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0.1 Content

This chapter introduces regression approaches and regression adjustment for
Approximate Bayesian Computation (ABC). Regression adjustment adjusts
parameter values after rejection sampling in order to account for the imper-
fect match between simulations and observations. Imperfect match between
simulations and observations can be more pronounced when there are many
summary statistics, a phenomenon coined as the curse of dimensionality [5].
Because of this imperfect match, credibility intervals obtained with regression
approaches can be inflated compared to true credibility intervals [10]. The
chapter presents the main concepts underlying regression adjustment. A the-
orem that compares theoretical properties of posterior distributions obtained
with and without regression adjustment is presented. Last, a practical appli-
cation of regression adjustment in population genetics shows that regression
adjustment shrinks posterior distributions compared to rejection approaches,
which is a solution to avoid inflated credibility intervals.

0.2 Introduction

In this chapter, we present regression approaches for Approximate Bayesian
Computation (ABC). As for most methodological developments related to
ABC, regression approaches originate with coalescent modeling in popula-
tion genetics [3]. After performing rejection sampling by accepting parameters
that generate summary statistics close enough to those observed, parameters
are adjusted to account for the discrepancy between simulated and observed
summary statistics. Because adjustment is based on a regression model, such
approaches are coined as regression adjustment in the following.

Regression adjustment is a peculiar approach in the landscape of Bayesian
approaches where sampling techniques are usually proposed to account for
mismatches between simulations and observations [18, 30]. We suggest vari-
ous reasons explaining why regression adjustment is now a common step in
practical applications of ABC. First, it is convenient and generic because the
simulation mechanism is used to generate simulated summary statistics as a
first step and it is not used afterwards. For instance, the software ms is used
to generate DNA sequences or genotypes when performing ABC inference in
population genetics [15]. Statistical routines, which account for mismatches,
are completely separated from the simulation mechanism and are used in a
second step. Regression adjustment can therefore be readily applied in a wide
range of contexts without implementation efforts. By contrast, when consider-
ing sampling techniques, statistical operations and simulations are embedded
within a single algorithm [30, 2], which may require new algorithmic devel-
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opment for each specific statistical problem. Second, regression approaches
have been shown to produce reduced statistical errors compared to rejection
algorithms in a quite diverse range of statistical problems [3, 6, 27]. Last,
regression approaches are implemented in different ABC software including
DIYABC [9] and the R abc package [11].

In this chapter, I introduce regression adjustment using a comprehensive
framework that includes linear adjustment [3] as well as more flexible ad-
justments such as non-linear models [6]. The first section presents the main
concepts underlying regression adjustment. The second section presents a the-
orem that compares theoretical properties of posterior distributions obtained
with and without regression adjustment. The third section presents a practical
application of regression adjustment in ABC. It shows that regression adjust-
ment shrinks posterior distributions when compared to a standard rejection
approach. The fourth section presents recent regression approaches for ABC
that are not based on regression adjustment.

|
0.3 Principle of regression adjustment

0.3.1 Partial posterior distribution

Bayesian inference is based on the posterior distribution defined as

71-(e‘yobs) X p(yobs‘e)ﬂ'(e) (1)

where § € RP is the vector of parameters, and yops are the data. Up to a
renormalizing constant, the posterior distribution depends on the prior 7(6)
and on the likelihood function p(y.ps|@). In the context of ABC, inference is
no longer based on the posterior distribution 7(6|yens) but on the partial pos-
terior distribution 7 (8|sons) where sops is a g-dimensional vector of descriptive
statistics. The partial posterior distribution is defined as follows

7(0]Sobs) X P(Sobs|8)(6). (2)

Obviously, the partial posterior is equal to the posterior if the descriptive
statistics sops are sufficient for the parameter 6.

0.3.2 Rejection algorithm followed by adjustment

To simulate a sample from the partial posterior p(f|seps), the rejection algo-
rithm followed by adjustment works as follows




1. Simulate n values 09, i = 1,...,n, according to the
prior distribution 7.

2. Simulate descriptive statistics s() using the genera-
tive model p(s("]9(").

3. Associate with each pair (), s()) a weight w(®) o
K1 (][5 — sops||) where || - — - || is a distance function,
h > 0 is the bandwidth parameter, and K is an uni-
variate statistical kernel with K, (|| - ||) = K(|| - ||/h)-

4. Fit a regression model where the response is 6 and
the predictive variables are the summary statistics s
(equations (3) or (5)). Use a regression model to ad-
just the ) in order to produce a weighted sample
of adjusted values. Homoscedastic adjustment (equa-
tion (4)) or heteroscedastic adjustment (equation (6))
can be used to produce a weighted sample (9?), w®),
i =1,...,n, which approximates the posterior distri-
bution.

