
HAL Id: hal-02273511
https://hal.science/hal-02273511

Preprint submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Minimax optimal estimators for general additive
functional estimation

Olivier Collier, Laëtitia Comminges

To cite this version:
Olivier Collier, Laëtitia Comminges. Minimax optimal estimators for general additive functional
estimation. 2019. �hal-02273511�

https://hal.science/hal-02273511
https://hal.archives-ouvertes.fr


General additive functional estimation

Minimax optimal estimators for general additive functional
estimation

Olivier Collier olivier.collier@parisnanterre.fr
MODAL’X
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Abstract

In this paper, we observe a sparse mean vector through Gaussian noise and we aim at
estimating some additive functional of the mean in the minimax sense. More precisely, we
generalize the results of (Collier et al., 2017, 2019) to a very large class of functionals. The
optimal minimax rate is shown to depend on the polynomial approximation rate of the
marginal functional, and optimal estimators achieving this rate are built.
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1. Introduction

In the general problem of functional estimation, one is interested in estimating some quantity
F (θ) where θ ∈ Θ is an unknown parameter and F is a known function. Information on
this quantity is provided by an observation y ∼ Pθ, where (Pθ)θ∈Θ is some family of
probability distributions.

An exhaustive bibliography on the subject of functional estimation is out of the scope of
this paper, but typical examples include functionals of a density function, e.g. the integrals
of its square Bickel and Ritov (1988), of smooth functionals of its derivatives Birgé and
Massart (1995) or of nonlinear functionals Kerkyacharian and Picard (1996).

In this work, we focus on the case where θ ∈ Rd is a finite vector and F is an additive
functional, i.e.,

F (θ) =
d∑
i=1

F (θi), (1)
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which has now been well studied in the literature. For example, in the case when Pθ is the
multinomial distribution M(n, p1, . . . , pd), Shannon’s or Rnyi’s entropy, which correspond
respectively to marginal functionals F (t) = −t log(t) and F (t) = tα, are considered in Han
et al. (2015a,b); Wu and Yang (2016) among others. The distinct elements problem, i.e.,
finding how many different colors are present among at most d colored balls in an urn, can
also be expressed in this form Polyanskiy and Wu (2019); Wu and Yang (2018). Moreover,
the quadratic functional defined by F (t) = t2 is key in the problem of signal detection
Carpentier et al. (2018), and when the vector θ is assumed to be sparse, i.e., when most
of its coefficients are assumed to be exactly 0, it also plays a crucial role for noise variance
estimation Comminges et al. (2019). Finally, robust estimation of the mean is shown in
Collier and Dalalyan (2019) to be related with a linear functional of the outliers.

Here, our aim is not to focus on some particular functional, but to exhibit optimal
minimax rates over large classes of functionals. Furthermore, we consider the Gaussian
mean model, i.e.,

y ∼ N (θ, Id) ⇒ yi = θi + ξi, ξi
iid∼ N (0, 1) (2)

and we measure the quality of an estimator by the minimax risk defined by

sup
θ∈Θ

Eθ
(
F̂ − F (θ)

)2
, (3)

where Θ is some set of parameters. This framework was also used in Collier et al. (2017);
Cai and Low (2011); Collier et al. (2019), where respectively the cases when F (t) = t or
F (t) = t2, F (t) = |t| and F (t) = |t|γ for 0 < γ ≤ 1 are studied. It is clear from the last
two papers that for rapidly growing functionals, it is relevant to restrict the set of θ′s to
a bounded subset of Rd. Therefore, we assume that each component of θ belongs to a
segment, which we take for simplicity sake in the form [−M,M ]. Finally, we place ourselves
in a sparse context, which means that we assume the number of nonzero coefficients of θ –
its l0-norm – to be bounded by a known quantity, and we define

Θ , Θs,M =
{
θ ∈ Rd | ‖θ‖0 ≤ s, ‖θ‖∞ ≤M

}
. (4)

In this paper, we build minimax rate-optimal estimators when the functional F is not
too regular in the sense of polynomial approximation and does not grow too fast, when
s is at least of the order of

√
d and M is at most of order

√
log(s2/d), showing that the

polynomial approximation based method developed in Collier et al. (2019) can be extended
to a very broad class of functionals. More precisely, we make the following assumptions,
where we use the notation δK,M that is introduced in (9) below:

(A0) F is continuous on [−
√

log(s2/d),
√

log(s2/d)].

(A0’) F is continuous on [−
√

log(s),
√

log(s)].

(A1) There exist positive real numbers ε1, C1 such that

sup√
2 log(s2/d)≤M≤

√
2 log(d)

‖F − F (0)‖∞,[−M,M ]

eε1M2 ≤ C1. (5)
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(A2) There exist positive real numbers ε2, C2 such that

sup√
2 log(s2/d)≤M≤

√
2 log(d)

δ−1
M2,M

eε2M2 ≤ C2. (6)

(A3) ∀α > 0, ∃fα > 0 such that if |1−K1/K2| ∨ |1−M1/M2| ≤ α, then

f−1α ≤
δK1,M1

δK2,M2

≤ fα.

