rate 15
frames per second). Each video is delivered as stacks of raw image (288 x 288 pixels), totalling
157Gb of uncompressed data. We also release the source code for data generation, allowing users to
generate a larger training set if desired.

3.2 Models

Through out the movie, our models take as input two frames (fi1 , fi2) and predict a future frame
ftarget. The prediction span is independent from the model’s architecture and depends only on the
triplets (fi1 , fi2 , ftarget) provided during the training phase. Our two architectures are trained either
on a short term prediction task (5 frames in the future), or a long term prediction task (35 frames).
Intuitively, short-term prediction will be more robust, but long-term prediction will allow the model
to grasp long-term dependencies and deal with long occlusions.

CNN encoder-decoder We use a resnet-18 [18] pretrained on Imagenet [37] to extract features
from input frames (fi1 , fi2). A deconvolution network is trained to predict the semantic mask of
future frame ftarget conditioned to these features, using a L2 loss.

Generative Adversarial Network As a second baseline, we propose a conditional generative
adversarial network (GAN, [29]) that takes as input predicted semantic masks from frames (fi1 , fi2),
and predicts the semantic mask of future frame ftarget. In this setup, the discriminator has to
distinguish between a mask predicted from ftarget directly (real), and a mask predicted from past
frames (fi1 , fi2). Like in [11], our model combines a conditional approach with a similar structure
as of DCGAN [36]. At test time, we derive a plausibility score by computing the conditioned
discriminator’s score for every conditioned frame. This is a novel approach based on the observation
that the optimal discriminator D computes a score for x of

D(x) =
Pdata(x)

PG(x) + Pdata(x)
(3)

For non-physical events x̂, Pdata(x̂) = 0; therefore, as long as PG(x̂) > 0, D(x̂) should be 0 for
non-physical events, and D(x) > 0 for physical events x. Note that this is a strong assumption,
as there is no guarantee that the generator will ever have support at the part of the distribution
corresponding to impossible videos.

All our models’ architectures, as well as training procedures and samples of predicted semantic masks
can be found in Supplementary Materials (Tables 3, 4, 5, 6 and Figure 6). The code is availabe on
https://github.com/rronan/IntPhys-Baselines.

3.3 Video Plausibility Score

From forward models presented above, we can compute a plausibility score for every frame ftarget,
conditioned to previous frames (fi1 , fi2). However, because the temporal positions of impossible
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events are not given, we must decide of a score for a video, given the scores of all its conditioned
frames. An impossible event can be characterized by the presence of one or more impossible frame(s),
conditioned to previous frames. Hence, a natural approach to compute a video plausibility score is to
take the minimum of all conditioned frames’ scores:

Plaus(v) = min
(fi1 ,fi2 ,ftarget)∈v

Plaus(ftarget|fi1 , fi2) (4)

where v is the video, and (fi1 , fi2 , ftarget) are all the frame triplets in v, as given in the training phase.

3.4 Results

Short-term prediction The first training procedure is a short-term prediction task; it takes as input
frames ft−2, ft and predicts ft+5, which we note (ft−2, ft)→ ft+5 in the following. We train the
two architectures presented above on short-term prediction task and evaluate them on the test set.
For the relative classification task, CNN encoder-decoder has an error rate of 0.10 when impossible
events are visible and 0.53 when they are occluded. The GAN has an error rate of 0.12 when visible
and 0.48 when occluded. For the absolute classification task, CNN encoder-decoder has a LA (see eq.
2) of 0.31 when impossible events are visible and 0.50 when they are occluded. The GAN has a
LA of 0.27 when visible and 0.51 when occluded. Results are detailed in Supplementary Materials
(Tables 7, 8, 9, 10).
We observe that our short-term prediction models show good performances when the impossible
events are visible, especially on the relative classifications task. However they perform poorly when
the impossible events are occluded. This is easily explained by the fact that they have a prediction
span of 5 frames, which is usually lower than the occlusion time. Hence, these models don’t have
enough "memory" to catch occluded impossible events.

