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ABSTRACT 

In natural product drug discovery, several strategies have emerged to highlight specifically bioactive 

compound(s) within complex mixtures (fractions or crude extracts) using metabolomics tools. In this area, a 

great deal of interest has raised among the scientific community on strategies to link chemical profiles and 

associated biological data, leading to the new field called “biochemometrics”. This article falls into this 

emerging research by proposing a complete workflow, which was divided into three major steps. The first one 

consists in the fractionation of the same extract using four different chromatographic stationary phases and 

appropriated elution conditions to obtain five fractions for each column. The second step corresponds to the 

acquisition of chemical profiles using HPLC-HRMS analysis, and the biological evaluation of each fraction. The 

last step evaluates the links between the relative abundances of molecules present in fractions (peak area) and the 

global bioactivity level observed for each fraction. To this purpose, an original bioinformatics script (encoded 

with R Studio software) using the combination of four statistical models (Spearman, F-PCA, PLS, PLS-DA) was 

here developed leading to the generation of a “Super list” of potential bioactive compounds together with a 

predictive score. This strategy was validated by its application on a marine-derived Penicillium chrysogenum 

extract exhibiting antiproliferative activity on breast cancer cells (MCF-7 cells). After the three steps of the 

workflow, one main compound was highlighted as responsible for the bioactivity and identified as ergosterol. Its 

antiproliferative activity was confirmed with an IC50 of 0.10 µM on MCF-7 cells. The script efficiency was 

further demonstrated by comparing the results obtained with a different recently described approach based on 

NMR profiling and by virtually modifying the data to evaluate the computational tool behaviour. This approach 

represents a new and efficient tool to tackle some of the bottlenecks in natural product drug discovery programs. 

Keywords: metabolomics, biochemometrics, natural products, Liquid Chromatography - Mass Spectrometry, R 

script 
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1. Introduction 

In Natural Product (NP) research, bioassay-guided fractionation approach is mostly used to isolate bioactive 

metabolites from a crude extract [1–3]. Despite the fact that this method has proved to be efficient for the 

discovery of many active compounds including taxol, artemisinin or vinblastine [4], it is now often considered 

by industrials as a time-consuming, costly and risky investment [5]. In some cases, the activity originally 

observed on a mixture can be lost due to irreversible binding of the components to chromatographic resins, 

degradation, chemical modification, antagonistic or synergistic effects. Therefore, the need to improve 

productivity and efficiency in the discovery of new bioactive NPs to address limitations of bioassay-guided 

fractionation has resulted in the past few years in the emergence of several novel strategies. 

Even if such strategies are considered as recent, initial strategies were started in the 80’s. Pouchus et al. [6], 

Samuelsson et al. [7] and Cardellina et al. [8], were among the first people interested in improving the classical 

bioassay-guided fractionation method for active NP extracts. In 1989, Pouchus developed a mathematical script 

allowing a better purification of active compounds by calculating their relative quantities in each fraction. The 

program was also able to detect potential synergistic effects or the presence of several active compounds in an 

active mixture. In 1985 and 1993, respectively, Samuelsson et al. and Cardellina et al. studied the chemical 

nature of bioactive compounds in NP extracts. Based on a combination of several extraction solvents and several 

Solid Phase Extraction (SPE) columns, they managed to deduce the chemical properties of active compounds 

(size, polarity, stability, acido-basic properties…) and therefore develop appropriate and more focused 

purification strategies. Interestingly, the authors represented their results in an elution matrix with active 

fractions being highlighted, thus revealing the chemical profiles of the active compounds. Therefore, this 

approach also allowed them to better select their active extracts for subsequent investigation by avoiding 

probable synergistic effects and false positives (when activity was lost with fractionation) but also by performing 

preliminary dereplication (eliminating from further consideration) when activity of the fractions was observed 

with similar chemical profiles. This approach was further developed by Månsson et al. [9] as the Explorative 

Solid-Phase Extraction protocol (E-SPE), by implementing the approach with the acquisition of LC-UV-MS 

profiles for active fractions. These analyses provided additional chemical properties for the active compounds 

(MS and UV spectra), allowing better dereplication of the active constituents. However, the authors especially 

focused on recurrent peaks in active fractions to manually detect and highlight compounds responsible for the 

activity. 
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In the past few decades, metabolomics has appeared as a rapidly emerging and developing field in NP chemistry. 

