
HAL Id: hal-02273790
https://hal.science/hal-02273790v1

Submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cellular Monads from Positive GSOS Specifications
Tom Hirschowitz

To cite this version:
Tom Hirschowitz. Cellular Monads from Positive GSOS Specifications. 26th International Workshop
on Expressiveness in Concurrency and 16th Workshop on Structural Operational Semantics, 2019,
Amsterdam, Netherlands. pp.1-18, �10.4204/EPTCS.300.1�. �hal-02273790�

https://hal.science/hal-02273790v1
https://hal.archives-ouvertes.fr

J.A. Pérez and J. Rot (Eds.): Combined Workshop on Expressiveness in

Concurrency and Structural Operational Semantics (EXPRESS/SOS 2019).

EPTCS 300, 2019, pp. 1–18, doi:10.4204/EPTCS.300.1

c© T. Hirschowitz

This work is licensed under the

Creative Commons Attribution License.

Cellular Monads from Positive GSOS Specifications

Tom Hirschowitz∗

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA
73000 Chambéry, France

tom.hirschowitz@univ-smb.fr

We give a leisurely introduction to our abstract framework for operational semantics based on cellular

monads on transition categories. Furthermore, we relate it for the first time to an existing format, by

showing that all Positive GSOS specifications generate cellular monads whose free algebras are all

compositional. As a consequence, we recover the known result that bisimilarity is a congruence in

the generated labelled transition system.

1 Introduction

1.1 Motivation

In the vast majority of foundational research on programming languages, although ideas are thought of

as widely applicable, they are presented on one, simple example. Typically, there is a tension between

simplicity of exposition, leading to the minimal language making the idea relevant, and significance,

leading to the most expressive one. Strikingly, the scope of the idea is often mostly clear to the experts,

but no attempt is made at stating it precisely. The reason for this is that the mathematical concepts

needed for even only making such statements are lacking. Indeed, one needs to be able to say something

like: “for all programming languages of such shape, the following holds”. But there simply is no widely

accepted mathematical notion of programming language.

Such a general notion should account for both

(i) the interaction between syntax and dynamics, as involved in, e.g., structural operational seman-

tics [21], or in the statement of results like type soundness, congruence of program equivalence, or

compiler correctness, and

(ii) denotational semantics, in the sense of including not only operational, syntactic models but also

others, typically ones in which program equivalence is coarser.

Typically, standard formats [19] elude denotational semantics, and are exclusively syntactic. To our

knowledge, the only such proposals meeting all these criteria are functorial operational semantics, a.k.a.

bialgebraic semantics [25], and a few variants [4, 24]. This approach has been deeply developed, and

shown to extend smoothly to various settings, e.g., non-deterministic and probabilistic languages. How-

ever, two important extensions have proved more difficult.

• The treatment of languages with variable binding is significantly more technical than the basic

setting [9, 8, 24].

• More importantly, the bialgebraic study of higher-order languages like the λ -calculus or the higher-

order π-calculus is only in its infancy [20].

This leaves some room for exploring potential alternatives.

∗Thanks to Jorge Pérez and Jurriaan Rot for the invitation, and to the referees for helpful comments.

http://dx.doi.org/10.4204/EPTCS.300.1
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Cellular Monads from Positive GSOS Specifications

1.2 Context

In recent work [12], a new approach to abstract operational semantics was proposed, and its expressive

power was demonstrated by proving for the first time an abstract soundness result for bisimulation up

to context in the presence of variable binding. Bisimulation up to context is an efficient technique [23,

Chapter 6] for proving program equivalences, which had previously been proved correct in the bialge-

braic setting [2], but only without binding.

Its novelty mainly resides in the following two technical features.

Transition categories First, while standard operational semantics is based on labelled transition sys-

tems, this is both generalised and abstracted over in the framework.

Generalisation Indeed, in the examples, instead of standard labelled transition systems, we use a

slight generalisation similar in spirit to [6], essentially from relations to graphs, i.e., possibly

with several transitions between two states. This simple, harmless generalisation brings in

a lot of useful structure, typically that of a topos [17], which is unavailable at this level in

bialgebraic operational semantics.

Abstraction In full generality, the framework takes as a parameter a transition category, a typical

example of which is given by such generalised transition systems. For any object of a given

transition category, bisimulation may be defined by lifting, following an idea from [14].

Combinatorial category theory A second technical innovation is the use of advanced combinatorial

category theory. To start with, familial monads [3], or rather their recent cellular variant [10],

provide a notion of evaluation context for both programs and transitions, at the abstract level.

Standard reasoning by induction on context thus becomes simple algebraic calculation. A second,

crucial notion is cofibrantly generated factorisation systems, a notion from homotopy theory [13,

22] which, together with cellularity, allows for a conceptually simple, yet relevant characterisation

of well-behaved transition contexts.

Each instance of the framework is then constructed as follows.

Type of transition system The first step is the choice of a type of transition system, which may involve

different kinds of states (e.g., initial or final ones), the set of labels to be put on transitions, etc.

Technically, this amounts to fixing a transition category C . This also fixes the relevant notion of

bisimulation, hence bisimilarity.

Transition rules The second step consists in defining the dynamics of the considered language, which

is usually specified through a set of inference rules. This comes in as a monad T on C , whose

algebras are essentially the transition systems satisfying the given inference rules. The standard,

syntactic transition system is typically the free algebra T (0). This fixes the relevant notion of

context closure. In this setting, congruence of bisimilarity ∼X on a T -algebra X is the fact that

T (∼X)→ X2 factors through ∼X → X2 (see (1) on page 7).

One of the main results [12, Corollary 4.30] is that if the considered algebra is compositional, in the sense

that its structure map T (X)→ X is a functional bisimulation, and if the monad T satisfies an additional

condition, then bisimilarity is indeed a congruence. The latter condition is called Ts-familiality in [12],

but we will here call it cellularity, because it is a specialisation of cellularity in the sense of [10] to

familial functors. As mentioned above, a second main result [12, Corollary 5.15] is that under a different

condition called T∨s -familiality, bisimulation up to context is sound.

T. Hirschowitz 3

1.3 Contribution

One of the main issues with cellular monads T on transition categories C is the lack of an efficient

generation mechanism, i.e., a mathematical construction that produces pairs (C ,T) from more basic data.

In this paper, we initiate the search for such generating constructions by showing that an existing simple

format, Positive GSOS [1], always produces cellular monads whose free algebras are compositional. As

a consequence, we recover (Theorem 10.4) the known result that bisimilarity is a congruence in all free

algebras.

As this is an invited contribution, we briefly introduce the approach at an expository, rather concrete

level. In particular, the only considered transition category is the one of generalised labelled transition

systems in the sense alluded to above. Finally, our proofs are meant to be instructive rather than fully

detailed.