Long-term prediction The second training procedure consists in a long-term prediction task:
(ft−5, ft) → ft+35. For the relative classification task, CNN encoder-decoder has an error rate
of 0.19 when impossible events are visible and 0.49 when they are occluded. The GAN has an
error rate of 0.20 when visible and 0.43 when occluded. For the absolute classification task, CNN
encoder-decoder has a LA of 0.43 when impossible events are visible and 0.50 when they are
occluded. The GAN has a LA of 0.33 when visible and 0.50 when occluded. Results are detailed in
Supplementary Materials (Tables 11, 12, 13, 14).
As expected, long-term models perform better than short-term models on occluded impossible events.
Moreover, results on absolute classification task confirm that it is way more challenging than the
relative classification task. Because some movies are more complex than others, the average score
of each quadruplet of movies may vary a lot. It results in cases where one model returns a higher
plausibility score to an impossible movie M{imp, easy} from an easy quadruplet than to a possible
movie M{pos, complex} from a complex quadruplet.

Aggregated model To grasp short and long-term dependencies, we aggregate the scores of short-
term and long-term models: Pagg(v) = (Pshort-term(v)+Plong-term(v))/2. For the relative classification
task, CNN encoder-decoder has an error rate of 0.14 when impossible events are visible and 0.51
when they are occluded. The GAN has an error rate of 0.12 when visible and 0.51 when occluded.
For the absolute classification task, CNN encoder-decoder has a LA of 0.35 when impossible events
are visible and 50 when they are occluded. The GAN has a LA of 0.27 when visible and 0.51 when
occluded. Results are detailed in Supplementary Materials (Tables 15, 16, 17, 18, Figure 9).

3.5 Human Judgments

We presented the 3600 videos from the test set (Block O1) to human participants using Amazon
Mechanical Turk. The experiment and human judgements results are detailed in Supplementary
Materials, section 7. A mock example of the Amazon Mechanical Turk experiment is available on
http://129.199.81.135/naive_physics_experiment/.
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4 Discussion

We presented IntPhys, a benchmark for measuring intuitive physics in artificial vision systems inspired
by research on conceptual development in infants. To pass the benchmark, a system is asked to
return a plausibility score for each video clip. The system’s performance is assessed by measuring its
ability to discriminate possible from impossible videos illustrating several types of physical principles.
Naive humans tested on the first block of the dataset show a generally good performance, despite the
fact that they are given a more difficult binary choice (possible versus impossible), although some
errors start when the number of objects is too large and when using one or two occlusion episodes,
probably due to attentional overload. We presented two unsupervised learning models based on
semantic masks, which learn from a training set only composed of physically plausible clips, and are
tested on the same block as the humans.

The computational system generally performed poorly compared to humans but obtained above chance
performance using a mask prediction task, with a very strong effect of the presence of occlusion.
The relative success of the semantic mask prediction system compared to what we originally found
with pixel-based systems indicates that operating at a more abstract level is a worthwhile pursuing
strategy when it comes to modeling intuitive physics. Future work will explore alternative ways of
constructing this abstract representation in particular instance masks and object detection bounding
boxes. In addition, enriching the training through embedding the learner in an interactive version of
the environment could add more information for the learning of the physics of macroscopic objects.

In brief, the systematic way of constructing the IntPhys Benchmark goes beyond a direct copy of
developmental experiments, and open up the way to study the effect of attention and scene complexity
through a direct comparison of humans and machines on the same tasks.

5 Related work

The modeling of intuitive physics has been addressed mostly through systems trained with some form
of future prediction as a training objective. Some studies have investigated models for predicting
the stability and forward modeling the dynamics of towers of blocks ([6, 25, 44, 26, 30, 27]). [6]
proposes a model based on an intuitive physics engine, [25] and [26] follow a supervised approach
using Convolutional Neural Networks (CNNs), [44] makes a comparison between simulation-based
models and CNN-based models, [30] improves the predictions of a CNN model by providing it with
a prediction of a generative model. In [28], authors propose different feature learning strategies
(multi-scale architecture, adversarial training method, image gradient difference loss function) to
predict future frames in raw videos.