To run the rejection algorithm followed by adjustment, there are several
choices to make. The first choice concerns the kernel K. Usual choices for K
encompass uniform kernels that give a weight of 1 to all accepted simulations
and zero otherwise [23] or the Epanechnikov kernel for a smoother version of
the rejection algorithm [3]. However, as for traditional density estimation, the
choice of statistical kernel has a weak impact on estimated distribution [29].
The second choice concerns the threshold parameter h. For kernels with a finite
support, the threshold h corresponds to (half) the window size within which
simulations are accepted. For the theorem presented in section 0.5, I assume
that h is chosen without taking into account the simulations s™),... (™.
This technical assumption does not hold in practice where we generally choose
to accept a given percentage p, typically 1% or 0.1%, of the simulations.
This practice amounts at setting h to the first p-quantile of the distances
|5 — sops||. A theorem where the threshold depends on simulations has been
provided [4]. Choice of threshold h corresponds to bias-variance tradeoff. When
choosing small values of h, the number of accepted simulations is small and
estimators might have a large variance. By contrast, when choosing large
values of h, the number of accepted simulations is large and estimators might
be biased [5].

0.3.3 Regression adjustment

The principle of regression adjustment is to adjust simulated parameters 6("
with nonzero weights w(® > 0 in order to account for the difference between
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the simulated statistics sV and the observed one sops. To adjust parameter
values, a regression model is fitted in the neighborhood of sgps

9 — m(s(i)) +e, di=1,---,n (3)

where m(s) is the conditional expectation of 6 given s and e is the residual.
The regression model of equation (3) assumes homoscedasticity, i.e. it assumes
that the variance of the residuals does not depend on s. To produce samples
from the partial posterior distribution, the #(1’s are adjusted as follows

% 1M(Sobs) + £V (4)
= 1(Sops) + (0 — 1 (sV)),

where m represents an estimator of the conditional expectation of # given s,
and £ is the i*" empirical residual. In its original formulation, regression
adjustment assumes that m is a linear function [3] and it was later extended
to non-linear adjustments [6].

The homoscedastic assumption of equation (3) may not be always valid.
When the number of simulations is not very large because of computational
constraints, local approximations, such as the homoscedastic assumption, are
no longer valid because the neighborhood corresponding to simulations for
which w® # 0 is too large. Regression adjustment can account for het-
eroscedasticity that occurs when the variance of the residuals depend on the
summary statistics. When accounting for heteroscedasticity, the regression
equation can be written as follows [6]

where o(s) is the square root of the conditional variance of 6 given s, and ¢

is the residual. Heteroscedastic adjustment involves an additional scaling step
in addition to homoscedastic adjustment (4) (Figure 1)

93) = m(sobs) + &(Sobs)c(i)

A o(s i NG

= ia(sone) + T (9 _ (s, (6)
a(s)

where m and ¢ are estimators of the conditional mean and of the conditional

standard deviation.

0.3.4 Fitting regression models

Equations (4) and (6) of regression adjustment depend on the estimator of the
conditional mean M and possibly of the conditional variance 6. Model fitting
is performed using weighted least squares. The conditional mean is learned by
minimizing the following weighted least square criterion
n
E(m) = Z(H(i) —m(s))2w®. (7)

=1
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For linear adjustment, we assume that m(s) = a + 8s [3]. The parameters «
and ( are inferred by minimizing the weighted least square criterion given in
equation (7).

For heteroscedastic adjustment (equation (4)), the conditional variance
should also be inferred. The conditional variance is learned after minimization
of a least square criterion. It is obtained by fitting a regression model where the
answer is the logarithm of the squared residuals. The weighted least squares
criterion is given as follows

n

E(logo?) = Z (log((é(i))Q) —log 0'2(8))2 w®,

i=1

Neural networks has been proposed to estimate m and o2 [6]. This choice
was motivated by the possibility offered by neural networks to reduce the
dimension of descriptive statistics via an internal projection on a space of
lower dimension [25].