We make the first assumption on the continuity of F for simplicity sake. Indeed, it would
not be hard to extend the result to the case of a functional that is piecewise continuous
with a finite number of discontinuities, even if discontinuous functionals might not be very
important in practice. The second assumption is very mild, since estimation of rapidly
growing functionals leads to very large minimax rates, making such problems uninteresting
in practice. However the third assumption is essential: it expresses how the polynomial
approximation rate drives the quality of estimation of the associated additive functional.
Assumption (A2) thus requires that F is not smooth enough to be very quickly approximated
by polynomials. In Section 3, we recall the relation between polynomial approximation and
differentiability. Finally, the last assumption is convenient to show that our lower and upper
bounds match up to a constant. We believe that it is satisfied for all reasonable functionals.

Our theorems allow to recover some of the results implied by Cai and Low (2011);
Collier et al. (2019), but cover a large part of all possible functionals. Note that some
papers have already tackled the problem of general functionals. In Fukuchi and Sakuma
(2019), the authors give optimal rates of convergence for additive functionals in the discrete
distribution case, when the fourth-derivative of the marginal functional is close in sup-norm
to an inverse power function. In Koltchinskii and Zhilova (2018), the case of general, not
necessarily additive, functionals is considered in the Gaussian mean model with arbitrary
covariance matrix. However, their results differ significantly from ours since they consider
minimax risk over all marginal functionals belonging to some relatively small set of bounded
and smooth functions in the Hlder sense. For example, none of the results obtained in Collier
et al. (2017, 2019); Cai and Low (2011) can be recovered. Finally, the minimax rate for even
larger classes of functionals, under constraints in the form

∑d
i=1 c(θi) ≤ 1 which includes

sparsity, is obtained in Polyanskiy and Wu (2019) in term of the quantity

sup
π1,π2

{∣∣∣ ∫ F (θ)π1(dθ)−
∫
F (θ)π2(dθ)

∣∣∣ |χ2(Pπ1 ,Pπ2) ≤ 1

d
,Eπi

d∑
i=1

c(θi) ≤ 1
}

(7)

where Pπ =
∫

Pθ π(dθ), χ2(Pπ1 ,Pπ2) is the chi-square divergence between probabilities
Pπ1 and Pπ2 and the supremum is taken over all probability distributions on Θ. Their
theorems allow for example to recover the minimax rate from Cai and Low (2011) when Θ
is bounded, and may also allow to get the minimax rates from this paper. However, they
do not exhibit generic estimators achieving the minimax risk. This paper fills in this gap
in some cases.
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Organization of the paper

In Section 2, we build rate-optimal estimators of the additive functional and assess their
performance. In Section 3, we prove their optimality up to constants, and discuss conditions
under which Assumption (A2) is satisfied. The proofs of the theorems are postponed to
Section 4, while technical lemmas can be found in Section 5.

2. Upper bounds

2.1 Polynomial approximation

Here, we set the notation on polynomial approximation that will be used throughout this
paper. First denote PK the set of polynomials of degree at most K, then define the poly-
nomial of best approximation of F on [a, b] by

PK,[a,b] = arg min
P∈PK

‖F − P‖∞,[a,b] (8)

and the polynomial approximation rate by

δK,[a,b] = ‖F − PK,[a,b]‖∞,[a,b]. (9)

In the following, we write PK,M = PK,[−M,M ], δK,M = δK,[−M,M ], and we decompose PK,M
in the canonical base as

PK,M =
K∑
k=0

ak,K,MX
k. (10)

2.2 Definition of the estimator and main theorem

First, we use the sample duplication trick to transform observation yi into independent
randomized observations y1,i, y2,i while keeping the same mean. Let us consider random

variables z1, . . . , zd
iid∼ N (0, 1) independent of y and define

y1,i = yi + zi, y2,i = yi − zi, (11)

so that y1,i, y2,i
iid∼ N (θi, 2). Yet for convenience, we will assume that y1,i, y2,i

iid∼ N (θi, 1).
Then, we recall the definition of the Hermite polynomials Hk defined by

Hk(x) = (−1)kex
2/2 ∂

k

∂xk
(
e−x

2/2
)
, (12)

which have in particular the property that EX∼N (θ,1)Hk(X) = θk.
Finally, we define our estimator of F (θ) as

F̂ =
d∑
i=1

F̂ (y1,i, y2,i) (13)

where

F̂ (u, v) =
L∑
l=0

P̂Kl,Ml
(u)1tl−1<|v|≤tl + P̂KL+1,ML+1

(u)1tL<|v|, (14)
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and for an arbitrary constant c > 0,

P̂K,M (u) =
∑K

k=1 ak,K,MHk(u),

Ml = 2l
√

2 log(s2/d), Kl = c
8M

2
l ,

tl = Ml/2, t−1 = 0,

L is the largest integer such that 2L <
√

log(d)/ log(s2/d),

ML+1 =
√

2 log(d).

(15)

The next theorem is a slight modification of Theorem 1 in Collier et al. (2019). It states
the performance of our estimator in the case when the signal θ is not too sparse.

Theorem 1 Assume that 2
√
d ≤ s ≤ d and that F satisfies Assumptions (A1-A2) with

ε1 + ε2 small enough. Then the estimator defined in (13) with small enough c, depending
on ε1 and ε2, satisfies

sup
θ∈Θ

s,
√

2 log(d)

Eθ
(
F̂ − F (θ)

)2 ≤ C3 s
2 max
l=0,...,L+1

δ2Kl,Ml
, (16)

where C3 is some positive constant, depending only on C1 and C2.