1.4 Plan

In §2, we explain our generalisation of labelled transition systems, and bisimulation by lifting. In §3,

we recall Positive GSOS specifications Σ and show how they generate monads TΣ. In §4, we argue

that algebras for the obtained monad TΣ are a good notion of model for the considered Positive GSOS

specification. We then state congruence of bisimilarity in categorical terms, and quickly reduce it to

two key properties: (i) compositionality of the considered algebra and (ii) preservation of functional

bisimulations by TΣ.

We deal with (i) in §5, where we show that when TΣ is obtained from a Positive GSOS specification,

all free algebras are compositional. In §6, we then attack (ii), by further reducing it to familiality and

cellularity. The remaining sections develop these ideas.

In §7, we define familiality for functors (as opposed to monads), and show that TΣ is a familial

functor. In §8, we establish some factorisation properties of familial functors which were announced

and used in §4 to reduce congruence of bisimilarity to compositionality and preservation of bisimulation.

We then introduce cellularity in §9, and show that TΣ is indeed cellular. Finally, we wrap up in §10 by

defining familiality for monads (which is slightly more demanding than for mere functors), and showing

that TΣ does form a familial monad. This fills a hole left open in §5, thus allowing us to state the main

theorem.

Finally, we conclude and give some perspective in §11.

1.5 Prerequisites

We assume familiarity with basic category theory [16, 15], including categories, functors, natural trans-

formations, monads and their algebras, and the Yoneda lemma.

2 Labelled transition systems as presheaves

2.1 Generalised transition systems

A standard SOS specification is given by a signature, plus a family of transition rules over a fixed set A

of labels. The set A fixes the relevant kind of transition system, and we interpret this by constructing

a corresponding category of (generalised) transition systems. Given any set A, let ΓA denote the graph

with

• vertex set A+1, i.e., vertices are elements of A, denoted by [a] for a ∈ A, plus a special vertex ⋆,

4 Cellular Monads from Positive GSOS Specifications

• two edges sa, ta : ⋆→ [a], for all a ∈A.

Pictorially, ΓA looks like this:

. . . [a] . . . (a ∈ A)

⋆.

sa ta

There are no composable edges in ΓA, so, adding formal identity arrows, it readily forms a category,

which we also denote by ΓA.

Definition 2.1. The category of transition systems induced by A is Γ̂A, the category of presheaves over

ΓA.

To see what presheaves over ΓA have to do with transition systems, let us observe that a presheaf

X ∈ Γ̂A consists of a set X(⋆) of states, together with, for each a ∈ A, a set of transitions e ∈ X [a]
with source and target maps X(sa),X(ta) : X [a]→ X(⋆). Our notion is thus only slightly more general

than standard labelled transition systems over A, in that it allows several transitions with the same label

between two given states.

Remark 2.2. The category Γ̂A may be viewed as a category of labelled graphs. Indeed, letting ΩA

denote the one-vertex graph with A loops on it, we have by well-known abstract nonsense an equivalence

Gph/ΩA ≃ Γ̂A of categories. (This is due to the fact that ΓA is isomorphic to the category of elements

of ΩA, see Definition 7.1 below.)

Notation 2.3. For any X ∈ Γ̂A, we denote the action of morphisms in ΓA with a dot. E.g., if e ∈ X [a],
then e · sa ∈ X(⋆) is its source. We also sometimes abbreviate sa and ta to just s and t.

Example 2.4. For languages like CCS [18], we let A= N +N +1 denote the disjoint union of a fixed

set N of channel names with itself and the singleton 1. Elements of the first term are denoted by a, for

a ∈N , and are used for output transitions, while elements of the second term, simply denoted by a, are

used for input transitions. Finally, the unique element of the third term is denoted by τ and used for silent

transitions. E.g., the labelled transition system

x y za b

b

a

is modelled by the presheaf X with

X(⋆) = {x,y,z} X(a) = {e}
X(b) = { f , f ′}

X(a) = {g}

x = e · t
y = e · s = f · s = f ′ · s

z = f · t = f ′ · t = g · s = g · t.

2.2 Bisimulation

Returning to generalised transition systems, we may define bisimulation categorically in the following

way. Morphisms f : X → Y , i.e., natural transformations, are the analogue in our setting of standard

functional simulations. Indeed, given any transition e : x
a
−→ x′ in X , then f (x) sure has an a transition

to some state related to x′: this is simply f (e)! The next step is to define an analogue of functional

bisimulation. For this, let us observe that the base category ΓA embeds into the presheaf category Γ̂A –

this is just the Yoneda embedding y : ΓA→ Γ̂A, directly specialised to our setting for readability:

• the state object ⋆ embeds as the one-vertex graph y⋆ with no transition;

• any transition object [a] embeds as the graph y[a] with one a-transition between two distinct ver-

tices;

T. Hirschowitz 5

• the morphisms sa, ta : ⋆→ [a] embed as the morphisms y⋆→ y[a] picking up the source and target,

respectively, of the given transition.

Notation 2.5. We often omit y, treating it as an implicit coercion.

Definition 2.6. Let f : X →Y be a functional bisimulation whenever all commuting squares as the solid

part below, admit a (potentially non-unique) lifting k as shown, i.e., a morphism making both triangles

commute.

⋆ X

[a] Y

x

sa

e

k
f

Let us explain why this matches the standard definition. In any such square, x is essentially the same

as just a state in X , while e is just an a-transition in Y . Furthermore, the composite ⋆
sa

−→ [a]
e
−→ Y picks

the source of e, so commutation of the square says that the source e · sa of e is in fact f (x) (a.k.a. f ◦ x).

So we are in the situation described by the solid part below.

x f (x)

x′ y′

f

k

f

e

Finding a lifting k then amounts to finding an antecedent to e whose source is x, as desired.

We finally recover the analogue of standard bisimulation relations.

Definition 2.7. A bisimulation relation on X is a subobject R →֒ X2 (= isomorphism class of monomor-

phisms into X2) whose projections R→ X are both functional bisimulations.

In this case, the above diagram specialises to

(x1,x2) xi

(x′1,x
′
2) x′i,

πi

(e1,e2)

πi

ei

where (x1,x2),(x
′
1,x
′
2) ∈ R(⋆), and (e1,e2) ∈ R[a].

Now, Γ̂A, as a presheaf category, is very well-behaved, namely it is a Grothendieck topos [17]. In

particular, subobjects of X2 form a (small) complete lattice, in which the union of a family Ri →֒ X2

is computed by first taking the copairing ∑i Ri→ X2, which is generally not monic, and then taking its

image. Furthermore, bisimulation relations are closed under unions and so admit a maximum element,

bisimilarity [12, Proposition 3.14].

The presheaf category Γ̂A is thus only a slight generalisation of standard labelled transition systems

over A, in which we have an analogue of bisimulation, conveniently defined by lifting, and bisimilarity.

Let us now consider the case where states are terms in a certain language, and transitions are defined

inductively by a set of transition rules, i.e., operational semantics.

