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In natural settings, microbes tend to grow in dense pop-
ulations [1–4] where they need to push against their sur-
roundings to accommodate space for new cells. The as-
sociated contact forces play a critical role in a variety of
population-level processes, including biofilm formation [5–
7], the colonization of porous media [8, 9], and the invasion
of biological tissues [10–12]. Although mechanical forces
have been characterized at the single cell level [13–16], it
remains elusive how collective pushing forces result from
the combination of single cell forces. Here, we reveal a
collective mechanism of confinement, which we call self-
driven jamming, that promotes the build-up of large me-
chanical pressures in microbial populations. Microfluidic
experiments on budding yeast populations in space-limited
environments show that self-driven jamming arises from
the gradual formation and sudden collapse of force chains
driven by microbial proliferation, extending the framework
of driven granular matter [17–20]. The resulting con-
tact pressures can become large enough to slow down cell
growth, to delay the cell cycle in the G1 phase, and to strain
or even destroy the microenvironment through crack prop-
agation. Our results suggest that self-driven jamming and
build-up of large mechanical pressures is a natural ten-
dency of microbes growing in confined spaces, contributing
to microbial pathogenesis and biofouling [21–26].

The simultaneous measurement of the physiology and me-
chanics of microbes is enabled by a microfluidic bioreac-
tor [27–30] that we have designed to culture microbes under
tightly controlled chemical and mechanical conditions. The
setup, shown in Fig. 1a, is optimized for budding yeast (S. cere-
visiae). We use this device to measure mechanical forces gen-
erated by partially-confined growing populations and the im-
pact of those forces on both the population itself and its micro-
environment.

At the beginning of each experiment, we trap a single yeast
cell in the growth chamber of the device, which can hold up
to about 100 cells. The cells are fed by a continuous flow of
culture medium, provided by a narrow set of channels that are
impassable for cells.

While cells first proliferate exponentially as in liquid culture,
their growth dynamics is dramatically altered once the chamber
is filled. At high density, cells move in a stop-and-go manner

and increasingly push against the chamber walls. The popula-
tion develops a contact pressure that increases over time until
it reaches a steady state, subject to large fluctuations. Note that
this contact pressure is conceptually very different from the hy-
drostatic pressure because water can flow in and out of cells
Depending on the geometry of the outlet (Fig. 1b and c), the
mean steady-state pressure can reach up to 0.7±0.1 MPa. This
pressure is larger than the osmotic pressure difference, ⇡ 0.2
MPa (stationary phase [31]), between the interior of a budding
yeast cell and the surrounding medium, and much larger than
the ⇡ 1 mPa needed for the cells to overcome viscous friction
(Supplementary Text).

While the initial pressure build-up is similar in different de-
vices, we find a sensitive dependence on the device geometry.
The steady state pressure can be finely tuned by the shape of the
outlet gate (shown in Fig. 1b and c) or the width of the outlet
channel (Fig. S13).

Both the intermittent flow and pressure build-up are counter-
intuitive because, in all cases, the outlet channel is wide enough
for cells to pass. In principle, excess cells could flow like a liq-
uid out of the chamber. Time lapse movies (Movie S1) re-
veal that blockages in the device stabilize the cell packing and
prevent flow. Cells proliferate until a sudden avalanche flushes
them through the outlet (Fig. 1d and e). Another jamming event
occurs, and the process repeats. These dynamics generate char-
acteristic slow pressure increases followed by sudden pressure
drops (Fig. 1c).

Jamming, intermittency and avalanches are familiar aspects
of flowing sand, grains or even jelly beans [24]. To test whether
the interplay of growth, collective rearrangement, and outflow
of cells from the chamber can be explained by the mechan-
ics of granular materials, we set up coarse-grained computer
simulations with cells represented as elastic particles that grow
exponentially and reproduce by budding. In our simulations,
cells move via frictionless over-damped dynamics with repul-
sive contact interactions between neighbors.

Our simulations indeed reproduce the intermittent dynam-
ics observed in the experiments (Fig. 2a–c). We find that the
distribution of pressure drops have an exponential tail in both
experiments and simulations (Fig. 2d) for P > hPi, similar to
avalanche size distributions in hopper flows [32].

Highly intermittent cell flows might reflect spatially hetero-
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Figure 1 Self-driven jamming of microbes enables collective pressure build-up in microfluidic environments. (a) Budding yeast cells are
grown in a growth chamber threaded by narrow nutrient channels (inset). (b) The jamming of excess microbes produced by proliferation in
the device leads to a partial confinement of the population and a gradual build-up of a contact pressure of up to 0.65±0.1 MPa (in the shown
experiment), which strongly deforms the device (white line represents the undeformed layout). The steady-state pressure generated in a given
device depends on the geometry of the outlets (b, right), which effectively act as leaky one-way valves. The resulting time-dependent pressure
curves are shown in (c) for different outlets. The pressure measurements were enabled by an automatic feedback system that actively controls
the deformation of a thin membrane separating the growth chamber and a control channel (see a and Supplementary Text). The bold curves
correspond to one realization of the experiment, which is characterized by large pressure fluctuations due to gradual jamming and sudden
unjamming. The shaded region represents the envelope of the replicates: all replicates are binned together, and within each bin, the minimum
and the maximum define the shading. The dashed line corresponds to the mean of all realizations. The cellular flows exhibits collective
features known from physics of jamming in granular media: The outflow of cells is not steady but consists of periods of stasis, accompanied
by pressure-build up, and sudden cell avalanches and pressure drops. This can be seen in time lapse movies (Movie S1) as well as
Kimographs: (d) shows the random zig-zag motion of the chamber membrane and (e) shows the flow through the outlet before, during and
after an avalanche with one snapshot every 20 minutes. Note that, depending on the local stresses, cells assume shapes from nearly spherical
(f, low stress) to nearly polyhedral (g, high stress). (f, g, left) Micrographs taken close to the coverslip at the bottom of the chamber. (f, g,
right) Mass-spring simulations, in which cell walls are represented as (at vanishing contact pressure) spherical meshworks of springs
(Supplementary Text). For better visualization, the simulations only show the first layer of cells. The depths of this layer are 5.25 µm and 1.7
µm for low and high pressure respectively.
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geneous mechanical stresses, a hallmark of driven granular ma-
terials [17–20]. Assuming that cell shape deformation is indica-
tive of the forces between cells, we developed a non-invasive
method to infer these forces (Fig. 2f, supplementary text, and
Fig. S1). Using this approach, we analyzed microscopy images
to determine stress distributions of crowded populations. Both
S. cerevisiae experiments and our coarse-grained simulations
exhibit disordered cell packings that are stabilized by heteroge-
neous force networks (Fig. 2f and g). Stress is highly localized
along branching “force chains” [17, 18] while adjacent “spec-
tator cells” [33] experience very little mechanical stress.