Extracts analyses mainly by HPLC-MS(n) and NMR spectroscopy has been employed for different purposes such 

as chemical profiling and dereplication [10–13], biomarker characterization [14,15], quality control [16–18] and 

also for bioactive drug discovery [19–22]. Metabolomics studies generate a huge amount of data related to all 

detected compounds in a sample and need the use of bioinformatics tools to highlight the information of interest 

within the collected data. To this purpose many software have been developed such as MZmine [23], R Cran 

packages [24] or Python packages [25] and are now available for the community. Nevertheless, effective 

strategies for identification of compounds present in small amounts and their associated biological effect from a 

complex mixture are crucially lacking. While the most commonly used statistical analysis to compare the 

chemical composition of different mixtures remains principal component analysis (PCA), this approach is 

generally not sufficient in NPs drug discovery programs because it does not take into consideration bioactivity 

data. Consequently, a great deal of interest has risen among the scientific community to link chemical 

fingerprints to bioactivity data using statistical methods, leading to the new term “biochemometrics.” Such 

approaches would overcome some bioassay-guided fractionation limitations and provide a more comprehensive 

insight of compounds responsible for the activity. According to the literature, several statistical models were 

used for detection of active compounds such as Pearson correlation [26–29], partial least squares (PLS) [30–35], 

discriminant analysis (PCA-DA, PLS-DA, OPLS-DA) [21,28,36–41] and hierarchical cluster analysis (HCA) 

[42]. However, most of these studies use only one statistical model for interpretation, which may impair 

exhaustiveness and accuracy of highlighted features mainly because all of these models are not well adapted to 

delineate chemical fingerprints and bioactivity data relationships. A combination of them appears as an 

interesting solution to overcome the limitations of each model independently and increase performance of 

biochemometrics. 

In this study, we propose a new workflow based on the association of both E-SPE and biochemometrics using 

the combination of multiple statistical models (PCA, Spearman, F-PCA, PLS, PLS-DA) to target bioactive 

compounds from extracts. This workflow was developed and applied in a real-case study, with an extract of a 

marine-derived fungal strain: Penicillium chrysogenum MMS5, presenting high antiproliferative activity on 

breast cancer cells (MCF-7 cell line), which was mainly due to the presence of high amounts of ergosterol [43]. 

The script, written using the open-source R Cran software, allowed to combine all data-mining strategies and 

was made accessible for the whole NP community (Supplementary information S1). This approach represents a 

new approach to tackle some of the bottlenecks currently existing in NP drug discovery programs. 
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2. Material and methods 

2.1. Fungal strain, culture and extraction 

Penicillium chrysogenum (MMS5) was collected in November 1994 from cockles in Le Croisic (France) and 

identified by ITS sequencing (Genbank accession number MK015724). This marine-derived fungal strain was 3-

point inoculated on PDA medium (Potato Dextrose Agar) in 50 Erlenmeyer flasks (50 mL of media per flask) 

and incubated for 12 days at 27 °C. The crushed gelose and mycelium were extracted twice with 100 mL of a 

CH2Cl2/EtOAc (50:50, v/v) solvent mixture after 30 min ultrasound treatment for the first step extraction and 

after a night at room temperature incubation for the second. The supernatants were combined and filtered over 

Büchner and reextracted. The filtrates were dehydrated by Na2SO4 and filtered over filter paper and over a 

0.45 μm regenerated cellulose membrane (Sartorius Stedim Biotech) to remove spores. Solvent was evaporated 

using a rotary evaporator to obtain a crude extract (710 mg). 