3 Positive GSOS specifications as monads

Let us briefly recall the Positive GSOS format. We fix a set A of labels, and start from a signature

Σ0 = (O0,E0) on Set, i.e., a set O0 equipped with a map E0 : O0→ N.

Definition 3.1. A Positive GSOS rule over Σ0 consists of

6 Cellular Monads from Positive GSOS Specifications

• an operation f ∈O0, say of arity n = E0(f),

• a label a ∈A,

• n natural numbers m1, . . . ,mn,

• for all i ∈ n, mi labels ai,1, . . . ,ai,mi
, and

• a term t with n+∑n
i=1 mi free variables.

In more standard form, such a rule is just

. . . xi

ai, j
−→ yi, j . . . (i ∈ n, j ∈ mi)

f (x1, . . . ,xn)
a
−→ t

where the xi’s and yi, j’s are all distinct and denote the potential free variables of t.

Definition 3.2. A Positive GSOS specification is a signature Σ0, together with a set Σ1 of Positive GSOS

rules.

Let us now describe how any Positive GSOS specification Σ induces a monad TΣ on Γ̂A, starting with

the action of TΣ on objects. Given any X ∈ Γ̂A, the set TΣ(X)(⋆) of states consists of all Σ0-terms with

variables in X(⋆), as defined by the grammar

M,N ::= LuM | f (M1, . . . ,Mn),

where u ranges over X(⋆). Similarly, each TΣ(X)[a] consists of all transition proofs following the rules

in Σ1, with axioms in all X [a′]’s. Formally, such proofs are constructed inductively from the following

rules,

LeM :X Le · sM
a
−→ Le · tM

(e∈X [a])
. . . Ri, j :X Mi

ai, j
−→Mi, j . . . (i ∈ n, j ∈ mi)

ρ(Ri, j)i∈n, j∈mi
:X f (M1, . . . ,Mn)

a
−→ t[(xi 7→Mi,(yi, j 7→Mi, j) j∈mi

)i∈n]

where in the second rule f ∈O0 , E0(f) = n, ρ = (f ,a,(mi,(ai, j) j∈mi
)i∈n, t)∈ Σ1. When mi = 0, we want

to keep track of Mi in the transition proof, so by convention the family (Ri, j) j∈mi
denotes just Mi. In the

sequel we simply call transitions such transition proofs.

Example 3.3. Let us consider the following simple CCS transition of depth > 1, in any TCCS(X)[τ].

Le1M :X Lx1M
a
−→ Ly1M

lpar(Le1M,Lx2M) :X Lx1M|Lx2M
a
−→ Ly1M|Lx2M Le2M :X Lx3M

a
−→ Ly2M

sync(lpar(Le1M,Lx2M),Le2M) :X (Lx1M|Lx2M)|Lx3M
τ
−→ (Ly1M|Lx2M)|Ly2M ,

where lpar and sync denote the left parallel and synchronisation rules, (e1 : x1
a
−→ y1) ∈ X [a], x2 ∈ X(⋆),

and (e2 : x3
a
−→ y2) ∈ X [a].

The source and target of a transition R :X M
a
−→N are M and N, respectively, which ends the definition

of TΣ on objects. On morphisms f : X → Y , TΣ(f) merely amounts to renaming variables LxM and LeM to

L f (x)M and L f (e)M, respectively. It thus remains to show that TΣ has monad structure. The unit ηX : X →
TΣ(X) is obviously given by L−M, while multiplication µX : TΣ(TΣ(X))→ TΣ(X) is given inductively by

removing the outer layer of L−M’s

on states µXLMM = M

µX (f (M1, . . . ,Mn)) = f (µX (M1), . . . ,µX(Mn))
and on transitions µX LRM = R

µX (ρ(Ri, j)i∈n,i∈mi
) = ρ(µX(Ri, j))i∈n,i∈mi

.

T. Hirschowitz 7

Lemma 3.4. The natural transformations η and µ equip TΣ with monad structure.

Proof. A straightforward induction.

4 Models as algebras and congruence of bisimilarity

Algebras for TΣ readily give the right notion of model for the transition rules:

Definition 4.1. An algebra for a monad T , or a T -algebra, consists of an object X , equipped with a

morphism α : T (X)→ X such that the following diagrams commute.

T (T (X)) T (X)

T (X) X

T (α)

µX

α

α

X T (X)

X

ηX

α

Thus, intuitively, a TΣ-algebra is a transition system which is stable under the given operations and

transition rules.

We now would like to show that, under suitable hypotheses, bisimilarity for any given TΣ-algebra

α : TΣ(X)→ X is a congruence. We may state this categorically by saying that the canonical morphism

TΣ(∼X)→ X2 factors through m : (∼X) →֒ X2, as in

TΣ(∼X) ∼X

TΣ(X
2) (TΣ(X))2 X2.

TΣ(mX)

〈TΣ(π1),TΣ(π2)〉 α2

m (1)

Indeed, an element of TΣ(∼X) is a term M whose free variables are pairs of bisimilar elements of X ,

which we write as M((x1,y1), . . . ,(xn,yn)), with xi ∼X yi for all i ∈ n. The morphism 〈TΣ(π1),TΣ(π2)〉
maps this to the pair

(M(x1, . . . ,xn),M(y1, . . . ,yn)),

which α2 then evaluates componentwise. The given factorisation thus boils down to

α(M(x1, . . . ,xn))∼X α(M(y1, . . . ,yn))

for all M and x1 ∼X y1,. . . , xn ∼X yn, i.e., bisimilarity is a congruence.

In order to prove such a property, it is sufficient to prove that TΣ preserves all bisimulation relations,

in the sense that if m : R →֒ X2 is a bisimulation relation, then so is

TΣ(R)
TΣ(m)
−−−→ TΣ(X

2)
〈TΣ(π1),TΣ(π2)〉
−−−−−−−−→ (TΣ(X))2 α2

−→ X2

(in the slightly generalised sense that its image is). Equivalently, an easy diagram chasing shows that it

all boils down to

TΣ(R)
TΣ(m)
−−−→ TΣ(X

2)
TΣ(πi)
−−−→ TΣ(X)

α
−→ X

being a functional bisimulation for i ∈ {1,2}.

Finally, πi◦m is a functional bisimulation by definition, and functional bisimulations are stable under

composition, so it is sufficient to prove that

8 Cellular Monads from Positive GSOS Specifications

(i) the considered algebra is compositional, in the sense that its structure map α : TΣ(X)→ X is a

functional bisimulation, and

(ii) TΣ preserves all functional bisimulations.