We find that jamming-induced contact forces can become so
large that they feed back on the cell physiology. Indeed, a feed-
back on both cell shape and the dynamics of cell growth is ev-
ident in experiments where we place two devices of different
steady state pressures next to one another, as seen in the time
lapse movie (Movie S2). These devices only differ by the
width of their outlet channels (5µm vs. 7.5µm). We find that
an increased outlet channel width leads to an increased mean
avalanche size, and correspondingly, a smaller mean pressure
(Fig. S13). To quantify the feedback on growth, we estimate
the net growth rate, which is the difference between birth and
death rate, in our microfluidic bioreactors by measuring mean
cell outflow rate at steady state (supplementary text). We find
that the growth rate decays roughly exponentially with pres-
sure until growth is undetectable at a stalling pressure of about
1 MPa (Fig. 3c). The stalling pressure, or homeostatic pres-
sure [34], is obtained by using a special device with a “self-
closing valve”, in which yeast populations fully confine them-
selves by the pressure they build up, as seen in Fig. 3a. In this
device, the rate of pressure increase gradually decays with pres-
sure until saturation (Fig. 3b). This diminishing return is due to
smaller growth rates at higher pressures, and serves as another,
dynamical measure for the feedback between contact pressure
and growth rate.

Control experiments supported by finite element simulations
show that cells are well-fed and viable even at the highest den-
sities suggesting a mechanobiological origin for the reduced
growth rates (Supplementary Text and Figs. S3 and S4).

As a first step to uncover the mechanistic basis for the force-
growth feedback, we have explored the impact of contact forces
on the pace of cell cycle progression. In budding yeasts, the
late G1 checkpoint Start, homolog to the mammalian Restric-
tion point, controls the irreversible cell commitment to division
[35]. Passing of the checkpoint requires multiple phosphoryla-
tions of the repressor Whi5, upon which Whi5 is exported out
of the nucleus until the cell cycle is completed. As a conse-
quence, Whi5 is localized in the nucleus in the G1 phase prior
to Start, and cytosolic otherwise (Fig. 3d, top). Using a mu-
tant that express fluorescently labeled Whi5 thus enabled us to

probe the cellular commitment to cell division. We found that
an increased contact pressure is accompanied by an increase in
the fraction of cells with nuclear Whi5 signal (Fig. 3d), sug-
gesting a force-induced slowdown of the cell cycle in G1. This
finding is consistent with the view of the late G1 checkpoint as
an integrator of numerous stresses, including osmotic, chemi-
cal and heat shock stresses [36–38]. Force-induced cell cycle
arrest has been observed in mammalian cells [39, 40], but the
associated mechanical stresses are two to three orders lower
than the stalling pressure measured in our experiments.

Perhaps the most salient consequence of growth-induced
pressure is cell shape deformations. While budding yeast cells
grown in the absence of mechanical stresses are nearly spheri-
cal, we observe that they tend to morph into convex polyhedra
as the population pressure becomes growth-limiting (Fig. 1f
and g). Close to the stalling pressure, the packing resembles
the structure of a dry foam [41], consisting of cells with nearly
flat faces and sharp edges in between, shown in Fig. 2f. The
pressure-induced cell shape deformation can be best visualized
at the interface between coverslip and cell population: the cell-
coverslip contact area increases as the growth-induced pressure
increases (Fig. S6). Our simulations further suggest that, in our
experiments, the osmotic pressure inside the cells may increase
as a function of the growth-induced pressure (Fig. S6).

Most microbial cells are sticky [42, 43]. Indeed, while our
lab strains of budding yeast have been domesticated to become
non-sticky, wild strains can have strong, velcro-like intercellu-
lar fiber connections [44]. We find that while sticky yeasts de-
velop in our microfluidic devices a very similar maximal pres-
sure as the lab strains do (Fig. 3b), they develop substantial
contact pressures under much weaker confinement (Fig. 4a).
Our coarse-grained simulations likewise suggest that attractive
interactions promote jamming: The measured build up of pres-
sure is much larger than expected under a non-granular model
of a liquid droplet with surface tension, in which jamming is
impossible (Fig. 4c and d).

Bacteria and fungi have the ability to colonize a wide range
of porous media, including tiny cavities barely larger than their
cell size [3, 4]. Our work suggests that self-driven jamming
of growing microbes can emerge in these microenvironments
as it does in our microfluidic devices if chemical resources are
sufficiently abundant.