 

2.2. Fractionation for E-SPE 

Fractionations were performed on four columns of solid phase extraction (SPE) using Silica gel (Chromabond®, 

6 mL, 1000 mg, pore size 60 Å, particle size 45 μm, from Macherey-Nagel), C18 (Chromabond®, 6 mL, 1000 

mg, pore size 60 Å, particle size 45 μm from Macherey-Nagel), SephadexTM LH20 (GE Healthcare Bio-sciences 

AB) and Strata™-X phase (6 mL, 100 mg, Phenomenex®). These phases are abbreviated in the following 

manuscript as SiOH, C18, LH20 and SX, respectively. For separation using SephadexTM LH20, the dry powder 

was swelled in MeOH and manually packed (1.5 mL in 6 mL empty cartridges from Macherey-Nagel).  

The different mobile phases used were composed of CH2Cl2/MeOH mixtures (from 1:0 to 1:1) for the normal 

phase Silica gel, MeOH/H2O mixtures (from 0:1 to 1:0) for the reverse phase C18, MeOH/H2O mixtures (from 

0:1 to 1:0 and additional MeOH + 1% formic acid) for the polymeric reverse phase Strata ™-X, and only MeOH 

for LH20. Fractionation was performed in multiple sub-fractions until no more measurable mass was recovered 

from the column. The sub-fractions were then pooled in 5 fractions according to mass amounts. In our study, 

after placing on top of each cartridge a frit with 50 mg of the dried crude extract obtained from MMS5 P. 

chrysogenum, nineteen fractions were obtained by the following successive mobile phases: SiOH-1 (6 mL 

CH2Cl2 and 3 mL CH2Cl2/MeOH (1:9)), SiOH-2 (3 mL CH2Cl2/MeOH (3:7)), SiOH-3 (9 mL CH2Cl2/MeOH 

(1:1)), SiOH-4 (9 mL CH2Cl2/MeOH (1:1)), SiOH-5 (9 mL CH2Cl2/MeOH (1:1)), C18-1 (3 mL H2O, 3 mL 

MeOH/H2O (1:2), 3 mL MeOH/H2O (2:1) and 4 mL MeOH), C18-2 (4 mL MeOH), C18-3 (3 mL MeOH), C18-
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4 (6 mL MeOH), C18-5 (56 mL MeOH), LH20-1 (2.75 mL MeOH), LH20-2 (0.75mL MeOH), LH20-3 

(0.75 mL MeOH), LH20-4 (4mL MeOH); LH20-5 (34 mL MeOH), SX-1 (4 mL H2O, 3 mL MeOH/H2O (1:2) 

and 3 mL MeOH/H2O (2:1)), SX-2 (3 mL de MeOH), SX-3 (4 mL de MeOH), SX-4 (6 mL MeOH), SX-5 (21 

mL MeOH and 59 mL MeOH + 1% formic acid). All fractions were dried under reduced pressure at room 

temperature. 

 

2.3. Controls preparation 

For all four columns, a blank sample was prepared by extracting the PDA medium used for cultivation in the 

same conditions as described above and eluting the extract with the same mobile phases on the four columns. All 

PDA medium sub-fractions were pooled to obtain a negative control (BM) for cytotoxic assay and 

chromatographic analyses. Similarly, a part of the crude extract from MMS5 previously spotted on a frit was 

eluted on a column without any phase (but equipped with a frit, top and bottom) with a mix of the different 

solvents to obtain a positive control (CE). Additionally, to make sure the activity was recovered in the fractions, 

a reconstituted crude extract (RCE) was obtained for all four columns by mixing the corresponding fractions in 

proportional amounts. A quality control (QC) for subsequent HPLC-MS analyses was also prepared by mixing 

all the samples (fractions and controls) in equal quantities. 

