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Background on metamodeling and Bayesian optimization

Metamodeling – Computer experiments
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Background on metamodeling and Bayesian optimization

Gaussian processes

Gaussian processes are stochastic processes (or random fields) s.t. every finite
dimensional distribution is Gaussian. → Parameterized by two functions

Z ∼ GP(m(x)︸ ︷︷ ︸
trend

, k(x, x′)︸ ︷︷ ︸
kernel

)

The trend can be any function.
The kernel is positive semidefinite :

∀n, α1, . . . , αn, x(1), . . . , x(n),

n∑
i=1

αiαjk(x(i), x(j)) ≥ 0.

It contains the spatial dependence.
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Background on metamodeling and Bayesian optimization

Gaussian processes and approximation / interpolation

GPs conditional distributions are Gaussian (analytical expressions)
The conditional mean is linear in the conditioner
The conditional variance does not depend on it !
→ very useful for adding new points in sequential strategies

In the background, Z is conditioned on Z (x(1)) = z1, . . . ,Z (x(n)) = zn.
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Background on metamodeling and Bayesian optimization

Playing with kernels

A lot of flexibility can be obtained with kernels !

Building a kernel from other ones (basic examples)

Sum, tensor sum k1 + k2, k1 ⊕ k2
Product, tensor product k1 × k2, k1 ⊗ k2
ANOVA (1 + k1)⊗ (1 + k2)
Warping k(x, x′) = k1(f (x), f (x′))
... ...

See examples in [Rasmussen and Williams, 2006]... and in this talk !
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Background on metamodeling and Bayesian optimization

GP-based optimization

How to find the global minimum of a function... when each evaluation is costly ?
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Background on metamodeling and Bayesian optimization

GP-based optimization
A solution : GP-based (or "Bayesian") optimization [Močkus, 1975, Jones et al., 1998]

First ingredient : a GP model Y
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Background on metamodeling and Bayesian optimization

GP-based optimization

Second ingredient : an easy-to-compute criterion accounting for uncertainty
at unknown regions, e.g. here “expected improvement”

EI(x) = E([f0 − Y (x)]+|Y (x1), . . . ,Y (xn)) f0 : current minimum
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Background on metamodeling and Bayesian optimization

GP-based optimization

The algorithm (here “EGO”) : (1) Find the next point by maximizing the criterion
→ (2) Evaluate the function → (3) Update the GP model ↑
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Background on metamodeling and Bayesian optimization

GP-based optimization

Iteration 2 :
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Background on metamodeling and Bayesian optimization

GP-based optimization

Iteration 3 :
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Background on metamodeling and Bayesian optimization

GP-based optimization

Theory shows that EGO algorithm provides a dense sequence of points,
up to a slight condition on the kernel used for GPs [Vazquez and Bect, 2010] .
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Gaussian process regression with mixed inputs

Outline
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Gaussian process regression with mixed inputs Building a kernel by combining 1-dimensional ones

GP interpretation when no distance is available
A GP for (x , u) ∈ [0, 1]× {”red”, ”yellow”, ”blue”} can be defined with :

a kernel on [0, 1], i.e. a covariance function
a kernel on {”red”, ”yellow”, ”blue”} , i.e. a covariance matrix
a valid operation between them, such as *, +, ...

Example : Cov(Y (x , ”blue”),Y (x ′, ”red”)) = k(x , x ′)× 0.8
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Gaussian process regression with mixed inputs Building a kernel by combining 1-dimensional ones

One way to construct kernels for mixed inputs

What is a kernel for one categorical variable u on {1, . . . ,m} ?
A positive semidefinite matrix T of size m

Combining 1D kernels for w = (x,u)
Examples of valid operations :

(Product) k(w,w′) = kcont(x, x′)kcat(u,u′)
(Sum) k(w,w′) = kcont(x, x′) + kcat(u,u′)

(ANOVA) k(w,w′) = (1 + kcont(x, x′))(1 + kcat(u,u′))

Notice ∗ one of them. Examples of valid kernels for w :

k(w,w′) = k1
cont(x1, x ′

1) ∗ · · · ∗ k I
cont(xI , x ′

I ) ∗ [T1]u1,u′
1
∗ · · · ∗ [TJ ]uJ ,u′

J

Not the most general way, but recovers the usual models of the literature.
→ Alternatives : Use a d-dim. continuous kernel, use ∗i , ∗j , and so on...
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Gaussian process regression with mixed inputs Building a kernel by combining 1-dimensional ones

Kernels for ordinal variables

Warping ([Qian et al., 2007])
When the levels of u are ordered : 1 ≤ 2 ≤ · · · ≤ m, define :

T`,`′ = kcont(F (`),F (`′)), `, `′ = 1, . . . ,m.

where kcont is a 1-dim. continuous kernel, and F : {1, . . . ,m} → R is ↑.
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Figure – An example of warping as a spline of degree 2, coming soon on kergp.
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Gaussian process regression with mixed inputs Building a kernel by combining 1-dimensional ones

Kernels for nominal variables

General
I Spectral param. T = PDP>

I Spherical param. T = LL> (correlation case)

Compound symmetry ([Pinheiro and Bates, 2009])

T`,`′ =
{

v if ` = `′

c if ` 6= `′

Group kernels, such as ([Qian et al., 2007, Roustant et al., 2018]) :