The resulting growth-induced forces endow biofilms with the
potential to remodel, or even destroy, their micro-environment.
This could aid microbes in penetrating the soft tissues of host
organisms [10–12], or to invade soil, where most microbes
grow in pores of several micro-meter in diameters [3, 4]. At
this length scale, it is possible that the growth-induced pres-
sures measured here contribute to straining of even stiff mate-
rials. Indeed, when we grow budding yeast populations inside
agar gels, we observe the formation and propagation of cracks
(Fig. 4d, Fig. S8 and time lapse movie Movie S5). Thus, just
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Figure 2 Pressure fluctuations and intermittent flows of partially confined budding yeast populations can be reproduced in
simulations of proliferating elastic particles. (a) Experimental pressure time series are characterized by periods of gradual pressure build-up
and sudden pressure drops. (b) Simulations show that such time series are the generic outcome of jammed elastic particles proliferating in
confined spaces. (c) A feedback of pressure onto growth, reported in Fig. 3c below, further improves our simulations. The gradual pressure
increases prior to avalanche events show diminishing return similar to the experimental time series in (a). Pressure drops during avalanche
events, defined as the pressure change from the peak pressure prior to an outflow event to the base pressure just after the event (d), are nearly
exponentially distributed for drops larger than the mean pressure drop, hDPi, in both experiments (e: symbols) and coarse-grained simulations
(e: lines). We can estimate inter-cell contact forces in our experiments by measuring the area of contact between two cells through image
analysis. (f) The resulting network of contact forces in packings of budding yeast cells shows a heterogeneous distribution of mechanical
stresses (pressure on the membrane: 0.5 MPa). (g) Force networks obtained from simulations of exponentially growing budding cells. In both
(f) and (g), large forces are clustered into chain-like structures. A movie illustrating the dynamics of force networks in our experiments can be
seen Movie S3, and a coarse-grained simulation movie can be seen Movie S4. For our simulations, we used box and outlet sizes that
match the microfludic chamber and parameterized the over-damped dynamics using the experimental flow rate and pressure fluctuation data
(Supplementary Text).
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Figure 3 Pressure-induced slow down of growth. (a) Budding yeast populations can be fully confined using a “self-closing” device that
takes advantage of the contact pressure developed by the population to close the inlet/outlet channel. The cells are fed through narrow nutrient
channels, as in 1a. The layout of the undeformed device is shown in white. (b) The time-dependent pressure curve in the self-closing devices
shows a diminishing return: The rate of increase of the growth-induced pressure in the fully confined region gradually slows until it stops at
the stalling pressure of 1±0.1 MPa (5 replicates, mean ± standard deviation). Inset: stalling pressure measured for the lab strain and the wild
strain. (c) Growth rate as a function of growth-induced pressure, estimated in two ways (supplementary text): The black points represent net
growth rates determined from the cell flow out of our leaky devices in the steady-state (black points; � 5 replicates, mean ± standard
deviation). The continuous blue line, on the other hand, has been inferred from the diminishing return in the dynamical data of (b) under a
quasi-steady state assumption (supplementary text; shading indicates ± standard deviation). The dashed curves represents an exponential fit to
the steady-state data (k = 0.41 (h�1) exp(-P/0.28 (MPa))). (d) We probed the cell cycle progression using mutants that express fluorescently
labeled Whi5 repressor proteins. In the G1 phase of the cell cycle prior to the checkpoint Start, Whi5 is localized in the nucleus yielding a
subcellular fluorescent focus (see scheme). We find that at high contact pressures of 0.95 MPa almost four times as many cells exhibiting a
nuclear Whi5 signal than at low pressures of P = 0.16 MPa (Fig. S5).

like jamming of granular media can threaten the mechanical in-
tegrity of their confinements, which can lead to the bursting of
grain silos [32, 45], it could also be an important mechanical
aspect of host invasion [10–12] and biofouling [21].

We argue that the mechanism underlying self-driven jam-
ming, cell proliferation, extends the notion of driven granular
materials, which are usually jammed by external forces, such
as shear, compression, or gravity [17–20]. On a fundamental
level, cell proliferation and death are unique driving forces be-
cause they alter the number of macroscopic degrees of freedom,
and thus directly affect Maxwellian rigidity criteria for jammed
materials [46, 47]. New granular physics may also result from
biological features that have no analog in traditionally-driven
granular materials. For instance, the pressure-growth feed-
back, that we have described above, could homogenize force
networks and enhance pressure buildup, as our simulations in-
dicate (Fig. S11). Intermittent flows may be influenced by the
shape of cells, as rod-like cells tend to align spontaneously, thus
increasing the packing fraction [48] (Fig. S12). We also expect
cell motility [49] and viscoelastic extracellular substances [6],
expressed by many microbes to promote biofilm formation, to
engage in a rich mechanical interplay with the packing of grow-
ing cells in confined spaces.
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Supplementary Methods

Yeast strains and growth conditions: S. cerevisiae cells (S288C background, with a Whi5-GFP construct,
courtesy of J. Thorner, UC Berkeley, USA) and wild undomesticated cells (BR-103F strain, courtesy of Palkova
lab at Charles University in Czech Republic) are cultured in complete synthetic medium (CSM, 20 g/L glucose)
at 30o C. The device is loaded with cells in exponential phase.

Preparation of the micro-fluidic bioreactor (“Mechano-chemostat”): The mold consists of 2 layers of dif-
ferent heights, each layer prepared using a classical soft lithography protocol described in Ref. [1]. The first
layer is prepared using SU 2000.5 negative photoresist (0.5 µm height), and the second using SU 2010 (10 µm
height). Polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, USA) is mixed with the curing agent (ratio
1:10 in mass), poured onto the mold, and cured overnight at 60o C. PDMS is bound to no1 thickness glass slides
through an oxygen plasma generated by a reactive ion etcher (RIE) machine (P02 = 200 mTorr, exposure time
= 20 sec). Prior to loading the device, the surface is treated with Pluronics 127 (VWR, USA) as in Ref. [2] to
decrease any non-specific adhesion that could result in cell-PDMS adhesion or friction.