Furthermore, in the case when no sparsity is assumed (s = d), we can derive a simpler
statement for every segment [−M,M ] included in [−

√
log(d),

√
log(d)]. To this end, we

define the simplified estimator

F̃ =
d∑
i=0

P̂K,M (yi), P̂K,M (u) =
K∑
k=0

ak,K,MHk(u), (17)

with K = c log(d)/ log(e log(d)/M2) for an arbitrary constant c > 0.

Theorem 2 Assume that 0 < M ≤
√

log(d), that for some constants C ′1, C
′
2 > 0

‖F − F (0)‖∞,[−M,M ] ≤ C ′1dε1 , δ−1K,M ≤ C
′
2d
ε2 , (18)

and let F̃ be the estimator defined by (17). Then if 2ε1 + 2ε2 < 1 and if c is chosen small
enough, depending only on ε1 + ε2, then

sup
θ∈Θd,M

Eθ
(
F̃ − F (θ)

)2 ≤ C ′3d2δ2K,M , (19)

where C ′3 is some positive constant, depending only on C ′1 and C ′2.

3. Optimality results

The next theorem, which is a slight modification of Theorem 4 in Collier et al. (2019), states
a lower bound on the minimax rate.
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Theorem 3 Assume that 0 < M ≤
√

log(s2/d) and that for some constants C ′′1 , C
′′
2 > 0

‖F − F (0)‖∞,[−M,M ] ≤ C ′′1
(s2
d

)ε1
, δ−1

e2 log(s2/d)/ log(e log(s2/d)/M2),M
≤ C ′′2

(s2
d

)ε2
, (20)

and that Assumption (A0) holds. Then there exists an absolute positive constant C ≥ 1
such that if s2 ≥ Cd, if 2ε1 + 2ε2 < 1 and if c is chosen small enough, depending on ε1 + ε2,
we have

inf
F̂

sup
θ∈Θs,M

Eθ
(
F̂ − F (θ)

)2 ≥ C ′′3 s2δ2e2 log(s2/d)/ log(e log(s2/d)/M2),M , (21)

for some positive constant C ′′3 , depending only on C ′′1 and C ′′2 .

But our estimation problem is more difficult than the problem where we know in advance
that the nonzero coefficients belong to the first k components of θ for k ∈ {s, . . . , d}, and
the last theorem gives lower bounds for these problems as well by replacing d by k. This
argument leads to the following corollary:

Corollary 4 Let Assumptions (A0’-A1-A2) hold. Then there exist an absolute positive
constant C ≥ 1 such that if s2 ≥ Cd, if 2ε1 + 2ε2 < 1 and if c is chosen small enough,
depending only on ε1 + ε2, we have

inf
F̂

sup
θ∈Θ

s,
√

log(s)

Eθ
(
F̂ − F (θ)

)2 ≥ C4s
2 max
s≤k≤d

δ2
e2 log(s2/k),

√
log(s2/k)

, (22)

for some positive constant C4, depending only on C1, C2.

Furthermore, the next theorem states that Assumption (A3) is sufficient to prove that
the upper bound from Theorem 1 matches with the lower bound from Corollary 4.

Theorem 5 Let Assumptions (A0’-A1-A2-A3) hold. Then there exist an absolute positive
constant C ≥

√
2 such that if s2 ≥ Cd, if ε1, ε2 are small enough and c is chosen small

enough, depending only on ε1 and ε2, we have

C5 ≤
infF̂ supθ∈Θ

s,
√

log(d)
Eθ
(
F̂ − F (θ)

)2
s2 maxs≤k≤d δ

2

log(s2/k),
√

log(s2/k)

≤ C ′5, (23)

for some positive constants C5, C
′
5, depending only on C1, C2 and c.

This means in particular that for non-regular functionals satisfying the conditions (A0’-
A1-A2-A3), the rate appearing in Theorem 5 must be the same as the rate found in Polyan-
skiy and Wu (2019). More precisely, let us denote δχ2( 1√

d
) the following quantity

sup
π1,π2

{∣∣∣ ∫ F (θ)π1(dθ)−
∫
F (θ)π2(dθ)

∣∣∣ |χ2(Pπ1 ,Pπ2) ≤ 1

d
,Eπi‖θ‖0 ≤ s

}
(24)
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where the supremum is taken over all distribution probabilities on [−M,M ]d. According to

Theorem 8 in Polyanskiy and Wu (2019), if δχ2( 1√
d
) ≥ 31

‖F‖∞,[−M,M ]√
d

, then δχ2( 1√
d
) is the

minimax rate for estimating
∑d

i=1 F (θi) over Θs,M , hence it is of the order of

s2 max
s≤k≤d

δ2
log(s2/k),

√
log(s2/k)

. (25)

Moreover, similar results as in Cai and Low (2011); Collier et al. (2019) (with bounded
parameter space) can be easily deduced since for the function x→ |x|γ , the approximation
rate δK,M is of the order of (M/K)γ (cf. for example Theorem 7.2.2 in Timan (1963)).

Finally, Assumption (A2) is strongly related to the differentiability of the marginal
functional F . Indeed, the following properties can be found in Timan (1963), Sections 5.1.5
and 6.2.4:

• If F has a bounded derivative of order r on [−1, 1], then

∀n ≥ 1, δn,[−1,1] ≤
C

nr
, (26)

for some positive contant C.