Other models use more structured representation of objects to derive longer-term predictions. In [5]
and [9], authors learn objects dynamics by modelling their pairwise interactions and predicting the
resulting objects states representation (e.g. position / velocity / object intrinsic properties) . In [41],
[15] and [12] authors combine factored latent object representations, object centric dynamic models
and visual encoders. Each frame is parsed into a set of object state representations, which are used as
input of a dynamic model. In [15] and [12], authors use a visual decoder to reconstruct the future
frames, allowing the model to learn from raw (though synthetic) videos.

Regarding evaluation and benchmarks, apart from frame prediction datasets, which are not strictly
speaking about intuitive physics, one can distinguish the Visual Newtonian Dynamics (VIND) dataset
which includes more than 6000 videos with bounding boxes on key objects across frames, and
annotated with a 3D plane which woud most closely fit the object trajectory [31]. There is also
recent dataset proposed by a DeepMind team [33]. This last dataset seems very similar to ours. It
is also inspired by the developmental literature and based on the violation of expectation principles
and is structured around 3 blocks similar to our first 3 blocks (object permanence, shape constancy,
continuity) and two other ones (solidity and containment). The number and characteristics of this
dataset is not known at present. From the sample videos, two differences emerged: our dataset is
better matched in terms of quadruplets of clips controlled at the level of the pixels, and our dataset has
a factorial manipulation of scene and movement complexity. It would be interesting to explore the
possibility to merge these two datasets, as well as add more blocks in order to increase the diversity
and coverage of the physical phenomena.
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Supplementary Material
6 IntPhys Dataset

6.1 The training set

The training set has been constructed using Unreal Engine 4.0; it contains a large variety of objects
interacting one with another, occluders, textures, etc. It is composed of 15K videos of possible events
(around 7 seconds each at 15fps), totalling 21 hours of videos. Each video is delivered as stacks of
raw image (288 x 288 pixels), totalling 157Gb of uncompressed data. We also release the source
code for data generation, allowing users to generate a larger training set if desired.

Even though the spirit of IntPhys is the unsupervised learning of intuitive physics, we do provide
additional information which may help the learner. The first one is the depth field for each image.
This is not unreasonable, given that in infants, stereo vision and motion cues could provide an
approximation of this information. We also deliver object instance segmentation masks. Given that
this information it is probably not available as such in infants, we provide it only in the training set,
not in the test set, for pretraining purposes.

6.2 The dev and test sets

This section describes the dev and test sets for block O1 (object permanence). The design of these dev
and test sets follow the general structure of matched sets described in section 3.2. As for parametric
complexity, we vary the number of objects (1, 2 or 3), the presence and absence of occluder(s) and the
complexity of the movement (static, dynamic 1 and dynamic 2). In the static case, the objects do not
move; in the dynamic 1 case, they bounce or roll from left to right or right to left. In both these types
of events, one occluder may be present on the scene, and objects may sometimes pop into existence (a
0→1 event), or disappear suddenly (1→0) - these impossible events occur behind the occluder when
it is present, or in full view otherwise. In dynamic 2 events (illustrated in Figure 4), two occluders
are present and the existence of objects may change twice. For example, one object may be present
on the scene at first, then disappear after going behind the first occluder, later reappearing behind
the second occluder (1→0→1). Dynamic 2 events were designed to prevent systems from detecting
inconsistencies merely by comparing the number of objects visible at the beginning and at the end of
the movie. Matched sets contain four videos: two possible events (0→0→0 and 1→1→1) and two
impossible events (0→1→0 and 1→0→1).

Figure 4: Illustration of the ’dynamic 2’ condition. In the two possible movies (green arrows), the
number of objects remains constant despite the occlusion. In the two impossible movies (red arrows),
the number of objects changes temporarily (goes from 0 to 1 to 0 or from 1 to 0 to 1).

In total, the Block O1 test set contains 18 types of movies (3 objects, 2 occlusions and 3 types of
movements). The dev set is instantiated by 20 different renderings of these 18 scenarios, objects
positions, shapes, trajectories, resulting in 360 movies. The test set is instantiated by 200 different
renderings of these scenarios (for a total of 3600 movies) and uses different objects, textures, motions,
etc. All of the objects and textures of the dev and test sets are present in the training set.
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The purpose of the dev set released in IntPhys V1.0 is to help in the selection of an appropriate
plausibility score, and in the comparison of various architectures (hyper-parameters), but it should
not serve to train the model’s parameters (this should be done only with the training set). This is
why the dev set is kept intentionally small. The test set has more statistical power and enables a fine
grained evaluation of the results across the different movie subtypes. This benchmark along with
video examples are available on the project page www.intphys.com.