Compositionality essentially means that transitions of any α(M(x1, . . . ,xn)) are all obtained by assem-

bling transitions of the xi’s. This is not always the case, even for free algebras:

Example 4.2. Consider a specification Σ consisting of the unique rule

x
a
−→ y

f (g(x))
a
−→ f (g(y))

,

say ρ , where f and g are two unary operations. Then the free algebra µ1 : TΣ(TΣ(1))→ TΣ(1) is not

compositional. Indeed, 1 contains a unique vertex, say ⋆, and a transition b : ⋆
b
−→ ⋆ for all labels b. Thus,

TΣ(1) contains a transition ρLaM : f (gL⋆M)
a
−→ f (gL⋆M). But the term f (gL⋆M) is the image under µ1 of

f LgL⋆MM, which has no transition.

Summing up, we have proved:

Lemma 4.3. If TΣ preserves functional bisimulations, then bisimilarity in any compositional TΣ-algebra

is a congruence.

5 Compositionality

Let us first consider compositionality. For a general algebra, we cannot do more than taking composi-

tionality as a hypothesis. However, we can say something when the considered algebra is free:

Lemma 5.1. The multiplication µX : TΣ(TΣ(X))→ TΣ(X) is a functional bisimulation.

Proof. We will see below (Lemma 10.3) that all naturality squares of µ are pullbacks. In particular, we

have a pullback

TΣ(TΣ(X)) TΣ(TΣ(1))

TΣ(X) TΣ(1).

TΣ(TΣ(!))

µX

TΣ(!)

µ1

But functional bisimulations are easily seen to be stable under pullback, so it is enough to show that µ1

is a functional bisimulation. We thus consider any term M whose free variables are in TΣ(1)(⋆), i.e., are

themselves terms over a single free variable, say ⋆, together with a transition R : µ1(M)
a
−→ N. And we

need to show that there exists a transition R : M
a
−→N whose free variables and axioms are in TΣ(1), such

that µ[a](R) = R. We proceed by induction on M:

• If M = LMM, then taking R = LRM does the job.

• Otherwise, M = f (M1, . . . ,Mn), so M = µ1(M) = f (M1, . . . ,Mn), with Mi = µ1(Mi) for all i ∈ n.

But then, R must have the form ρ(Ri, j)i∈n, j∈mi
, for a certain rule ρ = (f ,a,(mi,(ai, j) j∈m j

)i∈n, t) of

Σ. By induction hypothesis, we find for all i ∈ n and j ∈ mi a transition

Ri, j : Mi

ai, j
−→ Ni, j,

such that µ1(Ri, j) = Ri, j. Thus, R = ρ(Ri, j)i∈n, j∈mi
does have M as its source, and furthermore

satisfies µ1(R) = R, as desired.

T. Hirschowitz 9

6 Preserving bisimulations through familiality and cellularity

Let us now consider (ii), i.e., the fact that TΣ preserves functional bisimulations. So we need to find a

lifting to any commuting square of the form

⋆ TΣ(X)

[a] TΣ(Y),

M

sa

R

TΣ(f)

for any functional bisimulation f .

We will proceed in two steps: we will require TΣ to be first familial, and then cellular. Familiality

will allow us to factor the given square as the solid part below left, while cellularity will ensure existence

of a lifting k as on the right.

⋆ TΣ(A) TΣ(X)

[a] TΣ(B) TΣ(Y)

M′

sa

M

R′

R

TΣ(γ)

TΣ(ϕ)

TΣ(ψ)

TΣ(k)
TΣ(f)

A X

B Y

ϕ

γ

ψ

k
f (2)

The composite TΣ(k)◦R′ will thus give the desired lifting for the original square.

At this stage, both steps may seem mysterious to the reader. In fact, as we will see, factorisation as

above left follows directly from the fact that TΣ may be expressed as a sum of representable functors.

Let us first explain intuitively why this latter fact holds. We will then prove it more rigorously in §7, to

eventually return to factorisation in §8.

To start with, let us observe that the set TΣ(1)(⋆) consists of terms over a single free variable, say

⋆. For any such term M, we may count the number of occurrences of ⋆, say nM . Thus, any term in

any TΣ(X)(⋆) is entirely determined by an M ∈ TΣ(1)(⋆), together with a map nM → X(⋆) assigning an

element of X(⋆) to each occurrence of ⋆ in M. But maps nM → X(⋆) in Set are in 1-1 correspondence

with maps nM ·y⋆→ X in Γ̂A, where nM ·y⋆ denotes the nM-fold coproduct y⋆+ · · ·+y⋆ of y⋆ with itself.

In other words, letting E⋆(M) = nM ·y⋆, we have

TΣ(X)(⋆)∼= ∑
M∈TΣ(1)(⋆)

Γ̂A(E
⋆(M),X). (3)

Clearly, for any f : X →Y , the action of TΣ(f) at ⋆ is given by postcomposing with f , i.e., we have

TΣ(X)(⋆) ∑M∈TΣ(1)(⋆) Γ̂A(E
⋆(M),X)

TΣ(Y)(⋆) ∑M∈TΣ(1)(⋆) Γ̂A(E
⋆(M),Y).

−
∼

TΣ(f)⋆

−
∼

∑M∈TΣ(1)(⋆)
Γ̂A(E

⋆(M), f)

The family (3) of isomorphisms is thus natural in X . We will see shortly that this extends to objects other

than ⋆. Indeed, any transition in TΣ(X)[a] may be decomposed into a transition R in TΣ(1)[a], together

with a morphism Ea(R)→ X , where Ea(R) is obtained from occurrences of term and transition variables

in R.

We have seen that our isomorphisms are natural in X , so it seems natural to try to express some

naturality constraint in the second argument of TΣ. But this requires making the right-hand side of (3)

10 Cellular Monads from Positive GSOS Specifications

functorial in this variable in the first place! In fact, for any transition R : M
a
−→ N, we will construct

morphisms

E⋆(M)
E(sa↾R)
−−−−→ Ea(R)

E(ta↾R)
←−−−− E⋆(N)

(see Notation 7.2 below). Thus, e.g., precomposing by the left-hand map yields the desired functorial

action

∑
R∈TΣ(1)[a]

Γ̂A(E
a(R),X)→ ∑

M∈TΣ(1)(⋆)

Γ̂A(E
⋆(M),X),

of sa : ⋆→ [a], sending any ϕ : Ea(R)→ X to the composite

E⋆(M)
E(sa↾R)
−−−−→ Ea(R)

ϕ
−→ X . (4)

7 Familiality for functors

Let us now state more rigorously the definition of familiality and the fact that TΣ is familial. In the next

section, we will explain how this entails the desired factorisation (2).

Definition 7.1. The category of elements el(X) of any presheaf X ∈ Ĉ on any category C has

• as objects all pairs (c,x) with c ∈ ob(C) and x ∈ X(c),

• and as morphisms (c,x)→ (c′,x′) all morphisms f : c→ c′ such that x′ · f = x.

Notation 7.2. The morphism f , viewed as a morphism (c,x)→ (c′,x′), is entirely determined by f and

x′. We denote it by f ↾ x′.