• F is infinitely derivable on [a, b] if and only if for any r > 0,

nrδn,[a,b] → 0. (27)

This suggests that many not infinitely differentiable functionals satisfy Assumption (A2).

4. Proof of theorems

In the whole section, we denote by A a positive constant the value of which may vary from
line to line. This constant only depends on C1 and C2 (Theorem 1) and Theorem 5), C ′1
and C ′2 (Theorem 2), C

′′
1 and C

′′
2 (Theorem 3). Moreover, since

Eθ
(
F̂ − F (θ)

)2
= Eθ

[(
F̂ − dF (0)

)
−
(
F (θ)− dF (0)

)]2
, (28)

we can assume without loss of generality that F (0) = 0, which we do throughout this
section.

4.1 Proof of Theorem 1

Denote by S the support of θ. We start with a bias-variance decomposition(
F̂ − F (θ)

)2 ≤ 4
(∑
i∈S

EθF̂ (y1,i, y2,i)−
∑
i∈S

F (θi)
)2

(29)

+ 4
(∑
i∈S

F̂ (y1,i, y2,i)−
∑
i∈S

EθF̂ (y1,i, y2,i)
)2

(30)

+ 4
(∑
i 6∈S

EθF̂ (y1,i, y2,i)
)2

(31)

+ 4
(∑
i 6∈S

F̂ (y1,i, y2,i)−
∑
i 6∈S

EθF̂ (y1,i, y2,i)
)2

(32)
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leading to the bound

Eθ(F̂ − F (θ))2 ≤ 4s2 max
i∈S

B2
i + 4smax

i∈S
Vi (33)

+ 4d2 max
i 6∈S

B2
i + 4dmax

i 6∈S
Vi,

where Bi = EθF̂ (y1,i, y2,i) − F (θi) is the bias of F̂ (y1,i, y2,i) as an estimator of F (θi) and
Vi = Varθ(F̂ (y1,i, y2,i)) is its variance. We now bound separately the four terms in (33).

1◦. Bias for i 6∈ S. If i 6∈ S, then Bi = 0.
2◦. Variance for i 6∈ S. If i 6∈ S, then using in particular Lemma 9,

Vi ≤
L+1∑
l=0

EP̂ 2
Kl,Ml

(ξ) P(tl−1 < |ξ|), ξ ∼ N (0, 1), (34)

≤ A
L+1∑
l=0

‖F‖2∞,[−Ml,Ml]
6Kle−t

2
l−1/2. (35)

For l = 0, we have by Assumptions (A1-A2), if ε1 + ε2 < 1/4 and for c small enough

‖F‖2∞,[−M0,M0]
6K0e−t

2
−1/2δ−2K0,M0

≤ A
(s2
d

)4ε1+4ε2+c log(6)/4
≤ As

2

d
. (36)

Then, if l > 0,

‖F‖2∞,[−Ml,Ml]
6Kle−t

2
l−1/2δ−2Kl,Ml

≤ A
(s2
d

)4l(4ε1+4ε2+c log(6)/4− 1
16

)
(37)

so that for small enough c, ε1 and ε2 and since s2 ≥ 4d,

dVi ≤ As2 max
l=0,...,L

δ2Kl,Ml
. (38)

3◦. Bias for i ∈ S. If i ∈ S, the bias has the form

Bi =
L∑
l=0

{
EP̂Kl,Ml

(ξ)− F (θi)
}

P(tl−1 < |ξ| ≤ tl) (39)

+
{
EP̂KL+1,ML+1

(ξ)− F (θi)
}

P(tL < |ξ|), ξ ∼ N (θi, 1). (40)

We will analyze this expression separately in different ranges of |θi|.
3.1◦. Case 0 < |θi| ≤ 2t0. In this case, we use the bound

|Bi| ≤ max
l

∣∣EP̂Kl,Ml
(ξ)− F (θi)

∣∣, ξ ∼ N (θi, 1). (41)

Since |θi| ≤Ml for all l, we have by the definition of PKl,Ml
and since F (0) = 0,∣∣EP̂Kl,Ml

(ξ)− F (θi)
∣∣ ≤ ∣∣PKl,Ml

(θi)− a0,Kl,Ml
− F (θi)

∣∣ (42)

≤
∣∣PKl,Ml

(θi)− F (θi)
∣∣+ |F (0)− PKl,Ml

(0)| (43)

≤ 2δKl,Ml
, (44)
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so that

s2 max
0<|θi|≤2t0

B2
i ≤ 4s2 max

l=0,...,L+1
δ2Kl,Ml

. (45)

3.2◦. Case 2t0 < |θi| ≤ 2tL. Let l0 ∈ {0, . . . , L − 1} be the integer such that 2tl0 <
|θi| ≤ 2tl0+1. We have

|Bi| ≤
l0∑
l=0

∣∣EP̂Kl,Ml
(ξ)− F (θi)

∣∣ ·P(tl−1 < |ξ| ≤ tl) (46)

+ max
l>l0

∣∣EP̂Kl,Ml
(ξ)− F (θi)

∣∣, ξ ∼ N (θi, 1)