6.3 Evaluation software

For each movie, the model should issue a scalar plausibility score. This number together with the
movie ID is then fed to the evaluation software which outputs two tables of results, one for the
absolute score and the other for the relative score.

The evaluation software is provided for the dev set, but not the test set. For evaluating on the test set,
participants are invited to submit their system and results (see www.intphys.com) and their results
will be registered and time-stamped on the website leaderboard.

7 Human Judgement - Experiment

We presented the 3600 videos from the test set (Block O1) to human participants using Amazon
Mechanical Turk. Participants were first presented 8 examples of possible scenes from the training
set, some simple, some more complex. They were told that some of the test movies were incorrect or
corrupted, in that they showed events that could not possibly take place in the real world (without
specifying how). Participants were each presented with 40 randomly selected videos, and labeled
them as POSSIBLE or IMPOSSIBLE. They completed the task in about 7 minutes, and were paid $1.
A response was counted as an error when a possible movie was classified as impossible or vice versa.
A total of 346 persons participated, but for 99 of them the data were discarded because they failed to
respond 100% correctly to the easiest condition, i.e., static, one object, visible. A mock sample of the
AMT test is available on http://129.199.81.135/naive_physics_experiment/.

Table 2: Average error rate on plausibility judgments collected in humans using MTurk for the
IntPhys(Block O1) test set. * this datapoint has been "forced" to be zero by our inclusion criterion.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Avg. 1 obj. 2 obj. 3 obj. Avg.

Static 0.00* 0.09 0.07 0.06 0.22 0.20 0.20 0.21
Dynamic (1 violation) 0.13 0.08 0.11 0.11 0.24 0.21 0.26 0.24
Dynamic (2 violations) 0.08 0.05 0.09 0.07 0.26 0.26 0.37 0.29

Avg. 0.07 0.07 0.09 0.08 0.24 0.22 0.28 0.25

The average error rates were computed across condition, number of objects and visibility for each
remaining participant and are shown in Table 2. The overall error rate was rather low (16.5%), but, in
general, observers missed violations more often when the scene was occluded. There was an increase
in error going from static to dynamic 1 and from dynamic 1 to dynamic 2, but this pattern was only
consistently observed in the occluded condition. For visible scenario, the dynamic 1 appeared more
difficult than the dynamic 2. This was probably due to the fact that when objects are visible, the
dynamic 2 impossible scenarios contain two local discontinuities and are therefore easier to spot than
when one discontinuity only is present. When the discontinuities occurred behind the occluder, the
pattern of difficulties was reversed, presumably because participants started using heuristics, such as
checking that the number of objects at the beginning is the same as at the end, and therefore missed
the intermediate disappearance of an object.

These results suggest that human participants are not responding according to the gold standard laws
of physics due to limitations in attentional capacity - and this, even though the number of objects to
track is below the theoretical limit of 4 objects. The performance of human observers can thus serve
as a reference besides ground truth, especially for systems intended to model human perception.
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8 Models and training procedure

8.1 Detailed models

See Tables 3, 4, 5, 6 for models’ architectures, and Figure 6 for samples of predicted semantic masks.
The code is available on https://github.com/rronan/IntPhys-Baselines.

Table 3: Mask predictor (9747011 parameters). BN stands for batch-normalization.

Input frame
3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
Reshape 1 x 8192
FC 8192→ 128
FC 128→ 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask

Table 4: CNN for forward prediction (13941315 parameters). BN stands for batch-normalization.

