
HAL Id: hal-02273973
https://hal.science/hal-02273973

Submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PicoLibre : a free collaborative platform to improve
students’skills in software engineering

Eric Cousin, Gérald Ouvradou, Pascal Pucci, Samuel Tardieu

To cite this version:
Eric Cousin, Gérald Ouvradou, Pascal Pucci, Samuel Tardieu. PicoLibre : a free collaborative platform
to improve students’skills in software engineering. IEEE International conference on Systems, Man
and Cybernetics, Oct 2002, Hammamet, Tunisia. �10.1109/ICSMC.2002.1168037�. �hal-02273973�

https://hal.science/hal-02273973
https://hal.archives-ouvertes.fr


PicoLibre: a free collaborative platform to improve students’
skills in software engineering

Éric Cousin, Gérald Ouvradou, Pascal Pucci, Samuel Tardieu

Groupe des Écoles des Télécommunications
46, rue Barrault

75634 Paris Cedex 13, France
Eric.Cousin@enst-bretagne.fr, Gerald.Ouvradou@enst-bretagne.fr,

Pascal.Pucci@enst-bretagne.fr, Samuel.Tardieu@enst.fr

Abstract—The work described in this paper consists in the de-
velopment of a pedagogical collaborative platform to improve the
know-how of our students in software engineering and collabo-
rative work. Its use in a free software context leads to greater
commitment of the students and better reusability of their work.

Keywords— Skill development, new information technology
tools, project activity, active learning, monitoring, sofware engi-
neering, collaborative work, free software

I. I NTRODUCTION

WHILE widely used in graduate or post-graduate
French scientific cursus, project activities often

miss some fundamental points. In particular, techni-
cal goals tend to prevail too heavily on organizational
concerns. That is how, for instance, Computer Science
students are trained to build software from scratch by
themselves rather than to reuse existing code and to pro-
duce reusable code collaboratively. Yet, reusability has
proven to be the most rational approach: it saves time
and leads to more reliable software. Free Software prac-
tice relies heavily on this approach and that is where it
takes place in our project.

In our view, opening projects to the Free Software
community and using adequate collaborative tools can
correct the forementioned bias. Work described in this
paper consists in the development of a pedagogical col-
laborative platform, called PicoLibre. Its integration
within our cursus helps to improve students’ know-how
in collaborative software engineering.

In the next section, the general context and the peda-
gogical needs are given. Third section deals with PicoL-
ibre: a brief history of the project is made, and the main
features of the platform are described. The fourth sec-
tion explains how the use of the platform is promoted in
our cursus, and makes some statements about the peda-
gogical impact. Crucial role of free software is under-
lined and some perspectives are drawn in the final con-
clusion.

II. CONTEXT AND PEDAGOGICAL GOALS

The GROUPE DESÉCOLES DESTÉLÉCOMMUNICA-
TIONS is composed of three main engineering schools
and research centers. Highly-skilled students are se-
lected by competitive examination and will be awarded
a master’s degree after three years of intensive study. We
also have some hundred new PhD students every year.

During their cursus, all students have to complete
several team projects in various fields (computer sci-
ence, electronics, physics, ...). Each teacher will favour
projects close to his research interests while students
wish to achieve something they will be proud of.

According to French law, any software created by
the students belongs to them, even if they have used
college computing resources. To be able to use what
was developed under our supervision for our research
needs, we can request students to make a version of their
work available under a Free Software license. Such a li-
cense grants the recipients (supervisors) the following
freedoms[1]:“the freedom to run the program, for any
purpose; the freedom to study how the program works
and adapt it to one’s needs; the freedom to redistribute
copies; the freedom to improve the program and release
one’s improvements to the public, to the benefit of the
whole community.”

While using such a Free Software license preserves
students’ rights over their software (including the right
to make a proprietary closed-source version if they want
to), it gives supervisors the permission to use, enhance
and distribute project results. Of course, unless the li-
cense allows it specifically, if a redistribution of the
modified versions is made, it has to use the same license
as the original, granting the recipients the same rights
as given in the first place. The GNU General Public Li-
cense (GPL) is one of those Free Software licenses. Any
work derived from a software protected by the GPL can-
not be released under a different license.

Our students are taught software engineering tech-
niques. Typically, they have to accomplish certain pre-



defined milestones in their project and defend their
choices (planning, problem analysis, solution architec-
ture, testing and conformance checking). In the best
cases, they are required to use configuration manage-
ment tools such as CVS1 in order to maximize team
work efficiency and change tracking through the use of
carefully thought-out commit messages.

However, this leads each group of students to use its
own private repository2; at the end of the project, the
supervisor only receives the final version, and all the
history information which has been conscientiously col-
lected and used throughout the project development is
then lost. Most of the work done in a project is therefore
never reused nor even integrated in a larger framework.
Projects tend to terminate near the end of the semester,
when the teacher is busy correcting exam papers and
evaluating project results. Moreover, the missing his-
tory information makes it virtually impossible to have
another team of students start another project on top of
the existing one. For the same reasons, starting devel-
opment of a larger Free Software project based on these
grounds is difficult.