The arguments in (42) yield that

max
l>l0

∣∣EP̂Kl,Ml
(ξ)− F (θi)

∣∣ ≤ 4 max
l=0,...,L+1

δ2Kl,Ml
. (47)

Furthermore, using the triangular inequality,

l0∑
l=0

∣∣EP̂Kl,Ml
(ξ)− F (θi)

∣∣ ·P(tl−1 < |ξ| ≤ tl) (48)

≤
l0∑
l=0

∣∣EP̂Kl,Ml
(ξ)
∣∣ ·P(|ξ| ≤ tl) +

l0∑
l=0

∣∣F (θi)
∣∣ ·P(tl−1 < |ξ| ≤ tl). (49)

The first sum in the right-hand side can be bounded using Lemma 11, since∣∣EP̂Kl,Ml
(ξ)
∣∣P(|ξ| ≤ tl) ≤ A‖F‖∞,[−Ml,Ml] 3

Klecθ
2
i /16 P(|ξ| ≤ tl), (50)

so that, as |θi| > 2tl0 ≥ 2tl for l ≤ l0,∣∣EP̂Kl,Ml
(ξ)
∣∣P(|ξ| ≤ tl)δ−1Kl,Ml

≤ A3Kle(c−2)θ
2
i /16e(ε1+ε2)M

2
l (51)

≤ Ae(8ε1+8ε2+c log(3)+(c−2)/2)t2l /2 (52)

= A
(s2
d

)22l−2(8ε1+8ε2+c log(3)+(c−2)/2)
(53)

Again, if ε1 + ε2 <
1
8 , choosing c small enough yields that

l0∑
l=0

∣∣EP̂Kl,Ml
(ξ)
∣∣P(|ξ| ≤ tl) ≤ A max

l=0,...,L
δKl,Ml

. (54)

Moreover, similar arguments lead to the fact that if 4ε1 + ε2 <
1
8

l0∑
l=0

|F (θi)|P(tl−1 < |ξ| ≤ tl) ≤ ‖F‖∞,[−Ml0+1,Ml0+1]P(|ξ| ≤ tl0) ≤ AδKl0
,Ml0

, (55)
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and we conclude that

s2 max
2t0<|θi|≤2tL

B2
i ≤ As2 max

l=0,...,L+1
δ2Kl,Ml

. (56)

3.3◦. Case 2tL < |θi| ≤
√

2 log(d). Similar arguments as in the previous case yield that

s2 max
2tL<|θi|≤

√
2 log(d)

B2
i ≤ As2 max

l=0,...,L+1
δ2Kl,Ml

. (57)

4◦. Variance for i ∈ S. We consider the same cases as in item 3◦ above. In all cases, it
suffices to bound the variance by the second-order moment, which grants that, for all i ∈ S,

Vi ≤
L∑
l=0

EP̂ 2
Kl,Ml

(ξ) P(tl−1 < |ξ| ≤ tl) + EP̂ 2
KL+1,ML+1

(ξ) P(tL < |ξ|), ξ ∼ N (θi, 1). (58)

4.1◦. Case 0 < |θi| ≤ 2t0. In this case, we deduce from (58) that

Vi ≤ max
l=0,...,L+1

EP̂ 2
Kl,Ml

(ξ), ξ ∼ N (θi, 1). (59)

Lemma 10 implies

Vi ≤ A‖F‖2∞,[−ML+1,ML+1]
12KL+1 ≤ Ad4ε1+c log(12)/4, (60)

which, as
√
d ≤ s, is sufficient to conclude that

s max
0<|θi|≤2t0

Vi ≤ As2 max
l=0,...,L+1

δ2Kl,Ml
, (61)

for c, ε1, ε2 small enough.

4.2◦. Case 2t0 < |θi| ≤ 2tL. As in item 3.2◦ above, we denote by l0 ∈ {0, . . . , L− 1} the
integer such that 2tl0 < |θi| ≤ 2tl0+1. We deduce from (58) that

Vi ≤ (l0 + 1) max
l=0,...,l0

EP̂ 2
Kl,Ml

(ξ) P(|ξ| ≤ tl0) + max
l=l0+1,...,L+1

EP̂ 2
Kl,Ml

(ξ), ξ ∼ N (θi, 1).

(62)

The last term on the right hand side is controlled as in item 4.1◦. For the first term, we
find using Lemma 11 that, for ξ ∼ N (θi, 1),

max
l=0,...,l0

EP̂ 2
Kl,Ml

(ξ) P(|ξ| ≤ tl0) ≤ A‖F‖2∞,[−Ml0
,Ml0

] 6
Kl0e

c log(1+8/c)
8

θ2i e−θ
2
i /8 (63)

≤ Ae(8ε1+
c log 6

2
+

c log(1+8/c)
2

− 1
2
)t2l0 . (64)

Choosing c, ε1, ε2 small enough allows us to obtain the desired bound

s max
2t0<|θi|≤2tL

Vi ≤ As2 max
l=0,...,L+1

δ2Kl,Ml
. (65)

4.3◦. Case 2tL < |θi| ≤
√

2 log(d). Similar arguments as in the previous case yield that

s max
2tL<|θi|≤

√
2 log(d)

Vi ≤ As2 max
l=0,...,L+1

δ2Kl,Ml
. (66)

The result of the theorem follows.