 

2.4. HPLC-MS analyses 

Analyses of fractions and controls were performed on a Shimadzu instrument consisting of an Ultra-Fast Liquid 

Chromatography coupled to UV detection and High Resolution Electrospray Ionization Mass Spectrometry 

combining Ion trap and Time of Flight analysers (UFLC-UV-ESI-IT-TOFMS). The unit consists of two LC-

20ADxr pumps, a SIL-20ACxr autosampler, a CTO-20AC column oven, an SPD-M20A PDA detector and a 

MBC-20A system controller. High performance liquid chromatography analyses were performed on a Kinetex 

™ C18 column (100 × 2.1 mm, 2.6 μm, Phenomenex) heated in an oven equilibrated at 40 °C. A mobile phase 

consisting of CH3CN/H2O (acidified with 0.1% formic acid) was used, starting with 15% CH3CN during 2 min, 

then increasing linearly to 100% CH3CN within 23 min, holding at 100% CH3CN for another 5 min, then 

returning to the initial conditions within 1 min, and holding for 4 min, for a total run time of 35 min at a flow 

rate of 0.3 mL/min. The mass spectrometer was operated in full-scan mode. MS data were recorded in the ESI 

positive mode in the mass range of m/z 100-1000 with a mass accuracy of 7 ppm and a resolution of 10,000 at 

m/z 500, using the following parameters: heat block and curved desolvatation line temperatures at 200 °C; 
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nebulizing nitrogen gas flow at 1.5 L min-1; interface voltage at (+) 4.5 kV and detector voltage of the TOF 

analyser at 1.6 kV. UV-VIS spectra were detected and collected from 190 to 600 nm. 

The samples were prepared in MeOH (UPLC/MS grade) at concentrations of 0.4 mg mL-1, stored at 4 °C before 

injection of 5 μL for each. The analyses were performed randomly and included solvent blank samples (pure 

MeOH) and QCs injected regularly throughout the sequence. 

 

2.5. Cytotoxicity assays 

Human breast cancer MCF-7 cells were purchased from the European Collection of Animal Cell Cultures 

(ECACC, Salisbury, UK). 3-(4,5 Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) was purchased 

from Sigma Aldrich (Saint Quentin Fallavier, France). MCF-7 cells were cultured at 37 °C in a humidified 

incubator with 5% CO2 in DMEM medium supplemented with 10% fetal bovine serum (FBS), 1% glutamine and 

1% penicillin-streptomycin. Viability of MCF-7 was tested in 96-well plate at a density of 10 000 cells per well 

in 200 μL of culture medium and allowed to adhere overnight. Then the seeding medium was removed before 

cell treatment. Crude Extract (CE), fractions and Reconstituted Crude Extracts (RCE) were dissolved in DMSO 

and tested at a unique concentration of 50 µg mL-1. Pure ergosterol and ergosterol-5,8-endoperoxyde (purchased 

from Sigma-Aldrich and from in-house library respectively) were dissolved in EtOH and then diluted in 

0.1% BSA containing-medium in order to obtain concentrations of 0.001-0.01-0.1-1-12,5-25-50 μM. After 24h 

of incubation, MTT assay was performed by removing 100 µL of the medium and adding 50 μL MTT (at 

2.5 mg mL-1) to each well. The mixture was further incubated for 4 h, and the liquid in the wells was removed 

thereafter. Dimethyl sulfoxide (DMSO 200 μL) was then added to each well to solubilize the formazan product 

and the absorbance was read at 570 nm. The relative inhibition was expressed as a percentage of the non-treated 

control, which corresponded to medium supplemented with the same final concentration of DMSO or EtOH. 

 

2.6. LC-MS data treatment 

LC-MS data obtained for studied mixtures were treated. Automatic feature detection between 0 and 30 min in 

positive mode in MZmine2.31 software [23] was achieved using the parameters selected according to the TOF-