Two methods for measuring the growth-induced pressure: To measure the contact pressure generated by
the population, we monitor the position of a 4µm thick membrane separating the growth chamber and a control
channel. We adjust the hydrostatic pressure every 30 seconds to keep the membrane at a fixed position. In this
way, we ensure that the known hydrostatic pressure mirrors the mechanical contact pressure with a precision of
0.02 MPa.
Finite element simulations (Comsol) show that, in the absence of a hydrostatic control pressure, the deformation
of the membrane is proportional to the contact pressure in the growth chamber. This linear relation can be used
to convert the deformation of the membrane into the growth-induced pressure, with a precision of 0.05 MPa.
However, this second method of measuring a growth-induced pressure first requires a calibration of the Young’s
modulus of the PDMS device. When necessary, the calibration is done before each experiment. On average,
we measure a PDMS Young’s modulus of 2 MPa.

Visualizing cell deformations and the contact area between cells and the coverslip: FITC-conjugated Dex-
tran (3kDa, Invitrogen) is added to the culture medium, at a concentration of 0.1 mg/mL. Since Dextran is not
internalized by single yeast cells [3], it stains the extracellular space, and enables the imaging of cell defor-
mation. The contact between cells and the coverslip is imaged by reflectometry. Briefly, we shine a 635 nm
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laser on the sample through a pinhole closed to a minimum, to obtain an optical slice of 0.3 µm. The reflected
light is collected without filter, so that local changes in refractive index can be measured at the level of the
glass slide. Typical images of cell deformations are shown in the main Letter (Fig. 1), and images obtained by
reflectometry are shown in Fig. S6a.

Dependence of contact surface area on pressure: We measure the cell contact area at the interface between
the coverslip and cell population, and compare it to our Mass-Spring simulations (see below). Reflectometry
reveals that the average fraction of the coverslip that is in contact with cells increases as the population pressure
increases, shown in Fig. S6a. We find that the experimentally measured growth-induced pressure increases
super-linearly with surface coverage, contradicting our pressurized-shell null model. This may indicate that the
yeast cell turgor pressure increases with growth-induced pressure (Fig. S6b).

Measuring the steady-state and instantaneous growth rate: Each outlet design, shown in Fig. 1b (right),
leads to a different steady-state pressure, and a different steady-state cell outflow rate. We measure the cell
outflow rate Jcell from time lapse movies using a custom-made particle image velocimetry algorithm (Matlab),
and infer the growth rate in the chamber as k = Jcell/Vch, where Vch is the volume of the growth chamber.
Alternatively, we can estimate the instantaneous growth rate from the pressure vs. time relationship measured
for the self-closing device. Since the cells are fully trapped in the growth chamber, the time-derivative of the
pressure is directly proportional to the growth rate. The proportionality depends on the packing fraction of the
cells (φ ) and on the volume of the chamber (V ).
We infer the instantaneous growth rate γ of the cells by

γ =
∂tVc

Vc

where Vc is the volume occupied by the cells. By definition, the packing fraction is the fraction of volume
occupied by cells divided by the volume of the chamber:

φ =
Vc

V
Hence,

γ = ∂t logφ +∂t logV

Now we assume that, at any time, the packing fraction and the chamber volume only depend on the pressure:
V (t) = V (P(t)) and φ(t) = φ (P(t)). This quasi-steady state assumption is acceptable only if the cells can
adapt their growth rates sufficiently fast to the current pressure curve or, conversely, that the pressure changes
sufficiently slowly.
This enables us to rewrite the growth rate:

γ = ∂tP(∂Plogφ +∂PlogV )

In order to plot the growth rate γ as a function of growth-induced pressure, we need three pieces of informa-
tion: the time-derivative of the pressure, the packing fraction, and the pressure-dependency of the volume of
the growth chamber. The packing fraction is measured using exclusion fluorescence technique (see Fig. S2a
and S2c), and the dependency on pressure of the volume of the chamber is calculated through finite element
simulations (Comsol) (Fig. S2b).
As shown in Fig. S2d, the growth-rate vs pressure relationship obtained in this way is in good agreement with
the more direct steady-state measurements. This justifies our steady-state assumptions and suggests that the
feedback on growth should act as fast or faster than the typical division time.
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Inferring force maps: The interface area between cells in contact is used to estimate the contact force between
the cells. To this end, we have modeled the mechanical response of budding yeast cells in the simplest possible
way by assuming that a cell responds to contact forces like a pressurized elastic shell, as illustrated in Fig. 2f.
The force between cells in contact is then given by F = PA ∝ Pl2, where A is the area of contact, P is the
cell turgor pressure, and l is the projection of the contact surface onto the measurement plane. This takes into
account the effects of turgor pressure and the near-inextensibility of the cell wall, but assumes that these effects
dominate over elastic energies due to bending of the cell wall or cytoskeleton (the turgor pressure of ≈ 0.2
MPa [4] is nearly two orders of magnitude larger than the elastic moduli of cytoskeletal networks). Single-cell
studies [5, 6, 7, 8] have indeed found that compressed S. cerevisiae cells exert forces proportional to the area
of contact, in agreement with a model that incorporates only internal pressure and cell wall stretching even for
large deformations. We further validate our approach by performing simulations of deformable cells composed
of spring networks, which show similar deformations as S. cerevisiae cells at corresponding pressures. The
simulations are described in the next paragraph and in Fig. S1 and Fig. S7.