Input frames
2 x 3 x 64 x 64

7 first layers of resnet-18 (pretrained, frozen weights)
applied to each frame
Reshape 1 x 16384
FC 16384→ 512
FC 512→ 8192

Reshape 128 x 8 x 8
UpSamplingNearest(2), 3 x 3 Conv. 128 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 64 - 1 str., BN, ReLU
UpSamplingNearest(2), 3 x 3 Conv. 3 - 1 str., BN, ReLU

3 sigmoid
Target mask

8.2 Training Procedure

We separate 10% of the training dataset to control the overfitting of our forward predictions. All
our models are trained using Adam [21]. For the CNN encoder-decoder we use Adam’s default
parameters and stop the training after one epoch. For the GAN, we use the same parameters as in
[36]: we set the generator’s learning rate to 8e− 4 and discriminator’s learning rate to 2e− 4. On
the short-term prediction task, we train the GAN for 1 epoch; on the long-term prediction task we
train it for 5 epochs. Learning rate decays are set to 0 and beta1 is set to 0.5 for both generator and
discriminator.

9 Detailed baseline results
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Table 5: Generator G (14729347 parameters). SFConv stands for spatial full convolution and BN
stands for batch-normalization.

Input masks
2 x 3 x 64 x 64

4 x 4 conv 64 - 2 str., BN, ReLU
4 x 4 conv 128 - 2 str., BN, ReLU
4 x 4 conv 256 - 2 str., BN, ReLU
4 x 4 conv 512 - 2 str., BN, ReLU

4 x 4 conv 512, BN, ReLU

Noise ∈ R100

∼ Unif(−1, 1)

stack input and noise
4 x 4 SFConv. 512 - 2 str., BN, ReLU
4 x 4 SFConv. 256 - 2 str., BN, ReLU
4 x 4 SFConv. 128 - 2 str., BN, ReLU
4 x 4 SFConv. 64 - 2 str., BN, ReLU
4 x 4 SFConv. 3 - 2 str., BN, ReLU

3 sigmoid
Target mask

Table 6: Discriminator D (7629698 parameters). BN stands for batch-normalization.

history input
2 x 3 x 64 x 64 3 x 64 x 64

Reshape 3 x 3 x 64 x 64
4 x 4 convolution 512 - 2 strides, BN, LeakyReLU
4 x 4 convolution 254 - 2 strides, BN, LeakyReLU
4 x 4 convolution 128 - 2 strides, BN, LeakyReLU
4 x 4 convolution 64 - 2 strides, BN, LeakyReLU
4 x 4 convolution 5 - 2 strides, BN, LeakyReLU

fully-connected layer
1 sigmoid

Figure 5: Results of our baselines in cases where the impossible event occurs in the open (visible)
or behind an occluder (occluded). Y-axis represents the losses LR (see Equation 1) for the relative
performance and LA (see Equation 2) for the absolute performance.
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Table 7: Detailed relative classification scores for the CNN encoder-decoder with prediction span of
5.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.04 0.04 0.00 0.03 0.44 0.48 0.72 0.55
Dynamic (1 violation) 0.00 0.20 0.44 0.21 0.56 0.48 0.44 0.49
Dynamic (2 violations) 0.00 0.04 0.16 0.07 0.60 0.48 0.56 0.55

Total 0.01 0.09 0.20 0.10 0.53 0.48 0.57 0.53

Table 8: Detailed absolute classification scores for the CNN encoder-decoder with prediction span of
5.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.16 0.12 0.11 0.13 0.50 0.50 0.50 0.50
Dynamic (1 violation) 0.33 0.40 0.49 0.41 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.33 0.39 0.46 0.40 0.50 0.50 0.49 0.50

Total 0.27 0.30 0.36 0.31 0.50 0.50 0.50 0.50

Table 9: Detailed relative classification scores for the GAN with prediction span of 5.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.08 0.00 0.03 0.44 0.60 0.40 0.48
Dynamic (1 violation) 0.00 0.16 0.36 0.17 0.40 0.52 0.52 0.48
Dynamic (2 violations) 0.00 0.20 0.28 0.16 0.44 0.44 0.52 0.47

Total 0.00 0.15 0.21 0.12 0.43 0.52 0.48 0.48

Table 10: Detailed absolute classification scores for the GAN with prediction span of 5.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.05 0.13 0.09 0.09 0.50 0.52 0.52 0.52
Dynamic (1 violation) 0.30 0.42 0.45 0.39 0.50 0.52 0.47 0.50
Dynamic (2 violations) 0.22 0.39 0.42 0.34 0.50 0.50 0.51 0.50