T`,`′ =
{

vg if ` = `′

cg(`),g(`′) if ` 6= `′

Low “rank” approaches ([Rapisarda et al., 2007], [Zhang et al., 2018])

Low-rank T = FF>, with F : L× q
Latent-variable : T`,`′ = kcont(F (`),F (`′)), with F : {1, . . . ,m} → Rq
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Gaussian process regression with mixed inputs Building a kernel by combining 1-dimensional ones

Latent variables and low-rank approaches

Interpretation of latent variable kernels ([Zhang et al., 2018])
The underlying Gaussian process for a latent variable kernel is

Z (u) = Y (F1(u), . . . ,Fq(u))

where each Fi is a mapping from {1, . . . ,m} → R, called “latent variable”.
Example : u : type of lubricant, F1 : viscosity, F2 : boiling point, ...
Only F ′

i s values at 1, . . . ,m are used :
the kernel is parameterized by the Fi(`), ` = 1, . . . ,m, i = 1, . . . , q.
[up to simplifications, e.g. F1(1) = 0]

Links with low-rank kernels
If kcont(f, f ′) = 〈f, f ′〉 is the dot product on Rq, then the latent variable kernel is a
low-rank kernel T = FF>, with F`,i = Fi(`), for ` = 1, . . . ,m, i = 1, . . . , q.
→ Latent variables kernels are extending low-rank kernels for general kcont
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Bayesian optimization for mixed inputs, application to inversion

Outline
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3 Bayesian optimization for mixed inputs, application to inversion
→ see Jhouben’ slides
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Bayesian optimization for mixed inputs, application to inversion → see Jhouben’ slides
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Bayesian optimization for mixed inputs, application to inversion Computer Experiments Conclusions and Perspectives Références

Let u → F (u) = (F1(u), . . . ,Fq(u)), be the latent variable mapping
1: Generate the initial design (DoE) for (x , u)
2: Estimate F parameters by MLE from the DoE
3: while budget is not comsumed do
4: Perform EGO in the image space (x ,F (u)) → (x?, f ?).
5: Recover the pre-image component u? as :

u? = argmin
u

|EI(x?, f ?)− EI(x?,F (u))|

6: Update the DoE : (x?, f ?) (best point) and (x?,F (u?)) (best
feasible) with output value y(x?, u?).

7: end while
8: Return the best (x?, u?) over all the budget iterations.

LV-EGO algorithm

Jhouben Ramirez July, 2019 3 / 14



Bayesian optimization for mixed inputs, application to inversion Computer Experiments Conclusions and Perspectives Références

Bayesian Optimization
EGO as implemented in DiceOptim package

Random forest (RF) surrogate, as implemented in mlrMBO package
and RandomForest package

Non Bayesian
Evolutionary Strategies (ES) as implemented in CEGO package

See ([Cauwet et al., 2019]) for more on mixed inputs algorithms ! !

Other suitable algorithms

Jhouben Ramirez July, 2019 4 / 14

 https://cran.r-project.org/web/packages/DiceOptim/DiceOptim.pdf
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https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/CEGO/CEGO.pdf
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y(L,S, Ĩ) = L3

3S2 Ĩ
+ αLS,

where :
Ĩ correspond to a latent variable F (u),
u is the categorical variable representing the beam feasible profiles
(with 12 levels).

In the following, we consider that the latent variable F is known or
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Figure – Representation of the values of the categorical variable u.

As an inverse problem :
For a fixed y0, design (L∗,S∗, u∗) is obtained from :

(L∗,S∗, u∗) .= argmin
L,S,u

|y0 − y(L,S, u)|

Beam bending test-case
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GP RF
EGO on the mixed space (x , u) X
LV-EGO : EGO on the continuous space (x ,F (u)), with F estimated X
TLV-EGO : EGO on the continuous space (x ,F (u)), with F known X X

Bayesian Optimization Performance Comparison (TLV stands for True Latent Variable)

Benchmark Design
Latin hypercube design (LHD) with 3 points value of the categorical
variable, n = 36.
Budget = 50.
Performance comparison for 100 designs.

Design of Experiment
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Figure – RF-EGO (up) and
RF-TLV-EGO (bottom)

Figure – LV-EGO (up) and
GP-TLV-EGO (bottom)

Analyzing Experiments - DoE #1
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Figure – RF-EGO (up) and
RF-TLV-EGO (bottom)

Figure – LV-EGO (up) and
GP-TLV-EGO (bottom)

Analyzing Experiments - DoE #3
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Despite of being an infinite solutions inverse problem, all methods
are capable to improve, most of the time the points in the original
DoE.

Finding the optimum in both pre image space (x , u) (random forest
methods) and image space (x ,F (u)) (EGO based methods) are
suitable for finding a solution ( mapping simplifies computing and
arises to slightly better results).

Learning a proper mapping, and trying to analyze its properties
could lead to improve LV-EGO performance

Perform experiments including correlations in the pre-image space
are still required ([Roustant et al., 2018]).

Conclusions and perspectives
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Thanks for your attention
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In 30th European Conference on operational research, Dublin, Ireland.

Roustant, O., Padonou, E., Deville, Y., Clément, A., Perrin, G., Giorla, J., and Wynn,
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