In general, the assumptions of homoscedasticity and linearity (equation
(3)) are violated when the percentage of accepted simulation is large. By con-
trast, heteroscedastic and non-linear regression models (equation (5)) are more
flexible. Because of this additional flexibility, the estimated posterior distribu-
tions obtained after heteroscedastic and non-linear adjustment is less sensitive
to the percentage of accepted simulations [6]. In a coalescent model where the
objective was to estimate the mutation rate, heteroscedastic adjustment with
neural networks was found to be less sensitive to the percentage of accepted
simulations than linear and homoscedastic adjustment [6]. In a model of phy-
lodynamics, it was found again that statistical error obtained with neural
networks decreases at first—because the regression method requires a large
enough training dataset—and then reaches a plateau [27]. However for larger
phylodynamics dataset, statistical error obtained with neural networks in-
creases for higher tolerance values. Poor regularization or the limited size of
neural networks were advanced as putative explanations [27].

In principle, estimation of the conditional mean m and of the conditional
variance o2 can be performed with different regression approaches. For in-
stance, the R abc package implements different regression models for regression
adjustment including linear regression, ridge regression and neural networks
[11]. Lasso regression is another regression approach that can be considered.
Regression adjustment based on lasso was shown to provide smaller errors
than neural network in a phylodynamic model [27]. An advantage of lasso,
ridge regression and neural networks compared to standard multiple regres-
sion is that they account for the large dimension of the summary statistics
using different regularization techniques. Instead of considering regularized
regression, dimension reduction is an alternative where the initial summary
statistics are replaced by a reduced set of summary statistics or a combination
of the initial summary statistics [12, 7]. The key and practical advantage of
regression approaches with regularization is that they implicitly account for
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the large number of summary statistics and the additional step of variable
selection can be avoided.

0.3.5 Parameter transformations

When the parameters are bounded or positive, parameters can be transformed
before regression adjustment. Transformations guarantee that the adjusted pa-
rameter values lie in the range of the prior distribution [3]. An additional ad-
vantage of the log and logit transformations is that they stabilize the variance
of the regression model and make regression model (3) more homoscedastic
[5].

Positive parameters are regressed on a logarithm scale ¢ = log(#),
¢ =m(s) +e.
Parameters are then adjusted on the logarithm scale
¢£i) = 1(Sobs) + (¢(i) - m(s(i)))~
The final adjusted values are obtained by exponentiation of the adjusted pa-
rameter values _ 4
0% = exp(¢l”).

Instead of using a logarithm transformation, bounded parameters are ad-
justed using a logit transformation. Heteroscedastic adjustment can also be
performed after log or logit transformations.

0.3.6 Shrinkage

An important property of regression adjustment concerns posterior shrinkage.
When considering linear regression, the empirical variance of the residuals is
smaller than the total variance. In addition, residuals are centered for linear
regression. These two properties imply that for linear adjustment, the empir-
ical variance of ng) is smaller than the empirical variance of the non-adjusted
values 09 obtained with the rejection algorithm. Following homoscedastic
and linear adjustment, the posterior variance is consequently reduced. For
non-linear adjustment, shrinkage property has also been reported and the ad-
ditional step generated by heteroscedastic adjustment does not necessarily
involve additional shrinkage when comparing 08 to 93) [5].

0.4 Theoretical results about regression adjustment

The following theoretical section is technical and can be skipped by readers
not interested by mathematical results about ABC estimators based on re-
gression adjustment. In this section, we give the main theorem that describes
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Posterior distributions obtained with and without regression adjustment. The
shrinking effect of adjustment is visible since the posterior variance of the
green and blue histograms is reduced compared to the posterior variance of
the orange histogram.
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the statistical properties of posterior distributions obtained with or without
regression adjustment. To this end, the estimators of the posterior distribution
are defined as follows

9|sobs ZKh’ 0( ) w(z .7 = 07 ]-7 27 (8)

where 9(()1) =0 (no adjustment), 9§-l) =0 for j = 1,2 (homoscedastic ad-
justment), K is an univariate kernel, and Kj,/(-) = K (-)/h’. Linear adjustment
corresponds to j = 1 and quadratic adjustment corresponds to j = 2. In non-
parametric statistics, estimators of the conditional density with adjustment
have already been proposed [16, 13].

To present the main theorem, we introduce the following notations: if X,
is a sequence of random variables and a, is a deterministic sequence, the
notation X,, = op(a,) means that X, /a, converges to zero in probability
and X,, = Op(a,) means that the ratio X, /a, is bounded in probability
when n goes to infinity. The technical assumptions of the theorem are given
in the appendix of [5].