Definition 7.3. An endofunctor F : Ĉ→ Ĉ on a presheaf category is familial iff there is a functor E :

el(F(1))→ Ĉ such that

F(X)(c)∼= ∑
o∈F(1)(c)

Ĉ(E(c,o),X), (5)

naturally in X ∈ Ĉ and c ∈C.

And indeed, we have:

Lemma 7.4. The endofunctor TΣ is familial.

Proof. We need to do two things: (1) extend the isomorphisms (3) to objects of the form [a], and (2)

define the morphisms E(sa ↾ R) and E(ta ↾ R) rendering our isomorphisms natural also in the second

argument of TΣ. In fact, we will do almost everything simultaneously by induction: we define Ea(R)
and E(sa ↾ R) : E⋆(R · sa)→ Ea(R) by induction on R. By convention, as we did for the unique element

⋆ ∈ 1(⋆), we denote the unique element of 1[a] by a itself.

• If R = LaM, then its source is M = L⋆M and we put Ea(R) = y[a] and E(sa ↾ R) = sa : y⋆→ y[a].

• If R = ρ(Ri, j)i∈n, j∈mi
:1 M

a
−→ N, then for all i and j ∈ mi, by induction hypothesis, we get mor-

phisms

E(sai, j ↾ Ri, j) : E⋆(Mi)→ Eai, j(Ri, j),

where Ri, j :1 Mi

ai, j
−→ Ni, j for all i ∈ n and j ∈mi. Let us temporarily fix any i ∈ n. For all j, j′ ∈mi,

we have Ri, j · s
a = Ri, j′ · s

a = Mi, so we take the wide pushout Ei =
⊕

E⋆(Mi) Eai, j(Ri, j), i.e., the

colimit of the following diagram.

E⋆(Mi)

. . .Eai, j(Ri, j) . . . Eai, j′ (Ri, j′) . . .

E(sai, j↾Ri, j) E(s
a

i, j′ ↾Ri, j′) (6)

T. Hirschowitz 11

If mi = 0, this reduces to just E⋆(Mi), which is exactly what we want. Finally, we let Ea(R) be the

coproduct ∑i Ei of all the Ei’s, and observe that E⋆(f (M1, . . . ,Mn)) = ∑i E⋆(Mi) by definition, so

that we may define E(sa ↾ R) to be the coproduct ∑i Si of all canonical injections Si : E⋆(Mi)→ Ei.

This ends the inductive definition of Ea(R) and E(sa ↾ R). We now need to construct the morphisms

E(ta ↾ R). We again proceed inductively. When R = LaM, the desired morphism is clearly ta itself. When

R = ρ(Ri, j)i∈n, j∈mi
, the target is N = t[xi 7→ Mi,(yi, j 7→ Ni, j) j∈mi

]. Now, by construction, occurrences

occ⋆(N) of the unique variable ⋆ in N are in 1-1 correspondence with

VN = ∑
i

(
(occ⋆(Mi))

occxi
(t)+ ∑

j∈mi

(occ⋆(Ni, j))
occyi, j

(t)

)
,

and our map E(ta ↾ R) should reflect the intended correspondences. Since E⋆(N) =VN ·y⋆, E(ta ↾ R) is

entirely determined by choosing a map Eu : y⋆→ Ea(R) for all u ∈VN :

• If u denotes an occurrence of ⋆ in Mi, for some occurrence of xi in t, we let Eu denote the composite

y⋆→ E⋆(Mi)→ E⋆(R),

where the latter map denotes injection into the colimit of (6).

• If u denotes an occurrence of ⋆ in Ni, j, for some occurrence of yi, j in t, we let Eu denote the

composite

y⋆→ E⋆(Ni, j)
E(tai, j ↾Ri, j)
−−−−−−→ Eai, j(Ri, j)→ E⋆(R),

where the latter map again denotes injection into the colimit of (6).

Rather than a full formal proof, let us illustrate that our construction satisfies the isomorphisms (3)

on a few examples.

Example 7.5. In the case of the transition of Example 3.3, familiality means that this transition is deter-

mined by picking the following transition in TCCS(1)[τ],

LaM :1 L⋆M
a
−→ L⋆M

lpar(LaM,L⋆M) :1 L⋆M|L⋆M
a
−→ L⋆M|L⋆M LaM :1 L⋆M

a
−→ L⋆M

sync(lpar(LaM,L⋆M),LaM) :1 (L⋆M|L⋆M)|L⋆M
τ
−→ (L⋆M|L⋆M)|L⋆M

together with a morphism Eτ(sync(lpar(LaM,L⋆M),LaM))→ X . Let us start with E⋆(lpar(LaM,L⋆M)): it is

given by the colimit of

y⋆ y⋆

y[a]

sa

(one y⋆ for each argument xi of lpar, and for each xi one y[ai, j] for each premise xi

ai, j
−→ yi, j). Equivalently,

this is just the coproduct y[a]+y⋆, and E(sa ↾ lpar(LaM,L⋆M)) and E(ta ↾ lpar(LaM,L⋆M)) are given by

y⋆+y⋆
sa+y⋆
−−−→ y[a]+y⋆

ta+y⋆
←−−− y⋆+y⋆.

12 Cellular Monads from Positive GSOS Specifications

It is then clear that E(sτ ↾ sync(lpar(LaM,L⋆M),LaM)) is given by

y⋆+y⋆+y⋆
sa+y⋆+sa

−−−−−→ y[a]+y⋆+y[a].

Now how about E(tτ ↾ sync(lpar(LaM,L⋆M),LaM))? As the term t occurring in the rule is here linear in the

yi, j’s, an easy computation leads to

y[a]+y⋆+y[a]
ta+y⋆+ta

←−−−−− y⋆+y⋆+y⋆.

On this example, the isomorphism (5) thus boils down to the transition sync(lpar(Le1M,Lx2M),Le2M) above

being entirely determined by picking R = sync(lpar(LaM,L⋆M),LaM) ∈ TCCS(1)[τ], and giving a morphism

ϕ : Eτ(sync(lpar(LaM,L⋆M),LaM)) = y[a]+y⋆+y[a] −→ X ,

which holds by universal property of coproduct and the Yoneda lemma. Naturality of (5) in c says that

the source of (R,ϕ) is given up to this correspondence by (L⋆M|L⋆M)|L⋆M and the composite

E⋆((L⋆M|L⋆M)|L⋆M) = y⋆+y⋆+y⋆
sa+y⋆+sa

−−−−−→ y[a]+y⋆+y[a] −→ X ,

and likewise for the target.