Description of Mass-Spring simulation: The mechanics of a budding yeast cell is primarily controlled by the
mechanics of the cell wall and the turgor pressure [8]. In our “mass-spring” (MS) simulations, the cell wall
is represented as a spherical meshwork of springs, obtained from surface triangulation, and connecting set of
vertices. The neighbor vertices, separated by a vector R, are held together via Hookean spring interactions:

F(R) = kMSR(1−R0/R) (1)

where kMS is a spring constant, and R0 is a length of the relaxed spring. The Hookean spring constants are taken
to be the same and related to the Young’s modulus by the following equation:

kMS =
2Et

1−ν
· A0

∑i L2
i

(2)

where E is Young’s modulus, ν is cell wall Poisson’s ratio, t is the cell wall thickness, A0 is the initial cell
surface area, and Li is the relaxed length of the ith spring [9].
The overlap between two non-bonded vertices is modeled by Hertzian repulsive force:

F(R) =−4
3

h3/2E∗
√

R∗R̂ (3)

where E∗ = E/2(1− ν2) is an effective Young’s modulus, E is cell wall Young’s modulus, ν is cell wall
Poisson’s ratios, R∗ = 0.5 ·Rvert is an effective radius, Rvert is a radius of a vertex, here set to be the same as the
cell wall thickness t, h = 2 ·Rvert−R is an overlap between two vertices, and R̂ is a unit vector along R.
The overlap between a vertex and box walls is modeled similarly but with an effective radius R∗ = R, and an
effective Young’s modulus:

1
E∗

=
1−ν2

vert

Evert
+

1−ν2
box

Ebox
(4)

The force due to the cell volume-dependent turgor pressure Π(Vcell) on vertex i is calculated as:

FΠ(ri) = ∇ri

(
Π(Vcell)Vcell

)
(5)

where Vcell(r1, ....,rNvert) is a function of the Nvert vertices triangulating the cell surface and the volume change
for the vertex i is calculated using tetrahedral volume defined by the vertex i, its neighboring vertices in the
meshwork, and center of the mass. The equations of motion of over-damped dynamics have been solved using
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Heun’s method (explicit second-order Runge-Kutta method). In the simulations for all vertices (box wall)
Young’s modulus Evert = 150 MPa (Ebox = 200 MPa) and Poisson’s ratio νvert = νbox = 1/2 are set the same,
turgor pressure is Π = 1.0 MPa (unless stated otherwise), cell wall thickness is t = 0.1µm, and the initial cell
radius is R0 = 2.5µm.

Coarse-grained simulations of proliferating elastic particles: In our 2D coarse-grained simulations, illus-
trated in Fig. S9, cells are modeled as two frictionless rigidly-attached spherical lobes [10] (mother and bud)
that grow exponentially at rate γi by bud expansion (Eq. 1), move according to over-damped dynamics with
mobility µ (Eqs. 2 and 3), and interact via repulsive spring forces with elastic modulus k (Eq. 4)

ȧi = γiai (6)

ṙi = µFi (7)

θ̇i =
m
I

µTi (8)

V = ∑
ik jl

1
2

kCGδ
2
ik, jlΘ(δik, jl) (9)

where ai =
π

4 (σ
2
i,mother +σ2

i,bud) is the cell area, σi,mother (σi,bud) is the diameter of the mother (bud), ri (θi) is

the cell position (orientation), mi (Ii =
1
8 Ma2

(1+∆4

1+∆2 + 2
( (1+∆)∆

1+∆2

)2) with ∆i = σi,bud/σi,mother) is the cell mass
(inertia), V is the total potential energy, Fi = −∇riV (Ti = −∂θiV ) is the force (torque) on cell i, and δik, jl =
1
2

(
σik +σ jl

)
−
∣∣rik− rjl

∣∣ is the overlap between lobes k of cell i and l of cell j, and Θ is the Heaviside Step
function. This method is similar to studies performed with growing spherocylinders [11, 12]. For simulations
with attraction, we extend the potential in Eq. 4 beyond its repulsive core to have an attractive range of width
∆ [13, 14]

V = ∑
ik jl

(
1
2

kCGδ
2
ik, jlΘ(δim, jn +∆)− 1

2
kCG∆

2
)

(10)

In this model, the mother lobe has the same size σi,mother = σ for all cells. Equations of motions are integrated
using a 3rd order Gear Predictor-Corrector algorithm. Growth progresses while σi,bud < σ and culminates in
division. After division, both new cells retain the orientation of cell i.
Cells grow in a rectangular box of dimensions Lx×Ly with an outlet of width a. For the simulations in this paper,
we used Lx = 6σ , Ly = 16σ , and a = 1.4σ to match experiments unless stated otherwise. Cells interact with
the wall with the same cell-cell repulsive spring force, Vwall =

1
2 kCGδ 2Θ(δ ), where δ is the overlap between the

cell and wall.
Without pressure feedback, γi = γ0

i where γ0
i is chosen from a uniform distribution of width 20% around a mean

growth rate γ . With pressure feedback, the growth rate depends on pressure as γi = γ0
i e−Pi/P0 where Pi is the

pressure of cell i.
The free parameters in this model are an effective friction coefficient µ/

(
γ
√

mkCG
)

and a characteristic pressure
feedback scale P0/k. In Fig. 3 of the main text, we use parameters that best matches the experimental pressure
fluctuations in the case of intermittent flow where the pressure slowly builds and then suddenly drops during
avalanches. We choose values of µ = 8×104γ

√
mkCG and µ = 2×103γ

√
mkCG for simulations with (Fig. 2b)

and without (Fig. 2c) feedback that best capture the ratio of pressure increase (Ṗ↑) and drop (Ṗ↓) rates in the
case as shown in Fig. S10. To obtain an experimentally-motivated value of feedback pressure P0 (Fig. 2c), we
used a value of P0 that yields the same ratio of Pexp

0 = 0.28 MPa (Fig. 3c) to 〈P〉exp = 0.7 MPa (135◦ data
in Fig. 1c), Pexp

0 /〈P〉exp = 0.4. Coarse-grained simulations without feedback yield 〈P〉sim = 0.19kCG, giving
Psim