Theorem 1 We assume that conditions (A1)-(A5) given in the appendiz of
[5] hold. The bias and variance of the estimators ;(6|sobs), 7 = 0,1,2 are
given by

Bty Olsos) — w(6ls0ns)] = Cul'® + Co s + Op (4 + 1)) +Op( 1), (9)

o1+ op(1), (10)

where q is the dimension of the vector of summary statistics and the constants
Cy, Cy; et Cy are given in [5].

Var[7;(6]sobs)] =

Proof: See [5].

There are other theorems that provide asymptotic biases and variances of
ABC estimators but they do not study the properties of estimators arising
after regression adjustment. Considering posterior expectation (e.g. posterior
moments) instead of the posterior density, [1] provides asymptotic bias and
variance of an estimator obtained with rejection algorithm. [4] studied asymp-
totic properties when the window size h depends on the data instead of being
fixed in advance. Another version of ABC called lazy ABC exists and provides
a bias proportional to h instead of h? while keeping the same variance of the
order of 1/(nh?), which is inversely proportional to the acceptance probability
in the rejection algorithm [12].

Remark 1. Curse of dimensionality The mean square error of the es-
timators is the sum of the squared bias and of the variance. With elementary
algebra, we can show that for the three estimators 7;(6|sopbs), j = 0, 1,2, the
mean square error is of the order of n='/(4%5) for an optimal choice of h. The
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speed with which the error approaches 0 therefore decreases drastically when
the dimension of the descriptive statistics increases. This theorem highlights
(in an admittedly complicated manner) the importance of reducing the dimen-
sion of the statistics. However, the findings from these asymptotic theorems,
which are classic in non-parametric statistics, are often much more pessimistic
than the results observed in practice. It is especially true because asymptotic
theorems in the vein of Theorem 1 do not take into account correlations be-
tween summary statistics [28].

Remark 2. Comparing biases of estimators with and without
adjustment It is not possible to compare biases (i.e. the constant Cj j,
j =0,1,2) for any statistical model. However, if we assume that the residual
distribution of € in equation (3) does not depend on s, then the constant C5 o
is 0. When assuming homoscedasticity, the estimator that achieves asymptot-
ically the smallest mean square error is the estimator with quadratic adjust-
ment Pa(f]Sobs). Assuming additionally that the conditional expectation m is
linear in s, then both p;(0|sebs) and pa(f]sons) have a mean square error lower
than the error obtained without adjustment.

0.5 Application of regression adjustment to estimate ad-
mixture proportions using polymorphism data

To illustrate regression adjustment, I consider an example of parameter infer-
ence in population genetics. Description of coalescent modeling in population
genetics is out of the scope of this chapter and we refer interested readers
to dedicated reviews [14, 26]. This example illustrates that ABC can be used
to infer evolutionary events such as admixture between sister species. I as-
sume that two populations (A and B) diverged in the past and admixed
with admixture proportions p and 1 — p to form a new hybrid species C' that
subsequently split to form two sister species C; and Cy (Figure 2). Simu-
lations are performed using the software DIYABC [9]. The model of Figure
2 corresponds to a model of divergence and admixture between species of a
complex of species from the butterfly gender Coenonympha. We assume that
2 populations of the Darwin’s Heath (Coenonympha darwiniana) originated
through hybridization between the Pearly Heath (Coenonympha arcania) and
the Alpine Heath (Coenonympha gardetta) [8]. A total of 16 summary statis-
tics based on Single Nucleotide Polymorphisms (SNPs) are used for parameter
inference [8]. A total of 10° simulations are performed and the percentage of
accepted simulations is of 0.5%.

I consider four different forms of regression adjustment: linear and ho-
moscedastic adjustment, non-linear (neural networks) and homoscedastic ad-
justment, linear and heteroscedastic adjustment, non-linear and heteroscedas-
tic adjustment. All adjustments were performed with the R package abc
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FIGURE 2

Graphical description of the model of admixture between sister species. Two
populations (A and B) diverge in the past and admixed with admixture pro-
portions p and 1—p to form a new hybrid species C that subsequently diverge
to form two sister species (Cy and Cy).

[11, 24]. I evaluate parameter inference using a cross-validation criterion [11].
The cross-validation error decreases when considering linear adjustment (Fig-
ure 3). However, considering heteroscedastic instead of homoscedastic adjust-
ment does not provide an additional decrease of the cross-validation error
(Figure 3).