Example 7.6. Let us now illustrate the treatment of branching, in the sense of a rule having several

premises involving the same xi. An example from CCS is the ‘replicated synchronisation’ rule

x1
a
−→ y1,1 x1

a
−→ y1,2

!x1
τ
−→ !x1|(y1,1|y1,2)

,

say rsync. First, Eτ(rsync(L[a]M,L[a]M)) is simply the pushout

y⋆ y[a]

y[a] Eτ(rsync(L[a]M,L[a]M)),

sa

sa

which rightly models the fact that a transition rsync(Le1M,Le2M) ∈ TCCS(X)[τ] is entirely determined by

picking rsync(L[a]M,L[a]M) ∈ TCCS(1)[τ], together with elements e1 and e2 of X [a] and X [a] with a common

source. The morphism E(sτ ↾ rsync(L[a]M,L[a]M)) is then straightforwardly given by the diagonal. The

target morphism E(tτ ↾ rsync(L[a]M,L[a]M)) is a bit more complex to compute. Indeed, the target t =
!x1|(y1,1|y1,2) has three free variables. The first, x1, should yield a morphism y⋆→ Eτ(rsync(L[a]M,L[a]M))
that is determined by the source morphism E⋆(M1)→ Ea(R1,1). Here, we get

y⋆
sa

−→ Ea(L[a]M) = y[a]→ Eτ(rsync(L[a]M,L[a]M)).

On the other hand, y1,1 and y1,2 should be determined by the target morphisms E⋆(M1,1)→ Ea(R1,1) and

E⋆(M1,2)→ Ea(R1,2), in our case

y⋆
ta

−→ Ea(L[a]M) = y[a]→ Eτ(rsync(L[a]M,L[a]M)) and y⋆
ta

−→ Ea(LaM) = ya→ Eτ(rsync(L[a]M,L[a]M)).

T. Hirschowitz 13

8 Familiality and factorisation

Let us now return to our proof sketch (2), and explain the properties of familiality that allow us to factor

the original square as indicated. The crucial observation is that elements of the form

(R, idEc(R)) ∈ ∑
R∈TΣ(1)(c)

Γ̂A(E
c(R),Ec(R))∼= TΣ(E

c(R))(c)

have the special property that any other element of the form (R,ϕ)∈ TΣ(X)(c) may be obtained uniquely

as the image of (R, id) by the action of

TΣ(ϕ)c : TΣ(E
c(R))(c)→ TΣ(X)(c).

Having the same first component R is equivalent to having the same image in TΣ(1)(c). So by Yoneda,

having two elements of TΣ(X)(c) and TΣ(Y)(c) with common first component is the same as having a

commuting square of the form below left.

yc TΣ(X)

TΣ(Y) TΣ(1)

yc TΣ(X)

TΣ(E
c(R)) TΣ(1)

p

ξ

TΣ(!)

TΣ(k)
TΣ(!)

The special property of (R, id) is thus equivalently that any commuting square as above right (solid part)

admits a unique (dashed) lifting k as shown, making the non-trivial triangle commute. In fact, this holds

more generally by replacing yc and 1 by arbitrary objects:

Definition 8.1. Given a functor F : C →D , a morphism ξ : D→ F(C) is F-generic, or generic for short,

when any commuting square as the solid part of

D F(B)

F(C) F(A)

χ

ξ

F(k)

F(l)
F(h)

admits a unique strong lifting l as shown, in the sense that F(l)◦ξ = χ and h◦ l = k.

Lemma 8.2 ([26, Remark 2.12]). A functor F : Ĉ→ Ĉ is familial iff any morphism Y → F(X) factors as

Y
ξ
−→ F(A)

F(ϕ)
−−−→ F(X),

where ξ is F-generic. This is called a generic-free factorisation.

Proof sketch. (⇒) Passing from yc to any Y goes by observing that generic morphisms are stable under

colimits in the comma category Ĉ ↓ F , remembering that any presheaf Z is a colimit of the composite

el(Z)
pZ
−→ C

y
−→ Ĉ,

where pZ denotes the obvious projection functor.

(⇐) Conversely, E(c,o) is given by A, for any choice of generic-free factorisation

F(A)

yc F(1).

ξ

o

F(ϕ)

14 Cellular Monads from Positive GSOS Specifications

Lemma 8.2 thus accounts for the factorisation of the original square as on the left in (2): M and R

respectively factor as

⋆
M′

−→ TΣ(A)
TΣ(ϕ)
−−−→ TΣ(X) and ⋆

R′

−→ TΣ(B)
TΣ(ψ)
−−−→ TΣ(Y),

with M′ and R′ generic. But genericness of M′ yields the strong lifting γ in

⋆ [a] TΣ(B)

TΣ(A) TΣ(X) TΣ(Y).

sa

M′

TΣ(ϕ)

TΣ(γ)

R′

TΣ(f)

TΣ(ψ)

9 Cellularity

We have now factored the original square as promised, but for the moment we have no guarantee that the

‘inner’ square

A X

B Y

ϕ

γ

ψ

f (7)

will admit a lifting. The point of cellularity is precisely this. For once, let us start from the abstract

viewpoint and explain how directly relevant it is in this case.

The starting point is the observation that our definition of bisimulation by lifting is based on a Galois

connection. Indeed, for any class L of morphisms, let L � denote the class of maps f : X →Y such that

for any l : A→ B in L , any commuting square as below left admits a (not necessarily unique) lifting.

A X

B Y

u

L∋l

v

f∈L �

X A

Y B

u

�R∋ f

v

r∈R

Conversely, given a class R of morphisms, let �R denote the class of morphisms f : X → Y such that

for any r : A→ B in R, any commuting square as above right admits a lifting. Clearly, letting S de-

note the set of all maps of the form sa : ⋆→ [a], S � catches exactly all functional bisimulations. But

what is �(S �)? In other words, which maps will admit a lifting against all functional bisimulations?

This is very relevant to us, because finding a lifting for our inner square (7) is obviously equivalent to

showing that γ ∈ �(S �)! Fortunately, the theory of weak factorisation systems gives a precise charac-

terisation [13, Corollary 2.1.15], of which we only need the following very special cases:

Lemma 9.1. Maps in �(S �) are closed under composition and pushout, in the sense that

• for any composable f ,g ∈ �(S �), g◦ f ∈ �(S �), and

• for any f : X → Y in �(S �) and u : X → X ′, the pushout f ′ of f along u, as below, is again in
�(S �).

X Y

X ′ Y ′

f∈�(S �)

u

f ′∈�(S �)

u′

This is useful to us because the map γ that we want to show is in �(S �) may be obtained as a finite

composite of pushouts of maps in S , which allows us to conclude. Indeed, γ occurs in

T. Hirschowitz 15

⋆ [a]

TΣ(E
⋆(M)) TΣ(E

a(R)),

sa

M′

TΣ(γ)

R′

with M′ and R′ generic. So (M′,γ) is the generic-free factorisation of R′ ◦ sa as in Lemma 8.2, hence,

because generic-free factorisations are unique up to canonical isomorphism, we can actually compute γ .