0 = 〈P〉sim×Pexp
0 /〈P〉exp = 0.07k.
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Estimation of pressure due to viscous friction: Here we estimate the pressure arising from friction between
cells in the outlet and the surrounding medium. In a chamber of dimensions Lx×Ly with an outlet of dimensions
width×length= a×d, the chamber holds Nc ≈ LxLyh/σ3 cells and the outlet holds No ≈ adh/σ3 cells, where
σ is a typical cell diameter and h is the height of the device. Assuming that the height h of the system and the
width of the outlet a are both a = h = σ , so that Nc ≈ LxLy/σ2 and No ≈ ad/σ2. If the cells in the outlet are
pushed out at velocity v, the total frictional force they experience is F = f vNo, where f is a friction coefficient
per cell, and therefore the pressure at the outlet is

P = F/(ah) = f vNo/σ
2 (11)

Standard viscous friction of a sphere in a liquid yields f = 6πησ/2. We further estimate the flow velocity by
v = Ncσk where k is the growth rate for cells in the chamber, assuming that cells in the outlet are not growing.
This gives:

P =
(
6πησ/2

)(
Ncσk

)
No/σ

2 (12)

= 3πkηNoNc (13)

Using η = 10−3Pa s, k ≈ 0.4h−1 ≈ 10−4s−1, Nc ≈ 100, and No ≈ 10, we get

P = 3πkηNoNc (14)

= 3π×10−3Pas×10−4s−1×100×10 (15)

= 1×10−3Pa (16)

Thus, viscous friction gives a negligible contribution to the pressure generated in the outlet, which is in the MPa
range.
Conversely, we can use the above estimate to define an effective viscosity of the cell packing of 1 MPa s needed
to achieve a pressure of 1 MPa. This effective viscosity is much larger than has been measured for mammalian
cells [15].