MS detector. Peak detection was performed with the “mass detection” algorithm with a noise level of “1.6E4” in 

centroid mode. Then, chromatograms were built for all detected ions with a minimum time span of 0.1 min and a 

minimum intensity of “8.0E4” counts in positive mode, allowing 80 ppm tolerance on m/z values. Peak 

deconvolution was applied to the generated chromatograms with the “baseline cut-off” algorithm using a min 
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peak height of “8.0E4”, a peak duration range of 0.1-5 min and a baseline level of 1.6E4. Deisotoping filter was 

applied using the “isotopic peaks grouper” module with tolerance parameters adjusted to 0.1 min and 0.01  on 

m/z values. Feature alignment was achieved with the “Join Aligner” module with a m/z tolerance of 0.01 and a 

retention time tolerance of 0.3 min followed by gap filling using the “Gapfiller” module, yielding a combined 

dataset. The features detected from blank MeOH and non-inoculated culture medium samples (BM) were 

removed from the generated matrix to focus on the features really corresponding to the fungus production. 

2.7. Biochemometric analyses 

To link chemical profiles and associated biological data of all fractions obtained, biochemometrics analyses were 

performed. The spectral data matrix obtained from Mzmine software [23] including m/z, retention time, and peak 

area for each detected ions was imported to Excel Microsoft office 2011 (© 2010 Microsoft Corporation) and 

merged with the bioactivity dataset (inhibition percentages at 50 μg mL-1) to form the final matrix. The R FiBiCo 

script developed in the present work is presented in details in the “Results and Discussion” section. All statistical 

models used and included in the script such as Principal Component Analysis (PCA), Spearman, Focused- 

Principal Component Analysis (F-PCA), Partial Least Squares regression (PLS) and Partial Least Squares 

Discriminant Analysis (PLS-DA) were computed using the open source software Rstudio version 0.99.902 (© 

2009-2016 RStudio, Inc) and the following packages: “MetaboAnalystR” [44], "psy" [45], "mdatools" [46], 

"readr" [47] and "psych" [48]. 

2.8.  Virtual evaluation of the script efficiency 

The initial data matrix was manually modified to evaluate the ability of the R FiBiCo script to detect potential 

bioactive compounds. A total of 65 matrices were designed by adding a virtual feature which peak area values in 

each fraction were defined according to different models of relationships between peak area values and 

biological activity (linear, exponential, logarithmic and two other relationships with monotonic and non-

monotonic “S-shaped” curves). For all relationships peak area values in each fraction for the virtual feature were 

given in accordance to the antiproliferative activity on MCF-7 (in %) with lowest peak area value for the less 

active fraction C18-2 (except for the non-monotonic model) and the highest for the most active fraction SX-5. 

Based on the initial matrix, where peak area values ranged from “8.96E3” to “7.68E8”, different matrices were 

then constructed with the additional virtual feature having peak area values either in the same range (from 

“8.96E3” to “7.68E8”) or 1000 times less intense (from “8.96E3” to “7.68E5”). The different models were here 

obtained by using the following equations for peak area value range from “8.96E3” to “7.68E5”: Eq. (1) for 
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linear, Eq. (2) for exponential and Eq. (3) for logarithmic, with A corresponding to biological activity values 

(inhibition percentages as obtained on MTT assays) and Parea to calculated peak area values. For monotonic and 

non-monotonic “S-shaped” curves, peak area values were assigned manually to fit this type of curve. 

A = 1.00 E 7 x Parea - 18.94  Eq. (1) 

A = 0.95 exp. (5.56 E-6 x Parea)  Eq. (2) 

A = 16.44 ln(Parea) - 168.53  Eq. (3) 

Moreover, a random variation of 10, 30 and 50% (using “randbetween” function in excel) on each peak area 

value defined for each model was applied. Additionally, three additional matrices were obtained with virtual 

peak area values defined according to activity groups. This time, random values were assigned (using 

“randbetween” function) to the virtual feature based on the following conditions: (1) in accordance with 

biological activity groups, with peak area values in group 1 (the less active) ranging from “1.00E4” to “5.00E5”, 

in group 2 from “5.00E5” to “2.50E7” and in group 3 from “2.50E7” to “1.25 E9”, (2) not in accordance with 

biological activities with values in group 3<group 2< group 1 or with values in group 2<group 1< group 3. 