In fact, what we need is a system which supports
both active project development and project memory fa-
cilities. We want not only to provide project develop-
ment hosting, but also mailing-list features so that a new
member can reconstitute the whole project evolution
over time. Our view is that documentation and WWW
pages associated with the project deserve the same treat-
ment as the code itself, both during active development
and between active phases. All these features constitute
the aim of the PicoLibre platform which will now be de-
scribed.

III. T HE PICOL IBRE PROJECT

The first step of the project involved the technical
specification of the platform. To this end, we stud-
ied existing hosting platforms3 looking how they could
match our specific needs. Beyond this, our goal was also
to look at the different technologies commonly used in
such platforms to underpin our reflection.

We stated that our platform ought to have four major
features. It should be:
• simple to use;
• simple to install;
• simple to manage;
• available in its entirety under the GPL.

It should be “simple to use” because, for a new user,
the investment involved in learning platform usage has

1CVS (Concurrent Versions System) is the most commonly used
version management tool in the Free Software world.

2The repository is the place where files are stored permanently,
along with their full history.

3A hosting platform offers a set of computer resources in order to
store all the components of a project (including user accounts), and
tools for facilitating cooperative work.

to be as light as possible compared to the code devel-
opment load. Even for projects of moderate size, we
want to promote the use of the platform, thus the in-
duced overhead must remain at a reasonable level.

It should also be “simple to install” and “simple to
manage”: we wish to exchange platform experiments
with other engineering schools and universities with the
aim of improving our tool as well as our pedagogical
methodology. Thus, the platform has to be suitable
for adoption by light structures without heavy computer
support.

The GPL license indeed makes it easier for anybody
to use the platform, while it guarantees its durability: the
software will never be closed, thus anybody may benefit
from successive improvements.

Keeping this in mind, we mainly examined “Source-
forge”[2], the most famous Free Software hosting plat-
form. Today, Sourceforge hosts as many as 30,000 open
source4 projects and 10 times more users. This platform
is based on PHP technology5. Sourceforge seemed to us
obviously an excellent groupware system for confirmed
developers but, for our purpose, the training investment
appeared far too great. In fact, Sourceforge offered too
rich a framework for a novice and, moreover, it appeared
also that it did not meet our two other criteria. Besides
an extremely complex installation process, we noticed
poor modularity of the software. This comes probably
from the fact that the system had grown over time and
was not, at the beginning, structured to become such a
huge system. Trying to go back towards a simpler ver-
sion of the platform does not provide a simple way to
recover a simpler architecture.

Thus, the idea to try to adapt Sourceforge to our needs
was forgotten. We therefore decided to look for another
groupware kernel as the basis of our platform, which
better matches our criteria.

From an architectural point of view, such a system
is made up of two different parts: thefrontendand the
backend. The former has to support all user interactions
typically through a web-interface. The latter is in charge
of the project and user management. Basically, a plat-
form hosts a set of projects. With each of them is as-
sociated a group of users. Each user has specific access
rights to the various components of the project which he
can manipulate thanks to dedicated tools. Technically,
the backend implementation mainly relies on a database
management system.

After analysing several groupware systems, we de-
cided to adopt the PHP-GroupWare framework[3] as the
basis of our platform frontend. PHP-GroupWare (PH-

4“Open Source” is a less restrictive definition than “Free Software”,
seehttp://www.gnu.org/philosophy/free-sw.html

5PHP is a widely-used general-purpose scripting language that is
especially suited for Web development and can be embedded into
HTML, seehttp://www.php.net/



PGW) is a free multi-user web-based groupware suite
written in PHP. It also provides an API for developing
additional applications. The greatest benefit we got with
PHPGW was the high level of abstraction it offers for
programming, thus speeding up and making our work
more reliable. However, as PHPGW was based on a “per
user” paradigm instead of the required “per project/per
user”, we had a significant amount of work to integrate
this new paradigm into PHPGW. This will lead to a
patch to be produced as our contribution feedback to this
Free Software project.

In a cooperative and concurrent software development
process, one of the most critical functions is the code
versioning management. In our platform, this backend
function is supported by CVS which is known to be a
very secure system. But, this is insufficient if user ac-
cess to the code repository is not strictly controlled. To
this end, we adopted a Free Software produced by IDE-
ALX which offers secure (i.e. crypted) web access to
the CVS repository[4]. As we used LDAP[5] to regis-
ter users on our platform, we had to adapt the IDEALX
product. This add-on has been recently submitted as a
patch to the project development group.