10
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4.2 Proof of Theorem 2

By construction, we have

Eθ
(
F̂ − F (θ)

)2 ≤ d2δ2K,M + Var
(
F̂
)
. (67)

To bound the variance, we write

F̂ =

K∑
k=0

ak,K,MSk, Sk =

d∑
i=1

Hk(yi), (68)

so that

Var(F̂ ) ≤
( K∑
k=0

|ak,K,M |
√

Var(Sk)
)2
, (69)

since for any random variables X1, . . . , Xn, we have

E
( n∑
i=1

Xi

)2
≤
( n∑
i=1

√
E(X2

i )
)2
. (70)

Furthermore, by Lemmas 6 and 8,

K∑
k=0

|ak,K,M |
√

Var(Sk) ≤ A
√
d‖F‖∞,[−M,M ]K(1 +

√
2)K

(
1 +

K

M2

)K/2
. (71)

Using the definition of K, we have

K log(1 +K/M2) ≤ Ac log(d), (72)

hence, taking c small enough implies that

Var(F̂ )δ−2K,M ≤ AK
2(1 +

√
2)2Kd2ε1+2ε2+1+Ac ≤ Ad2. (73)

The result follows.

4.3 Proof of Theorem 3

Preliminary: By Markov’s inequality, we have for every K > 0

inf
F̂

sup
θ∈Θ

Eθ
(
F̂ − F (θ)

)2 ≥ s2δ2K,M
4

inf
F̂

sup
θ∈Θ

Pθ

(
|F̂ − F (θ)| ≥ sδK,M/2

)
, (74)

and Theorem 2.15 in Tsybakov (2009) implies that for any prior measures µ̄0 and µ̄1 con-
centrated on Θ

inf
F̂

sup
θ∈Θ

Pθ

(
|F̂ − F (θ)| ≥ m1 −m0

4

)
≥ 1− V

2
(75)

with

V = TV(P̄0, P̄1) + µ̄0
(
F (θ) ≥ m0 + 3v0

)
+ µ̄1

(
F (θ) ≤ m0 +m1

2
+ 3v0

)
, (76)

11
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where TV denotes the total-variation distance, and for i = 0, 1, P̄i is defined for every
measurable set by

P̄i(A) =

∫
Rd

Pθ(A) µ̄i(dθ) (77)

and m0,m1, v0 are to be chosen later.
Construction of the prior measures: First we choose

K =
e2 log(s2/d)

log(e log(s2/d)/M2)
, (78)

and we denote µi for i ∈ {0, 1} the distribution of the random vector θ ∈ Rd with indepen-
dent components distributed as εηi, where ε and ηi are independent, ε ∼ B

(
s/(2d)

)
and ηi

is distributed according to νi defined in Lemma 7. Then, we define probabilities P0 and P1

by

Pi(A) =

∫
Rd

Pθ(A)µi(dθ), (79)

for all measurable sets A. The densities of these probabilities with respect to the Lebesgue
measure on Rd are given by

fi(x) =
d∏
i=1

gi(xi), (80)

where
gi(x) =

s

2d
φi(x) +

(
1− s

2d

)
φ(x), (81)

and

φi(x) =

∫
R
φ(x− t) νi(dt), φ(x) =

1√
2π
e−x

2/2. (82)

But as the µi’s are not supported on Θ, we define counterparts µ̄i’s by

µ̄i(A) =
µi(A ∩Θ)

µi(Θ)
. (83)

Finally, we denote

mi =

∫
Rd

F (θ)µi(dθ), v2i =

∫
Rd

(F (θ)−mi)
2 µi(dθ). (84)

Bounding the probabilities in (76): According to Lemma 7, we have

m1 −m0 = d× s

2d
×
(∫ M

−M
F (t) ν1(dt)−

∫ M

−M
F (t) ν0(dt)

)
= sδK,M . (85)

Using Lemma 9 in Collier et al. (2019) and Chebyshev-Cantelli’s inequality, we have for d
large enough

µ̄0
(
F (θ) ≥ m0 + 3v0

)
≤ µ0

(
F (θ) ≥ m0 + 3v0

)
+ e−s/16 (86)

≤ v20
v20 + (3v0)2

+ e−s/16 <
1

5
. (87)

12



General additive functional estimation

Now, we notice that for i ∈ {0, 1}, we have

v2i ≤ d‖F‖2∞,[−M,M ], (88)

so that for C large enough,

m0 +m1

2
+ 3v0 −m1 ≤ 3

√
d‖F‖∞,[−M,M ] −

sδK,M
2
≤ −

sδK,M
3

, (89)

since the assumptions of the theorem imply that
√
d

sδK,M
‖F‖∞,[−M,M ] ≤ A

(s2
d

)ε1+ε2−1/2
. (90)

Consequently,

µ̄1
(
F (θ) ≤ m0 +m1

2
+ 3v0

)
≤ µ1

(
F (θ)−m1 ≤ −

sδK,M
3

)
+ e−s/16 (91)

≤ 9v21
9v21 + s2δ2K,M

+ e−s/16, (92)

by Chebyshev-Cantelli’s inequality, and the last quantity is smaller than

9d‖F‖2∞,[−M,M ]

9d‖F‖2∞,[−M,M ] + s2δ2K,M
+ e−s/16. (93)