Finally, a last assay was performed with completely random peak area values assigned to the virtual feature 

based on the initial matrix range (from “8.96E3” to “7.68E8”) or on a smaller range (from “8.96E3” to 

“7.68E5”) for the 19 samples. 

These experiments were repeated three times to obtain three matrices for each condition (except for matrices 

where the peak area value of virtual feature range from “8.96E3” to “7.68E8” with a random variation of 10%), 

which were all analysed by the FiBiCo script. The results generated were compared, especially the position of 

the virtual feature in the “super list” and which models allowed its selection. 

 

2.9. NMR pharmacophoric deconvolution approach 

Fractions C18-1 to C18-5 were dissolved in deuterated methanol (10 x 0.75 ml) from Eurisotop, (Saint-Aubin, 

France) at a concentration of 5 mg mL-1. Acquisitions were performed on a Bruker NMR spectrometer operating 

at 500 MHz. COSY spectra were acquired on 2 scans, 4134 points on F2 axis and 512 points on F1 axis. Spectral 

processing was performed using the Plasmodesma program, written in Python and based on the SPIKE library 

[49,50]. 
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3. Results and Discussion 

 

As identifying relevant active molecules from complex mixtures represents a major challenge in NP drug 

discovery, this study here proposes a complete workflow to target bioactive compounds from a crude extract, 

based on a combination of fractionation, metabolomics and chemometrics. It is divided into three steps, namely 

the Explorative-Solid Phase Extraction (E-SPE) followed by the acquisition of biological and chemical data and 

the biochemometrics analysis with the combination of four statistical models (Fig. 1). The last step required the 

development of the new FiBiCo script as described below and available in Supplementary information S1. 

 

3.1. Development of the bioinformatics tool to FInd BIoactive COmpounds: “FiBiCo” script 

 

3.1.1. Statistical models  

 

So far, different models have been described in the field to link biological to chemical data, mostly linear 

Pearson correlation, PLS and PLS-DA. However, not many compare the results obtained from several analyses 

[37]. This is the reason why, in the present study, it was chosen to combine results from complementary 

univariate and multivariate models, namely Spearman correlation, focalised-PCA, PLS and PLS-DA. This 

should provide a more comprehensive view for the identification of bioactive compounds taking advantages of 

the differences between all those statistical approaches [51]. Spearman correlation is a univariate statistical 

approach, which measures the strength of correlation between two variables (i.e. peak area and biological 

activity) by evaluating their monotonic relationships (rank correlation coefficient). In this study, positive 

Spearman correlation scores (r) closer to 1 represented features, which peak area values seemed to increase along 

with biological activity. F-PCA, which was developed by Falissard et al. [52], while never used in the field of 

NP until now, revealed to be an interesting feature selection strategy. In fact, this model relying on Pearson 

correlation (linear correlation) allows to visualize simultaneously on a graphical representation, both correlations 

between a variable of interest Y (i.e. biological activity) and a set of variables X (i.e. feature peak areas) and 

correlations between X variables themselves. Like PCA, it corresponds to the projection of a correlation matrix 

in a two-dimensional plane, but unlike PCA, it accurately represents correlations of a given variable with the 

others (represented by the radius of the concentric circles) and even to test the statistical significance at the 5% 
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level (represented by the red circle). The F-PCA plot center then corresponds to the variable of interest Y 

(biological activity) directing the analysis, whereas other variables (X) are represented by dots (i.e features). 