Code and microfluidic design availability

All the codes used in this study, as well as all the microfluidic blueprints are available on request.
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Supplementary Figures
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Figure S1: Testing our indirect force-inference method on simulated packings. In the main text, we reported
mechanical forces in packings of yeast cells that we have inferred from the observed cell shape deformations.
Our force-inference method uses use a custom Matlab image analysis code to process the time-lapse movies
that we obtained with the fluorescence exclusion method (Fig. S2). Each cell is identified with a watershed
algorithm and manually refined if necessary. For each identified cell, the contour is defined as a set of spline
functions. These splines are further used to calculate the length l of the contact line between each pair of cells.
As a first order approximation, we estimate the contact area as A ∝ l2, and we assume that the contact force
is proportional to the contact area F ∝ A (Materials and Methods: See Inferring force maps). Here, we test
our force-inference method on packing generated by our mass-spring simulation. To this end, we compare
the inferred force network with the actual force network in the simulations. (a) 80 cells of the same size
(R0 = 1.5µm), turgor pressure (Π = 1.0 MPa), and E=100 MPa are randomly distributed and compressed in
a slab geometry. The cells are depicted as a semi-transparent blue meshwork, confined by the rigid box. The
contact forces are evaluated numerically and are represented as the red lines between neighbor cells. The
thickness of the lines corresponds to the magnitude of the contact forces. (b) The final snapshot from the
simulation is processed with the in-house Matlab code for image analysis, and contact forces have been inferred.
The numerical (in blue) and image analysis (in red) force networks are superimposed on top of each other for
visual comparison. The correlation coefficient calculated for these two sets of contact forces is 0.79. (c) Scatter
plot of each contact force in b. Forces have been scaled by the average value. Measured are the forces obtained
from the mass-spring simulations, and compared against the one obtained from the image analysis procedure.
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Figure S2: Inferring the instantaneous growth rate as a function of pressure using the pressure curve
obtained from the self-closing valve. (a) A fluorescent dye, FITC-conjugated Dextran, added to the medium
allows us to label the space between the cells. FITC-conjugated Dextran does not penetrate inside the cells,
such that its fluorescence is excluded from a cell. As a consequence, as the cells are filling the chamber,
the fluorescence intensity is, in first order, proportional to the void in between cells, like in the fluorescent
exclusion method [16]. Denoting φ the packing fraction, and V the volume of the chamber, we assume that
the intensity I of fluorophore is I ∝ (1−φ)V . (b) We use finite element simulations (Comsol) to estimate the
change in volume of the growth chamber as a function of the pressure. We define the PDMS as a hyperelastic
material as in [17], with an estimated Young’s modulus E = 2MPa. We find that the change in volume is to
good approximation linear in the pressure. (c) We use the excluded fluorescence, as well as the finite element
simulation, to estimate the cell packing fraction, φ , as a function of the growth-induced pressure. We observe
that the growth-induced pressure starts to rise in the chamber for a packing fraction of about 0.4. We fit the
resulting relationship by a forth order polynomial function to obtain a continuously differentiable function.
(d) We use the values extracted from b and c to calculate the instantaneous volumetric growth rate γ , using a
quasi-steady state assumption as described in the Supplementary Method (see Measuring the steady-state and
instantaneous growth rate). The dark blue line corresponds to the values calculated from the mean pressure, and
the envelope corresponds to the values calculated from the envelope of the pressure curve. Note that the inferred
continuous relationship between growth rate and contact pressure is in good agreement with the steady-state
data obtained independently, from outflow rates in our leaky devices (black points, mean± standard deviation).
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Figure S3: The reduction of growth rate is not due to glucose depletion in the growth chamber. To estimate
whether glucose depletion could account for the observed reduction of growth rate, we assume that cells would
locally consume glucose at the maximum rate. We consider two cases: either glucose merely diffuses inside the
growth chamber, or it is also advected by the imposed nutrient flow. In both cases, we find that the reduction
of glucose concentration in the chamber is not enough to stall cell growth. (a) We first measure the diffusion of
2-NDBG, a fluorescent glucose analog molecule. Here, we observe at the beginning of the experiment that there
is almost no glucose in the self closing valve, and that it progressively diffuses in the chamber. Notice the foam-
like packing of the cells, which results from the growth-induced pressure nearly balancing the turgor pressure.
(b - c) We measure the diffusion constant of the glucose analog in 2 different ways. We measure either the local
concentration at a fixed position in the chamber (b) or the full width at half maximum (FWHM) as a function
of time (c, mean ± standard deviation). Fitting of a simple diffusion model agrees well with the experimental
data, and enables us to extract values for the diffusion constant of the glucose analog (see figure). (d - e) The
biomass yield of S. cerevisiae cells is 0.45 × gcells/gglucose [18]. With a minimum doubling time of 2 hours,
this yields a glucose consumption rate of 2.2×107 molecules/s. We simulate glucose consumption in the fully
packed growth chamber using finite element simulations (Comsol) and the measured glucose diffusion constant
extracted in b and c. We consider two cases: either there is only consumption and diffusion (d) or consumption,
diffusion and convection (e). We find that in the case where there is only diffusion, the glucose concentration
drops at about 70% of its boundary value c0, which is about 14 g/L, and still above the concentration where
depletion of glucose affects growth [19]. In a finite element simulation set-up where we impose a convective
flow of 0.2 nL/s, we observe that there is no glucose gradient in the growth chamber. We conclude that the
observed reduction of growth rate in figure 3c is not an effect of glucose depletion in the growth chamber.
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Figure S4: Measurement of cell viability and cell vitality. We assess how pressure changes cell viability and
metabolic activity. Cell viability is assessed through a viability kit (LIVE/DEAD Yeast Viability Kit, Thermo
Fisher Scientific). Briefly, propidium iodide (PI) is added to the culture medium. PI only enters the nucleus of
dead cells and binds to DNA. We observe that, even at maximum pressure, most of the cells are alive (more
than 90% of the cells). Cell vitality is assessed by adding a cell permeable esterase substrate (FungaLight Yeast
CFDA, AM, Thermo Fisher Scientific) that is cleaved by esterases. The cleaved molecule becomes fluorescent,
which enables one to assess esterase activity, which is directly linked to the global cell metabolic activity.
We observe that, even though cell vitality does not change much at 0.5 MPa (the change is less than 15%),
it is almost non existent at the maximum pressure of 1MPa. This suggests that, even though alive, cells are
not metabolically active. This could be explained by pressure-induced molecular crowding, as in [20], where
all processes in the cell are slowed down to the point of stalling by the very high compression. Note that at
the highest pressure, we observe about 5% of the cells bursting. The data represent, for N ≥ 3 independent
replicates, the mean ± standard deviation.
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Figure S5: The density of nuclear Whi5 is anti-correlated with the growth rate. This plot shows the
nuclear Whi5 density for different growth-induced pressures. The Whi5 density was obtained by measuring the
number of cells with a nuclear Whi5 normalized by the observed area. Note that the nuclear density of Whi5 is
increasing with decreasing growth rate, suggesting that growth rate reduction is accompanied with a cell cycle
delay in the G1 phase of the cell cycle. Errors are mean ± standard deviation for N ≥ 5 independent replicates.
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Figure S6: Relationship between fraction of surface covered and growth-induced pressure indicates tur-
gor pressure adaptation. (a) The growth-induced pressure increases (circles) faster than linearly with the
fraction of surface covered. Typical pictures obtained by reflectometry are presented in the inset for different
values of surface coverage. The dashed lines are obtained from our mass-spring simulations, in which yeast
cells are modeled as elastic shells subject to a constant turgor pressure. The simulations yield a growth-induced
pressure that increases linearly with surface coverage. The slope is equal to the turgor pressure Π, for which we
chose three different values. The discrepancy between data and simulations suggests that the turgor pressure
increases with growth-induced pressure. (b) The growth-induced pressure divided by the fraction of covered
surface corresponds to the pressure exerted in the contacts between cells and cover slip. Accordingly, the con-
stant turgor pressure simulations of elastic shells yield nearly horizontal lines. The data, however, clearly shows
that the pressure in the cell-coverslip contacts increase with the growth-induced pressure. This may indicate a
gradual increase in turgor pressure. Error bars of the simulation data are smaller than the symbols. Error bars
for the surface coverage are estimated as followed: We assume that we cannot measure the contact better than
the diffraction limit. Hence, assuming a circular contact, we write that the radius of the contact has a typical
error of ±δ , where δ is the radius of the Point Spread Function.
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Figure S7: The average cell-cell contact stress approaches the cell turgor pressure under high compressive
stress. We measure the cell-cell contact stress in mass-spring simulations, and find that for high compression
/ packing fraction, the stress approaches the internal cell turgor pressure. (a) Mass-spring simulations scheme.
Identical cells are randomly distributed in a rigid box. The initial concentration is low so the cells do not touch
one another. The simulation box is progressively compressed, hence increasing the packing fraction. (b) 50
identical cells (R0 = 2.5µm, Π = 1.0 MPa, E = 150 MPa, t = 0.1µm) are compressed. For each pair of cells, the
contact stress is calculated and the average contact stress is plotted (red line) versus the fraction of box volume
occupied by cells. For high compression (>0.7) the value of the average contact stress saturates at the value
equal to turgor pressure, 1 MPa. The envelope corresponds to ± standard deviation and is obtained out of 5
replicates simulations with different random initial cell positions and orientations. Inset. The contact stress is
calculated as a ratio of the total normal force between two cells Fn and total contact area Ac. The contact area
Ac on one cell is a sum of areas of all triangles being in contact with the other cell. A triangle is in contact
with another cell if all its vertices are in contact with the neighbor cell (non-zero repulsive forces). The total
normal force exerted on one cell is a sum of all normal forces exerted on each vertex by the neighbor cell. To
calculate the normal force F (red arrow) acting on a vertex (black-red circle), first the sum of all non-bonded
repulsive forces, Frep (red dashed lines), is calculated. Next the normal component of this force is extracted as
a dot product with all the triangles (described by the normal vectors ni) being in contact with the neighboring
cell (shaded triangles), ni ·Frep . In order to avoid double counting of the normal component of the force Frep,
each dot product with ni (here i=1,2) is multiplied by the area of the triangle on which the force Frep is acting,
and divided by the total contact area (it is the sum of areas of shaded triangles A = A1 +A2).
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Figure S8: Self-driven jamming can propagate cracks in agar gels. We inoculate an agar gel (2%) by
plunging in it a 0.45 mm diameter needle, which was first dipped in an overnight culture of budding yeast
(strain S288C). The agar dish is then incubated at 30 degree Celsius under humidity control (to avoid drying).
As the cartoon illustrates, cells flow out of the crack, and grow on the surface of the agar gel. The cells on
top of the dish give rise to the large cloud on the lower image observed at 26.5 h, showing that the cells are
not fully trapped in the crack. Nevertheless, the crack tips are propagating as a function of time, presumably
due to jamming. As a control, we show images of cracks that were created by stabbing without cells and then
incubated for the same amount of time. A time-lapse movie of the crack propagation is available Movie S5.
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a  Growth b  Division c  Interactions