Finally, we use again the fact that d‖F‖2∞,[−M,M ]/(s
2δ2K,M ) ≤ A(d/s2)1−2ε1−2ε2 with s2/d >

C, so that for C large enough,

µ̄1
(
F (θ) ≤ m0 +m1

2
+ 3v0

)
<

1

5
. (94)

Bounding the total-variation distance in (76): We can upper bound the total-
variation distance as follows:

TV(P̄0, P̄1) ≤ TV(P̄0,P0) + TV(P0,P1) + TV(P1, P̄1) (95)

≤
√
χ2(P0,P1)/2 + µ0(Θ

{) + µ1(Θ
{), (96)

where Θ{ denotes the complement of Θ. As before,

µi(Θ
{) ≤ P

(
B
(
d,

s

2d

)
> s
)
≤ e−

s
16 . (97)

Furthermore, since the Pi’s are product measures, we have

χ2(P0,P1) =
(

1 +

∫
(g1 − g0)2

g0

)d
− 1, (98)

and by the definition of g0, g1,∫
(g1 − g0)2

g0
≤ 1

1− s
2d

( s
2d

)2 ∫ (φ1 − φ0)2

φ
≤ s2

2d2

∫
(φ1 − φ0)2

φ
. (99)

13
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Then∫
(φ1 − φ0)2

φ
=

∫
eθθ
′
ν1(dθ)ν1(dθ

′) +

∫
eθθ
′
ν0(dθ)ν0(dθ

′)− 2

∫
eθθ
′
ν0(dθ)ν1(dθ

′)

(100)

=
∑
k≥0

1

k!

(∫
tkν1(dt)−

∫
tkν0(dt)

)2
(101)

≤ 4
∑

k≥K+1

M2k

k!
, (102)

and the choice of K along with the condition on M imply that eM2/K ≤ 1/e, so that∫
(φ1 − φ0)2

φ
≤ 4

∑
k≥K+1

(eM2

k

)k
≤ 4
(eM2

K

)K
. (103)

Coming back to the χ2-distance and using the fact that 1 + x ≤ ex for every x ∈ R, we get

χ2(P0,P1) ≤ exp
[2s2

d

(eM2

K

)K]
− 1. (104)

Finally, we compute

K log
(eM2

K

)
= −e2 log(s2/d)× g

(
e log(s2/d)/M2

)
, (105)

where

g(x) =
log
(

x
log(x)

)
log(x)

, (106)

and it can be shown that g > 0.5, so that χ2(P0,P1) ≤ e2(d/s
2)e

2/2−1 − 1. This inequality,
combined with (97), yields

TV(P̄0, P̄1) < 3/5 (107)

if C and d are large enough.

The proof is completed by gathering (74), (85), (75), (76), (86), (94) and (107).

4.4 Proof of Theorem 5

If l ∈ {0, . . . , L+ 1}, then by definition of Kl in (15), we have

Kl ≤
c

4
log(d) ≤ c

4
log(s2/C) ≤ log(s) (108)

for c small enough. Besides, if l0 =
⌊ log2(4/c)

2

⌋
+ 1, where b·c denotes the integer part, then

∀l ≥ l0, Kl ≥ log(s2/d). (109)
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On the other hand, when k ∈ {s, . . . , d}, the quantity log(s2/k) ranges from log(s2/d) to
log(s) and the consecutive differences satisfy

log
(
s2/k

)
− log

(
s2/(k + 1)

)
= log(1 + 1/k) ∈ [0, 1], (110)

so that for every l ∈ {l0, . . . , L+ 1}, there exists an integer kl ∈ {s, . . . , d} such that

|Kl − log(s2/kl)| ≤ 1. (111)

Now note that log(s2/kl) ≥ log(C), which yields that, for every l ∈ {l0, . . . , L+ 1},

Kl

log(s2/kl)
= 1 +

Kl − log(s2/kl)

log(s2/kl)
∈
[
1− 1

log(C)
, 1 +

1

log(C)

]
. (112)

But for l ∈ {0, . . . , l0 − 1}, we have

1 ≤ Kl

K0
≤ 4

c
, (113)

so that the last two displays, combined with Assumption (A3), entail that

max
l=0,...,L+1

δ2Kl,Ml
≤ A max

l=0,...,L+1
δ2
log(s2/kl),

√
log(s2/kl)

≤ A max
k=s,...,d

δ2
log(s2/k),

√
log(s2/k)

. (114)

Finally, we conclude by Assumption (A3) again, since

max
k=s,...,d

δ2
log(s2/k),

√
log(s2/k)

≤ A max
k=s,...,d

δ2
e2 log(s2/k),

√
log(s2/k)

. (115)

5. Lemmas

In the whole section, we denote by A an absolute positive constant that precise value may
vary from line to line.

The following lemma is a direct consequence of Proposition 2 in Collier et al. (2019).

Lemma 6 Let PK,M be the polynomial defined in (8). Then the coefficients ak,K,M in (10)
satisfy

|ak,K,M | ≤ A‖F‖∞,[−M,M ]M
−k(1 +

√
2)K , k = 0, . . . ,K. (116)

The following lemma is a slight modification of Lemma 1 in Cai and Low (2011):

Lemma 7 Assume that F is continuous on [−M,M ], then for every positive integer K, if
δK,M > 0, there exist measures ν0, ν1 on [−M,M ] such that{ ∫

tlν0(dt) =
∫
tlν1(dt), l = 0, . . . ,K∫

F (t)ν0(dt)−
∫
F (t)ν1(dt) = 2δK,M .