Total 0.19 0.31 0.32 0.27 0.50 0.52 0.50 0.51

Table 11: Detailed relative classification scores for the CNN encoder-decoder with prediction span of
35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.04 0.16 0.00 0.07 0.60 0.48 0.60 0.56
Dynamic (1 violation) 0.00 0.36 0.28 0.21 0.44 0.40 0.52 0.45
Dynamic (2 violations) 0.00 0.40 0.44 0.28 0.40 0.56 0.40 0.45

Total 0.01 0.31 0.24 0.19 0.48 0.48 0.51 0.49
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Table 12: Detailed absolute classification scores for the CNN encoder-decoder with prediction span
of 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.31 0.40 0.37 0.36 0.51 0.50 0.48 0.50
Dynamic (1 violation) 0.39 0.48 0.48 0.45 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.40 0.48 0.50 0.46 0.50 0.49 0.50 0.50

Total 0.37 0.46 0.45 0.43 0.50 0.50 0.50 0.50

Table 13: Detailed relative classification scores for the GAN with prediction span of 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.12 0.00 0.04 0.48 0.48 0.60 0.52
Dynamic (1 violation) 0.00 0.36 0.48 0.28 0.36 0.36 0.44 0.39
Dynamic (2 violations) 0.00 0.44 0.40 0.28 0.24 0.52 0.36 0.37

Total 0.00 0.31 0.29 0.20 0.36 0.45 0.47 0.43

Table 14: Detailed absolute classification scores for the GAN with prediction span of 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.07 0.23 0.18 0.16 0.50 0.50 0.52 0.51
Dynamic (1 violation) 0.31 0.43 0.45 0.40 0.47 0.49 0.50 0.49
Dynamic (2 violations) 0.37 0.48 0.47 0.44 0.49 0.49 0.49 0.49

Total 0.25 0.38 0.37 0.33 0.49 0.50 0.50 0.50

Table 15: Detailed relative classification scores for the aggregation of CNN models with prediction
spans of 5 and 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.04 0.00 0.01 0.64 0.48 0.60 0.57
Dynamic (1 violation) 0.00 0.20 0.44 0.21 0.52 0.52 0.36 0.47
Dynamic (2 violations) 0.00 0.32 0.24 0.19 0.48 0.44 0.52 0.48

Total 0.00 0.19 0.23 0.14 0.55 0.48 0.49 0.51

Table 16: Detailed absolute classification scores for the aggregation of CNN models with prediction
spans of 5 and 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.18 0.20 0.16 0.18 0.51 0.50 0.49 0.50
Dynamic (1 violation) 0.35 0.44 0.49 0.43 0.50 0.50 0.50 0.50
Dynamic (2 violations) 0.38 0.43 0.47 0.43 0.50 0.49 0.50 0.50

Total 0.30 0.36 0.37 0.35 0.50 0.50 0.49 0.50
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Table 17: Detailed relative classification scores for the aggregation of GAN models with prediction
spans of 5 and 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.00 0.12 0.00 0.04 0.52 0.60 0.48 0.53
Dynamic (1 violation) 0.00 0.16 0.32 0.16 0.48 0.52 0.56 0.52
Dynamic (2 violations) 0.00 0.20 0.28 0.16 0.44 0.44 0.52 0.47

Total 0.00 0.16 0.20 0.12 0.48 0.52 0.52 0.51

Table 18: Detailed absolute classification scores for the aggregation of GAN models with prediction
spans of 5 and 35.

Visible Occluded

Type of scene 1 obj. 2 obj. 3 obj. Total 1 obj. 2 obj. 3 obj. Total

Static 0.01 0.17 0.07 0.08 0.51 0.52 0.52 0.52
Dynamic (1 violation) 0.30 0.42 0.44 0.39 0.50 0.52 0.48 0.50
Dynamic (2 violations) 0.22 0.39 0.42 0.34 0.50 0.51 0.51 0.50

Total 0.17 0.33 0.31 0.27 0.50 0.51 0.50 0.51
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Figure 6: Output examples of our semantic mask predictor. From left to right: input image, ground
truth semantic mask, predicted semantic mask.
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