Indeed, letting M′ = (M′′, id) and R′ = (R′′, id), for suitable M′′ ∈ TΣ(1)(⋆) and R′′ ∈ TΣ(1)[a], by (4)

R′ ◦ sa is the pair (R′′ · sa,E(sa ↾ R′′)), where

E(sa ↾ R′′) : E⋆(R′′ · sa)→ Ea(R′′)

is obtained by familiality of TΣ. We thus get

(M′′,γ) = (R′′ · sa,E(sa ↾ R′′)),

hence in particular

γ = E(sa ↾ R′′).

It is thus sufficient to show that each E(sa ↾ R) is in �(S �). This goes by induction on R, following an

incremental construction of E(sa ↾ R). The base case is clear. When R = ρ(Ri, j)i∈n, j∈mi
, remember from

the proof of Lemma 7.4 that Ea(R) is the coproduct ∑i Ei for i ∈ n, each Ei being constructed as the wide

pushout of all

E(sai, j ↾ Ri, j) : E⋆(Mi)→ Eai, j(Ri, j).

Coproducts may be constructed by pushout along 0, so it suffices to show that each diagonal E⋆(Mi)→
Ei is in �(S �) if each E(sai, j ↾ Ri, j) is. This in turn boils down to incrementally constructing the

diagonal E⋆(Mi)→ Ei by successively pushing out each E(sai, j ↾Ri, j): assuming that we have constructed

the diagonal E⋆(Mi)→ E
j

i up until j < mi, we can incorporate Ri, j+1 by composing with the bottom

morphism of

E⋆(Mi) Eai, j+1(Ri, j+1)

E
j

i E
j+1

i ,

E(s
ai, j+1↾Ri, j+1)

which is indeed in �(S �) by Lemma 9.1. Clearly, the obtained E
mi

i is canonically isomorphic to Ei, so

we have shown:

Lemma 9.2. The monad TΣ is cellular, in the sense that in any commuting square of the form

⋆ [a]

TΣ(A) TΣ(B),

sa

ξ

TΣ(γ)

χ

with ξ and χ generic, we have γ ∈ �(S �).

10 Familiality for monads

We have now almost proved:

16 Cellular Monads from Positive GSOS Specifications

Lemma 10.1. TΣ preserves functional bisimulations.

The only remaining bit is the hole we left in the proof of Lemma 5.1, when we claimed that all

naturality squares of µ were pullbacks. Let us prove this now, as part of the following upgrade of

Definition 7.3 and Lemma 7.4.

Definition 10.2. A monad is familial when its underlying functor is, and its unit and multiplication are

cartesian natural transformations, i.e., their naturality squares are pullbacks.

In a case like ours, where the underlying category has a terminal object, by the pullback lemma, it is

sufficient to verify that squares of the following form are pullbacks.

T 2
Σ (X) T 2

Σ (1)

TΣ(X) TΣ(1)

T 2
Σ (!)

µX

TΣ(!)

µ1

X 1

TΣ(X) TΣ(1)

T 2
Σ (!)

ηX

TΣ(!)

η1

The following will conclude our proof of congruence of bisimilarity:

Lemma 10.3. TΣ is a familial monad.

Proof. Pullbacks in presheaf categories being pointwise, we just need to check that a few types of squares

are pullbacks in Set: for µ and η , and for each type of label. Let us treat the most interesting one, namely

the left one below, assuming that the right one has already been covered.

T 2(X)[a] T 2(1)[a]

T (X)[a] T (1)[a]

T 2(!)[a]

µX ,[a]

T (!)[a]

µ1,[a]

T 2(X)(⋆) T 2(1)(⋆)

T (X)(⋆) T (1)(⋆)

T 2(!)⋆

µX ,⋆

T (!)⋆

µ1,⋆

Let R[!] denote T (!)(R) and RJ!K denote T 2(!)(R), for all R ∈ T (X)[a] and R ∈ T 2(X)[a]. We must show

that for any a ∈A, given any R ∈ T 2(1)[a] and R ∈ T (X)[a] such that R[!] = µ1(R), there exists a unique

R0 ∈ T 2(X)[a] satisfying

µX (R
0) = R and R0J!K = R.

We proceed by induction on R. The base case is easy. For the induction step, if R = ρ(Ri, j)i∈n, j∈mi
,

then because µ1(R) = R[!], we have R = ρ(Ri, j)i∈n, j∈mi
with Ri, j[!] = µ1(Ri, j) for all i, j1. By induction

hypothesis, we find a family R0
i, j ∈ T 2(X)[ai, j] such that

µX (R
0
i, j) = Ri, j and R0

i, jJ!K = Ri, j for all i, j.

Letting now R0 = ρ(R0
i, j)i∈n, j∈mi

, we get as desired

µX (R
0) = ρ(µX (R

0
i, j))i, j = ρ(Ri, j)i, j = R and R0J!K = ρ(R0

i, jJ!K)i, j = ρ(Ri, j)i, j = R.

This ends the proof of:

Theorem 10.4. For all X ∈ Γ̂A and Positive GSOS specifications Σ, bisimilarity in the free algebra TΣ(X)
is a congruence.

1For all i such that mi = 0, we in fact deal with some term Mi, using the corresponding square. Let us ignore this detail for

readability.

T. Hirschowitz 17

11 Conclusion and perspectives

In this paper, we have introduced the familial approach to programming language theory [12] at the rather

concrete level of generalised labelled transition systems (Γ̂A). Notably, we have recalled the notions of

cellular monad and compositional algebra, and recalled that bisimilarity is always a congruence in a

compositional algebra for a cellular monad (Lemma 4.3).

We have also shown that all monads TΣ generated from a Positive GSOS specification Σ are cellular

(Lemma 9.2) and that free TΣ-algebras are always compositional (Lemma 5.1). Putting all three results

together, we readily recover (Theorem 10.4) the known result that bisimilarity is a congruence for all

free TΣ-algebras. In particular, this is the case for the standard, syntactic transition system, which is the

initial algebra TΣ(0).

This result constitutes a first generic tool for constructing instances of the framework of [12]. How-

ever, its scope is rather limited, and we plan to refine the construction to cover other formats like

tyft/tyxt [11]. A striking and promising observation here is that the well-foundedness condition demanded

of a tyft/tyxt specification for bisimilarity to be a congruence is clearly covered by our approach based on

weak factorisation systems (see §9). Cellularity thus provides a semantic criterion for well-foundedness,

whose precise relationship with the original, syntactic one seems worth investigating.

Beyond the task of showing by hand that existing formats yield cellular monads whose free algebras

are compositional, we also plan to investigate a more categorical understanding of the generating process.

The main motivation here is to design a construction that would cover variable binding. The theory

developed by Fiore and his colleagues [7, 5] seems like a good starting point.

References

[1] B. Bloom, S. Istrail & A. Meyer (1995): Bisimulation can’t be traced. Journal of the ACM 42, pp. 232–268,

doi:10.1145/200836.200876.

[2] Filippo Bonchi, Daniela Petrisan, Damien Pous & Jurriaan Rot (2014): Coinduction up-to in a fi-

brational setting. In: Proc. 29th Symposium on Logic in Computer Science, ACM, pp. 20:1–20:9,

doi:10.1145/2603088.2603149.