cell i

cell j

Figure S9: How cells grow in our coarse-grain simulation. Schematic of a the growth and b division pro-
cesses and c inter-cell interactions in our coarse-grained simulations. Each cell is composed to two lobes, the
mother and bud. a During growth, the mother lobe diameter of cell i stays fixed at σi,mother = σ while the bud
grows from σi,bud = 0 to σi,mother = σ . b Once the bud reaches σi,mother = σ , cell i divides into two new daughter
cells that retain the orientation of their mother cell. c Cells i and j interact via only upon overlap via repulsive
linear spring interactions with modulus k.
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Figure S10: How we parameterize our coarse-grain simulation. We use the experimental pressure curves
to parameterize our coarse-grain simulations: the pressure rise enables to parameterize the growth, and the
pressure drop the damping rate. (a) Pressure as function of time during a single pressure drop for experiments.
(b) Pressure as function of time during a single pressure drop for simulations without feedback. (c) Pressure
as function of time during a single pressure drop for simulations with feedback (P0/k = 0.07). The red line in
a corresponds to experiments with an outlet gate with an angle of 135◦. The red lines in b and c corresponds
to simulations with best-fit values of µ (b: µ = 8×104γ

√
mkCG and c: µ = 2×103γ

√
mkCG) used in Fig. 2b

and Fig. 2c of the main text, the cyan line corresponds to larger values of µ (b: µ = 3.2×105γ
√

mkCG and c:
µ = 8× 104γ

√
mkCG) and the green line corresponds to smaller values of µ (b: µ = 2× 104γ

√
mkCG and c:

µ = 5× 102γ
√

mkCG). For a, the dashed line shows the mean slope during pressure increase
(
Ṗexp
↑
)

and the
dotted line shows mean slope during avalanche

(
Ṗexp
↓
)
. For b and c, the dashed line is the mean slope during

increase
(
Ṗsim
↑
)

and the dotted line shows the extracted value of Ṗsim
↓ that yields the same ratio of Ṗ↓

/
Ṗ↑ as

experiments.
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Figure S11: Effect of feedback on force networks in coarse-grained simulations. (a) In simulations where
individual cell growth rates (ki) decrease exponentially with pressure (Pi), ki ∝ e−Pi/P0 , we observe that the
time-averaged steady-state population pressure 〈P〉 increases as the feedback becomes stronger (P0 decreases).
〈P〉 increases with decreasing P0 because cell growth slows for 〈P〉> P0, causing the population to spend more
time at larger pressures. (b) Furthermore, feedback homogenizes force networks as illustrated by representative
configurations without feedback and a heterogeneous force network (P0 = ∞) and with strong feedback and
a homogeneous force network (P0 = 0.005). The reason for this homogenization is that low-pressure cells
grow more quickly than high-pressure cells and fill in gaps in the force network. (c). We see that force-network
homogenization is a strong effect - the coefficient of variation of individual cell pressures cP =

√
〈P2〉/〈P〉2−1

decreases by 40% with decreasing P0
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Figure S12: Orientational alignment in coarse-grained simulations of elongated cells. Simulations of pro-
liferating ellipsoidal cells show that cells orientationally align in the direction of the outlet. (a) This alignment is
stronger for wider outlet channels, illustrated for outlets channel widths of a = 1 which has very little alignment
and a = 5σ which has significant alignment. (b) We can quantify the degree of alignment via a nematic order
parameter S = 〈cos(2θ)〉, which measures the mean alignment of cells with the horizontal axis. S shows that
orientations are disordered for a < 4 and become increasingly aligned with the horizontal axis as a increases.
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Figure S13: Effect of outlet channel width on mean avalanche size. We analyzed the movie (Movie S2),
which was also referenced in the main text for a direct comparison of growth under different contact pressures.
(a) Snapshot of the time-lapse movie, showing the two filled growth chambers connected in the same way to
a single nutrient channel. The outlets of both chambers are connected to an outlet gate with an angle of 135o,
but the outlets have a different channel width, of 5µm and 7.5µm. We observe in this movie that the cells
coming out of the outlet with a channel width of 7.5µm develop less pressure than the cells in the 5µm outlet
channel width, and exhibit more avalanche events. (b) We measure for each avalanche, defined as the duration
from when cells start to move until the next moment of stasis, the displacement l of the cell population in the
channel. We then calculate the mean cell volume displacement, ∆V = l×A, where A is the cross-section of the
outlet channel. An estimate of the average number of cells per avalanche is then obtained by dividing ∆V by a
typical cell volume of < v > = 65.5 fL. This volume corresponds to a mean cell diameter of 5µm. We note that
the average size of an avalanche increases with increased outlet channel width (mean ± standard deviation for
N ≥ 10 avalanches).
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