The first production version of our hosting platform
PicoLibre was made available at the end of 2001. Here
are the main features offered to a user registered in a
hosted project group:
• Code and WWW repositories are under control of
CVS and are accessed through web secured connection.
Thanks to CVS, the history of these two data spaces is
continuously traced, allowing them to be restored to any
previous state. The WWW repository is used to feed the
project web site. This site is activated as soon as the
project is accommodated on the platform.
• Two mailing lists are automatically set up when a new
project is hosted. Typically, one is used solely for de-
veloper communication and the other for both user and
developer communication, but the usage remains up to
the project group. Each group member may himself sub-
scribe to or unsubscribe from the lists. These are contin-
uously archived, thus the history of mailing group ac-
tivity is permanently available for all members of the
group. The mailing-list system manager is the Free Soft-
ware Sympa[6].
• A bug tracking tool allows the complete cycle life of
a bug - once detected - to be traced. A bug cycle life
begins with a bug submission which can be made by
anyone. The submission is then analysed by a member
of the project developer team. If it is just a misunder-
standing and not a real bug, the submission is rejected
and may lead to a new item in a FAQ (Frequently Asked
Questions). Conversely, a “real” bug is stated as open.
When a developer deals with it, the bug becomes as-
signed. Then, the developer submits a patch intended to
fix the bug. When the patch has been successfully tested,

the bug is marked closed and is archived. The patch is
then integrated into the so called “project development
version”(as opposed to the “stable version”).
• A task scheduler board allows a set of tasks concern-
ing the project development to be scheduled and human
and material resources to be allocated to them. For in-
stance, a bug fixing task may be planned with this tool.
• Project documentation and downloading tools are also
provided. Various web pages are automatically set up at
the project’s creation. To do so, questionnaries are sub-
mitted to the project creator. As soon as a first version of
the code is available, it becomes accessible to authorized
people (see below) through a downloading tool.

The administrator of the platform (user and project
management) is offered several tools. For instance, visi-
bility of a project is controlled via a private or public sta-
tus. Aprivate projectinvolves a restricted access limited
to a set of identified users. Conversely, all components
of a public projectare accessible to any registered user.
There is also an anonymous access mode which allows
to access to certain parts of a public project (e.g. the
code downloading) without requiring to be registered on
the platform. In a project user group, two categories
of user are implemented: administrators and developers.
Administrators may set up and modify at any time the
access rights of other group’s users.

Other functionnalities are currently under develop-
ment. For instance: a documentation formatter based on
XML, a search engine to browse projects hosted on the
platform, a project activity ranking tool, a platform mon-
itoring system, and so on. Of course, an important point
to keep in mind is the pedagogical objective of PicoLi-
bre. Each new tool considered has to be examined from
this point of view (i.e. real need, real usefulness, impact
on the user-interface, time needed to master this new
functionality, etc.). To this end, PicoLibre architecture
is modular and flexible, as it also allows easy customi-
sation of each site installed. Soon, a Debian package of
PicoLibre will be available and so, the installation pro-
cess onto corresponding platforms will be dramatically
improved. In the future, we intend to produce software
packages for the most common Unix-GNU/linux based
platforms.

IV. I NTEGRATING PICOL IBRE IN OUR CURSUS:
FIRST RESULTS

We have been using our platform for several months
now[7]. Users of the first prototype - whose name was
Serveur Libre - were mainly the handful of students
that were developing it. Nevertheless, this brought us
enough feedback to confirm the previously identified
needs and to design the new version of the platform,
PicoLibre. This was soon judged stable and mature
enough to enter operational use. Introducing PicoLibre
into our cursus was therefore possible.



To remain in the Free Software spirit, we wanted to
keep the same approach as the one followed since the
beginning of the project. That is, students who take part
in the development of the platform itself, or simply use
it to host their project, should do so on a voluntary basis.

The first pedagogical challenge is therefore to encour-
age them to use the platform. Given that some soft-
ware engineering courses are already taught in our cur-
sus, only a short additional introduction to our platform
is therefore required ; the main functionalities are pre-
sented in one class, and then practiced directly on the
platform with some demonstration projects. As the over-
all use of the platform is simple, the keypoint lies in un-
derstanding the use of CVS; this is rather simple. Stu-
dents then know enough about the platform to make
their choice accordingly.