(117)

Proof Denote C the set of continuous functions on [−M,M ] equipped with the uniform
norm, and Fk be the linear space spanned by PK (the set of polynomials of degree smaller
than K) and F . Note that F does not belong to PK , since by assumption, δK,M > 0. Then
every element g of FK can be represented as g = cF + P , where P ∈ PK and c ∈ R. Then
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we can define the linear functional T on FK by T (g) = cδK,M . We then compute the norm
of T defined as

‖T‖ = sup{T (g) | ‖g‖∞ = 1}. (118)

Now, every g ∈ FK satisfying ‖g‖∞ = 1 can be written as

g =
cF + P

‖cF + P‖∞
, P ∈ PK , (119)

so that

‖T‖ = sup
c,P

cδK,M
‖cF + P‖∞

= sup
P

δK,M
‖F − P‖∞

= 1 (120)

by definition of δK,M . Then, using Hahn-Banach and Riesz representation theorems, we
can extend T on C without changing its norm, and represent this extension T̃ as

T̃ (g) =

∫ M

−M
g(t) τ(dt), (121)

where τ is a signed measure with total variation 1. Then, using Jordan decomposition, we
can write τ as a difference of two positive measures

τ = τ+ − τ−. (122)

Denoting ν0 = 2τ+ and ν1 = 2τ−, which are probability measures since 2τ has total varia-
tion 2 and

∫M
−M τ(dt) = 0, the last properties of the lemma follow from the properties of τ .

The proof of the next lemma can be found in Cai and Low (2011).

Lemma 8 Let θ ∈ R and X ∼ N (θ, 1). For any k ∈ N, the k-th Hermite polynomial
satisfies

EHk(X) = θk, (123)

EH2
k(X) ≤

(
k + θ2

)k
. (124)

Lemma 9 Let P̂K,M be defined in (15) with K ≤M2. If ξ ∼ N (0, 1), then

EP̂ 2
K,M (ξ) ≤ A‖F‖2∞,[−M,M ] 6

K . (125)

Proof Recall that, for the Hermite polynomials, E(Hk(ξ)Hj(ξ)) = 0 if k 6= j and ξ ∼
N (0, 1). Using this fact and then Lemmas 6 and 8 we obtain

EP̂ 2
K,M (ξ) =

K∑
k=1

a2k,K,MEH2
k(ξ) ≤ A‖F‖2∞,[−M,M ] (1 +

√
2)2K

K∑
k=1

(k/M2)k. (126)

Moreover, since K/M2 ≤ 1, we have
∑K

k=1(k/M
2)k ≤ K. The result follows.
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Lemma 10 Let P̂K,M be defined in (15) with parameters K = cM2/8 and c ≤ 8. If
ξ ∼ N (θ, 1) with |θ| ≤M , then

EP̂ 2
K,M (X) ≤ A‖F‖2∞,[−M,M ] 12K . (127)

Proof We use the bound

EP̂ 2
K,M (ξ) ≤

( K∑
k=1

|ak,K,M |
√

EH2
k(ξ)

)2

. (128)

Thus Lemma 8 in particular and the fact that K ≤M2 imply that

EP̂ 2
K,M (ξ) ≤ A‖F‖2∞,[−M,M ](1 +

√
2)2K

( K∑
k=1

M−k2k/2Mk

)2

≤ A‖F‖2∞,[−M,M ] 12K . (129)

Lemma 11 Let P̂K,M be defined in (15) with K = cM2/8 and c ≤ 8. If ξ ∼ N (θ, 1) with
|θ| > M , then ∣∣EP̂K,M (ξ)

∣∣ ≤ A‖F‖∞,[−M,M ] 3
Kecθ

2/16, (130)

EP̂ 2
K,M (ξ) ≤ A‖F‖2∞,[−M,M ] 6

Ke
c log(1+8/c)

8
θ2 . (131)

Proof To prove the first inequality of the lemma, we use Lemma 6 to obtain∣∣EP̂K,M (ξ)
∣∣ ≤ A‖F‖∞,[−M,M ]K(1 +

√
2)K

( |θ|
M

)K
, (132)

and the result follows from

K log(|θ|/M) =
cM2

8
log(|θ|/M) ≤ cθ2/16. (133)

We now prove the second inequality of the lemma. Using (128) and then Lemmas 6
and 8 we get

EP̂ 2
K,M (ξ) ≤ A‖F‖2∞,[−M,M ] (1 +

√
2)2K

( K∑
k=1

M−k(k + θ2)k/2
)2
. (134)

But as θ2

k ≥
M2

K = 8
c ≥ 1, we can use the fact that the function x → x−1 log(1 + x) is

decreasing on R∗+ to obtain that

k log
(

1 +
θ2

k

)
≤ cθ2 log(1 + 8/c)

8
. (135)

Therefore,

EP̂ 2
K,M (ξ) ≤ A‖F‖2∞,[−M,M ] (1 +

√
2)2Ke

c log(1+8/c)
8

θ2
( K∑
k=1

(k/M2)k/2
)2

. (136)
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Finally, the result follows since K ≤M2.
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