Then, using real data from a butterfly species complex, we compare the
posterior distribution of the admixture proportion p obtained without ad-
justment, with linear and homoscedastic adjustment, and with non-linear and
homoscedastic adjustment (Figure 4). For this example, considering regression
adjustment considerably changes the shape of the posterior distribution. The
posterior mean without adjustment is of p = 0.51 (95% C.I. = (0.12,0.88)). By
contrast, when considering linear and homoscedastic adjustment, the posterior
mean is of 0.93 (95% C.I. = (0.86,0.98). When considering non-linear and ho-
moscedastic adjustment, the posterior mean is 0.84 (95% C.I. = (0.69,0.93).
Regression adjustment confirms a larger contribution of C. arcania to the ge-
netic composition of the ancestral C. darwiniana population [8]. This example
shows that regression adjustment not only shrinks credibility intervals but can
also shift posterior estimates. Compared to rejection, the posterior shift ob-
served with regression adjustments provides a result that is more consistent
with published results [8].
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FIGURE 3

Errors obtained when estimating the admixture proportion p with different
ABC estimators. The errors are obtained with cross-validation and error bars
(two standard deviations) are estimated with bootstrap. adj. stands for ad-
justment.
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FIGURE 4
Posterior distribution of the admixture coefficient p obtained using real data

from a butterfly species complex to compute observed summary statistics.
This example shows that regression adjustment not only shrinks credibility
intervals but can also shift posterior estimates. The admixture coefficient p
measures the relative contribution of Coenonympha arcania to the ancestral

C. darwiniana population.
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0.6 Regression methods besides regression adjustment

There are other regression methods besides regression adjustment that have
been proposed to estimate E[f|sqps] and m(0]seps) using the simulations as
a training set. A first set of methods consider kernel methods to perform
regression [21]. The principle is to define a kernel function K to compare
observed statistics to simulated summary statistics. Because of the so-called
kernel trick, regression with kernel methods amounts at regressing 6 with ®(s)
where < ®(s), ®(s") >= K(s,s’) for two vector of summary statistics s and
s'. Then, an estimate of the posterior mean is obtained as follows

E[0sops] = Z wif D, (11)
i=1

where w; depends on the inverse the Gram matrix containing the values
K(s®,s0)) for 4,5 = 1...,n. A formula to estimate posterior density can
also be obtained in the same lines as formula (11). Simulations suggest that
kernel ABC gives better performance than regression adjustment when high-
dimensional summary statistics are used. For a given statistical error, it was
reported that fewer simulations should be performed when using kernel ABC
instead of regression adjustment [21]. Other kernel approaches have been pro-
posed for ABC where simulated and observed samples or summary statistics
are directly compared through a distance measure between empirical proba-
bility distributions [20, 22].

Another regression method in ABC that does not use regression adjust-
ment considers quantile regression forest [17]. Generally used to estimate con-
ditional mean, random forests also provide information about the full condi-
tional distribution of the response variable [19]. By inverting the estimated
conditional cumulative distribution function of the response variable, quan-
tiles can be inferred [19]. The principle of quantile regression forest is to use
random forests in order to give a weight w; to each simulation (),s(®).
These weights are then used to estimate the conditional cumulative posterior
distribution function F'(6]s.ps) and to provide posterior quantiles by inversion.
An advantage of quantile regression forest is that tolerance rate should not be
specified and standard parameters of random forest can be considered instead.
A simulation study of coalescent models shows that regression adjustment can
shrink posterior excessively by contrast to quantile regression forest [17].
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0.7 Conclusion

This chapter introduces regression adjustment for Approximate Bayesian
Computation [3, 6]. We explain why regression adjustment shrinks posterior
distribution which is a desirable feature because credibility intervals obtained
with rejection methods can be too wide [5]. When inferring admixture with
SNP data in a complex of butterfly species, the posterior distribution ob-
tained with regression adjustment was not only shrunk when compared to
standard rejection but also shifted to larger values, which confirm results ob-
tained for this species complex with other statistical approaches [8]. We have
introduced different variants of regression adjustment and it might be difficult
for ABC users to choose which adjustment is appropriate in their context. We
argue that there is no best strategy in general. In the admixture example, we
found, based on a cross-validation error criterion, that homoscedastic linear
adjustment provides considerable improvement compared to rejection. More
advanced adjustments provide almost negligible improvements if no improve-
ment at all. However, in a model of phylodynamics, non-linear adjustment was
reported to achieve considerable improvement compared to linear adjustment
[27]. In practical applications of ABC, we suggest to compute errors such as
cross-validation estimation errors to choose a particular method for regression
adjustment.

With the rapid development of complex machine learning approaches, we
envision that regression approaches for Approximate Bayesian Computation
can be further improved to provide more reliable inference for complex models
in biology and ecology.
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