Their colour, localisation and organization around this central point allow to define the two types of correlations 

previously described. Consequently, the closer the feature is to the center, the closer to 1 (or-1) is the correlation 

coefficient. The red circle delimits statistical significance at the 5% level and allows to highlight dots with 

significant positive or negative correlation. Moreover, two dots close to one another indicate a strong positive 

correlation between these features themselves, while two diametrically opposed dots indicate a strong negative 

correlation between them. Partial Least Square (PLS) and Partial Least-Squares with Discriminant Analysis 

(PLS-DA) models are multivariate linear regression methods, commonly used in biochemometrics [53]. These 

supervised methods differ from PCA, because they allow to maximize the covariance of independent variables 

(peak area in our case) with a dependent variable (i.e. biological activity). PLS-DA allows to sharpen the 

separation between defined groups (i.e. nonactive/moderately or active fractions) of observations, by rotating 

PCA components such that a maximum separation among classes is obtained, and to understand which features 

carry the class separating information. Many values are employed in PLS for feature selection, including PLS 

loadings, weights, variable importance on projection (VIP), regression coefficients (RC), target projections, and 

selectivity ratio (SR) [54–56]. To date, VIP and selectivity ratio are the most popular ones in metabolomics [57]. 

The combination of all those models appeared as a new useful tool to comprehensively highlight features of 

interest. Metabolites appearing with high score on several statistical models strengthen their importance to 

explain biological activity observed in the extract and fractions, and thus confirming their potential effect on the 

biological target studied. 

3.1.2. Design of the script  

This script was written using R Software (CRAN) to perform an automated processing of biochemometrics 

analyses on MacOS or Windows systems. It was designed to allow any user to perform the analyses on his/her 

own dataset. Therefore, it was very important that the operator could define and modify some parameters to 

improve methodology efficiency in accordance with his/her own data. In the same way, the file containing LC-

MS and biological activity data to be read by the script was arranged as a simple matrix in a comma separated 

values (.csv) file. In this matrix, columns contained in the following order: sample names, groups, biological 

activity and peak areas or intensities of the different features “m/z_RT” detected. The script was divided into five 

steps (Fig. 2) and used “MetaboAnalystR” [44], "psy" [45], "mdatools" [46], "readr" [47],"psych" [48] packages. 
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The first step consists in filling information in the Rscript section “Define important information” with (1) 

general parameters (operating system, file path to download the data matrix and working directory to export the 

results); (2) specific parameters according to the biological assay (biological activity, range and colours for 

groups ranked by ascending order); (3) parameters for normalization of raw data matrix (choosing options for 

sample normalization, data transformation and data scaling) [58] and (4) parameters for statistical analyses and 

graphical representations (as xy axes used for PCA and PLS with the associated titles and legends, etc..). After 

this first unique required contribution, the following 4 steps can be run successively without any more input from 

the operator. The second step of the script consists in importing, checking and normalizing the data matrix. The 

third step proceeds to the chemical diversity characterization of the fractions with PCA analysis. One output of 

this third step includes a graphical representation of the PCA score plot allowing the operator to assess if the best 

components to describe his/her data have been defined appropriately, and to highlight potential outliers. The 

fourth step is devised to perform biochemometrics analyses with the four chosen statistical models: Spearman, 

F-PCA, PLS and PLS-DA. Each model allows to determine the link between peak area (or intensities) and 

biological activity. Finally, the last and most important step in the biochemometrics tool designed in the 

present study, is the combination of all statistical results generating a “Super list” of features presenting a high 

score in the four models. It then highlights the metabolites for which the presence most probably explains the 

activity observed for the initial extract. 

For the fourth step performing all biochemometrics analyses, a first output devised in the script was the 

generation and exportation in the working directory of one table (in a .csv file) per model with all the results 

obtained, together with the associated graphs (.pdf) as “Spearman score plot”, “F-PCA score plot”, “PLS score 

plot” and “PLS-DA score plot” (Supplementary information S2.1). To get a first overview of all detected peaks 

and all highlighted ones according to each model independently, each table was implemented with an additional 

classification column with importance levels as “High/Medium or Low”. A combined graph representing the 

results of the four models was then created (with the colour code blue for “high”, orange for “medium” and grey 

for “low”). To perform the classification, it was necessary to define conditions for each model (Table 1). While 

Spearman resulted in only one score of correlation (“r” coefficient) and was easier to classify, PLS and PLS-DA 

statistical models generated several important scores. Therefore, only few of them were selected for PLS and 