Taking into account observations based on the previ-
ous prototype and first feedbacks with PicoLibre, here
are some findings and what we have learned about the
pedagogical impact of the use of this platform:

• Good practice advice in software engineering is too
often considered as obvious and theoretical by students.
Programming on a small scale, as it is mostly the case
in their cursus, generally does not allow them to real-
ize how difficult collaborative development may be, and
that some discipline should be followed. The use of the
platform makes them have another outlook on these as-
pects and improves their practices.
• When hosted on the platform, students’work has a
better chance to be really used. As an example, our
project itself involved more than fifteen student projects
that the platform allowed us to proprerly supervise and
integrate.
• As we already stated in a previous article[8], open-
ing their projects to the Free Software community has a
great impact on the way students work. Knowing that
everybody can access their work6 increases their overall
motivation and their commitment to produce reusable
code.
• As far as evaluation of students’ work is concerned,
we take for granted that, most of the time, the stu-
dents’ code is not inspected by supervisors. Evaluation
is therefore mainly based on the overall aspect of the
software, and accompanying reports. From this point
of view, the platform allows supervisors to follow more
closely what is going on, but does not help very much.
Furthermore, the underlying philosophy of PicoLibre is
rather to encourage students to reuse existing code and
to work together with other students. This raises a new
difficulty. Part of this concern may probably be tackled
with some new monitoring facilities to be added soon to
the platform.

6Of course, only some of the projects meet all the requirements to
really be valuable for the community.

Given the mentioned pedagogical interests, a mid-
term objective is therefore that each student should use
the platform for at least one of his projects so as to fully
understand the usefulness of the different tools offered,
and to acquire know-how in collaborative engineering.

V. CONCLUSION AND PERSPECTIVES

We were surprisingly pleased by the success of our
experiments. While we were quite anxious not to ham-
per students’ project development because of bugs or in-
adequacies in our platform, we did obtain positive feed-
back and suggestions. The use of PicoLibre has shown
good pedagogical advantages.

It is to be noted that Free Software plays a central role
in our approach. We have just mentioned how sharing
their code with the Free Software community may pos-
itively influence students’ work. Another point is that
development of the PicoLibre platform itself would not
have been possible without the availability of all those
software components described in section 3. Finally, Pi-
coLibre is also a Free Software7. As it is self-hosting[7],
anyone with internet access can get the latest version
and install it on his computer to host public or private
software development, WWW sites, internal documents,
and so on. Anyone can also contribute by adding fea-
tures, fixing bugs or writing documentation. This al-
lows any other university to try the platform, and should
favour the growth of the project.

The first publicly available release has been tested on
Debian GNU/Linux systems. We are now extending the
range of supported platforms; the first one on the list
will be FreeBSD, another high-performance Free Soft-
ware Unix system. Our goal is to run PicoLibre on any
operating system where PHP Groupware (the web soft-
ware framework we use), CVS, SSH and Sympa are sup-
ported; that includes virtually any Unix-like system.

Monitoring facilities are being added to the PicoLi-
bre platform. These facilities will help a supervisor to
analyse what is going on in a project and within a team.
For example, the number of changes made by each team
member will be available, as will be the number of fea-
tures added. Also, the vitality of the project will be eval-
uated; this should ease early detection of blocking prob-
lems.

We have also been working with numerous partners
on the CoopX[9] project to define a communication pro-
tocol allowing integrated development sites such as Pi-
coLibre to exchange information[10]. For example, a
developer registered on a PicoLibre platform could use
any GNU Savannah site without registering again. An-
other concern is project migration: many people want
to be able to move from one platform to another if they
are not satisfied with the service quality or if they need

7Accompanying tutorials are also freely available



different functionalities. More information can be found
on the WWW site of the project[11].

Acknowledgments

The PicoLibre platform, which is itself hosted on a Pi-
coLibre installation at ENST de Bretagne, demonstrates
a successful cooperative work, integrating direct and in-
direct contributions from tenths of people. We want to
thank them all, especially our collegues and students
from the Groupe des Écoles des Télécommunications.

REFERENCES

[1] Free Software Foundation, “The Free Software definition,”
http://www.gnu.org/philosophy/free-sw.html .

[2] “The SourceForge hosting platform,”
http://sourceforge.net/ .

[3] “The PHP-GroupWare WWW site,”
http://www.phpgroupware.org/ .

[4] IDEALX company, “A chrooted SSH CVS server,”
http://www.idealx.org/en/doc/chrooted-
ssh-cvs-server/ .

[5] OpenLDAP, “An open source implementation
of the Lightweight Directory Access Protocol,”
http://www.openldap.org/ .

[6] “The mailing-list manager Sympa,”
http://listes.cru.fr/sympa/ .

[7] “PicoLibre platform hosted by ENST Bretagne,”
http://picolibre.enst-bretagne.fr .

[8] G. Ouvradou E. Cousin, “Valorisation de projets d’étudiants
sous forme de logiciel libre,” inPédagogie par projet dans
l’enseignement supérieur : enjeux et perspectives, Brest, France,
June 2001, ENST Bretagne, pp. 29–36.

[9] “The CoopX project,”http://coopx.eu.org/ .
[10] Mohamed Wazni, “Protocoles d’échange entre serveurs

coopératifs,” M.S. thesis, École Nationale Supérieure des Télé-
communications, June 2001.

[11] “PicoLibre WWW site,”http://www.picolibre.org .