[3] Aurelio Carboni & Peter Johnstone (1995): Connected Limits, Familial Representability and Artin Glueing.

Mathematical Structures in Computer Science 5(4), pp. 441–459, doi:10.1017/S0960129500001183.

[4] Andrea Corradini, Reiko Heckel & Ugo Montanari (2002): Compositional SOS and beyond:

a coalgebraic view of open systems. Theoretical Computer Science 280(1-2), pp. 163–192,

doi:10.1016/S0304-3975(01)00025-1.

[5] Marcelo Fiore & Chung-Kil Hur (2009): On the construction of free algebras for equational systems. Theo-

retical Computer Science 410, pp. 1704–1729, doi:10.1016/j.tcs.2008.12.052.

[6] Marcelo P. Fiore (2000): Fibred Models of Processes: Discrete, Continuous, and Hybrid Systems. In: IFIP

TCS, LNCS 1872, Springer, pp. 457–473, doi:10.1007/3-540-44929-9 32.

[7] Marcelo P. Fiore (2008): Second-Order and Dependently-Sorted Abstract Syntax. In: LICS, IEEE, pp. 57–68,

doi:10.1109/LICS.2008.38.

[8] Marcelo P. Fiore & Sam Staton (2006): A Congruence Rule Format for Name-Passing Process Calculi from

Mathematical Structural Operational Semantics. In: Proc. 21st Symposium on Logic in Computer Science,

IEEE, pp. 49–58, doi:10.1109/LICS.2006.7.

[9] Marcelo P. Fiore & Daniele Turi (2001): Semantics of Name and Value Passing. In: Proc. 16th Symposium

on Logic in Computer Science, IEEE, pp. 93–104, doi:10.1109/LICS.2001.932486.

[10] Richard H. G. Garner & Tom Hirschowitz (2018): Shapely monads and analytic functors. Journal of Logic

and Computation 28(1), pp. 33–83, doi:10.1093/logcom/exx029.

http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/2603088.2603149
http://dx.doi.org/10.1017/S0960129500001183
http://dx.doi.org/10.1016/S0304-3975(01)00025-1
http://dx.doi.org/10.1016/j.tcs.2008.12.052
http://dx.doi.org/10.1007/3-540-44929-9_32
http://dx.doi.org/10.1109/LICS.2008.38
http://dx.doi.org/10.1109/LICS.2006.7
http://dx.doi.org/10.1109/LICS.2001.932486
http://dx.doi.org/10.1093/logcom/exx029

18 Cellular Monads from Positive GSOS Specifications

[11] Jan Friso Groote & Frits Vaandrager (1992): Structured Operational Semantics and Bisimulation as a Con-

gruence. Information and Computation 100, pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[12] Tom Hirschowitz (2019): Familial monads and structural operational semantics. PACMPL 3(POPL), pp.

21:1–21:28, doi:10.1145/3290334.

[13] Mark Hovey (1999): Model Categories. Mathematical Surveys and Monographs, Volume 63, AMS

(1999) 63, American Mathematical Society, doi:10.1090/surv/063.

[14] André Joyal, Mogens Nielsen & Glynn Winskel (1993): Bisimulation and open maps. In: Proc. 8th Sympo-

sium on Logic in Computer Science, IEEE, pp. 418–427, doi:10.1109/LICS.1993.287566.

[15] Tom Leinster (2014): Basic Category Theory. Cambridge Studies in Advanced Mathematics 143, Cambridge

University Press, doi:10.1017/CBO9781107360068.

[16] Saunders Mac Lane (1998): Categories for the Working Mathematician, 2nd edition. Graduate Texts in

Mathematics 5, Springer, doi:10.1007/978-1-4757-4721-8.

[17] Saunders Mac Lane & Ieke Moerdijk (1992): Sheaves in Geometry and Logic: A First Introduction to Topos

Theory. Universitext, Springer, doi:10.1007/978-1-4612-0927-0.

[18] Robin Milner (1980): A Calculus of Communicating Systems. LNCS 92, Springer,

doi:10.1007/3-540-10235-3.

[19] MohammadReza Mousavi, Michel A. Reniers & Jan Friso Groote (2007): SOS Formats and Meta-Theory:

20 Years After. Theoretical Computer Science 373(3), pp. 238–272, doi:10.1016/j.tcs.2006.12.019.

[20] Marco Peressotti (2017): Coalgebraic Semantics of Self-Referential Behaviours. Ph.D. thesis, University of

Udine, doi:10.13140/rg.2.2.26899.07203.

[21] Gordon D. Plotkin (1981): A Structural Approach to Operational Semantics. DAIMI Report FN-19, Com-

puter Science Department, Aarhus University.

[22] Emily Riehl (2014): Categorical Homotopy Theory. New Mathematical Monographs 24, Cambridge Uni-

versity Press, doi:10.1017/CBO9781107261457.

[23] Davide Sangiorgi & Jan Rutten, editors (2011): Advanced Topics in Bisimulation and Coin-

duction. Cambridge Tracts in Theoretical Computer Science 52, Cambridge University Press,

doi:10.1017/CBO9780511792588.

[24] Sam Staton (2008): General Structural Operational Semantics through Categorical Logic. In: Proc. 23rd

Symposium on Logic in Computer Science, pp. 166–177, doi:10.1109/LICS.2008.43.

[25] Daniele Turi & Gordon D. Plotkin (1997): Towards a Mathematical Operational Semantics. In: Proc. 12th

Symposium on Logic in Computer Science, pp. 280–291, doi:10.1109/LICS.1997.614955.

[26] Mark Weber (2007): Familial 2-functors and parametric right adjoints. Theory and Applications of Cate-

gories 18(22), pp. 665–732.

http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/3290334
http://dx.doi.org/10.1090/surv/063
http://dx.doi.org/10.1109/LICS.1993.287566
http://dx.doi.org/10.1017/CBO9781107360068
http://dx.doi.org/10.1007/978-1-4757-4721-8
http://dx.doi.org/10.1007/978-1-4612-0927-0
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1016/j.tcs.2006.12.019
http://dx.doi.org/10.13140/rg.2.2.26899.07203
http://dx.doi.org/10.1017/CBO9781107261457
http://dx.doi.org/10.1017/CBO9780511792588
http://dx.doi.org/10.1109/LICS.2008.43
http://dx.doi.org/10.1109/LICS.1997.614955

	Introduction
	Motivation
	Context
	Contribution
	Plan
	Prerequisites

	Labelled transition systems as presheaves
	Generalised transition systems
	Bisimulation

	Positive GSOS specifications as monads
	Models as algebras and congruence of bisimilarity
	Compositionality
	Preserving bisimulations through familiality and cellularity
	Familiality for functors
	Familiality and factorisation
	Cellularity
	Familiality for monads
	Conclusion and perspectives