PLS-DA. So far, selectivity ratio for PLS and VIP score for PLS-DA have been reported to be the most 

important scores for interpretation of differences between groups or samples [33,35,59]. However, they did not 

reflect if the correlation was positive (activity was due to the presence of peak) or negative (activity was due to 
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the absence of peak). Consequently, it was required to also take into account the sign value of regression 

coefficient for PLS model, and the peak area concentration of features in the groups for PLS-DA model. For F-

PCA, the classification was carried out based on the graphical results, taking into account the three parameters 

defined as the correlation score (corresponding to the distance for each feature to the centre of the graph), the 

sign of the correlation and the significance of the score (corresponding to features localised inside the red circle 

of the graph). This latter score was calculated as reported by Falissard et al.[52]. Some other parameters were 

calculated and reported in the table during the script (cf values in italic font in Table 1). While they were not 

used for subsequent classification, they were kept available in the final table, as they could be useful for further 

in-depth interpretation. 

For the final step of the script combining all the results from each independent model, it was chosen to allow the 

operator to define a maximal number of interesting ions for each model to obtain a suitable and easily 

interpretable list. It’s important to note that the resulting final number of interesting features can be less if a 

smaller number of features (or even none) is in accordance with the defined limits in each model. For example, if 

the operator decided to choose a maximum of ten potential bioactive features per model, the “Super list” would 

contain a maximum of forty features (from 0 to 40). To focus on metabolites having a high score on several 

statistical results, the output table was designed to contain annotations identifying which model(s) allowed the 

selection of metabolites. Moreover, the distribution of this model-dependent selection was graphically 

represented on a Venn diagram. Additionally, after normalization of each model score (range 0-1), a global score 

for each feature was then calculated either by using the sum (range 0-4), the mean (range 0-1) or the Euclidean 

distance to 0 (range 0-2). Graphical representation of the “Super list” was finally generated as radar charts for 

each feature ordered by the calculated global score. 

 

3.2. Application to the marine-derived P. chrysogenum MMS5 extract 

 

Following an initial screening of fungal extracts from our in-house library on MCF-7 breast cancer cell 

proliferation, extracts from the marine-derived Penicillium chrysogenum MMS5 isolated from cockcles 

displayed strong inhibition whatever the growth medium used with 57-66% inhibition on CYA,YES and PDA 

media at 10 µg.mL-1 (data not shown). It was found that the activity of this extract was related to high amounts 

of ergosterol, which was recently described as cytotoxic on MCF-7 cells [43] (Supplementary information S2.2). 
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The proposed workflow was then applied to this MMS5 extract to evaluate its ability to highlight this bioactive 

compound. 

 

3.2.1. Explorative-solid phase extraction: Bioactivity elution matrix 

 

Explorative-solid phase extraction on the crude extract was carried out with three stationary phases classically 

used in the NP field (SiOH, C18, LH20) and a polymeric phase (StrataX). Those phases allow the fractionation of 

chemical constituents of the extract according to their physic-chemical properties, such as polarity and 

hydrophobicity. As one fraction from SiOH (SiOH-5) did not present any measurable mass, a total of 19 

fractions (4, 5, 5 and 5 for SiOH, C18, LH20 and StrataX, respectively) were submitted to biological assay 

(MCF-7 proliferation inhibition), along with the positive control corresponding to the crude extract eluted 

without any stationary phase (CE) and a reconstructed crude extract (RCE). These latter RCE were obtained by 

mixing the fractions recovered from each column in the same proportions. This allowed evaluation of potential 

degradation of compounds present in the CE. For an easier visual representation, data results were sorted in an 

elution matrix (Fig. 3), where fractions were coloured in three groups according to their proliferation inhibition 

activity: red (0-20%), orange (20-40%) and green (40-60%). The activities ranged from 0 to 54% and the amount 

of fraction collected suggested a homogeneous separation of NPs present in the crude extract among them. As an 

example, all fractions from C18 column presented similar amounts (around 7 mg), while their corresponding 

antiproliferative activities were different, from no inhibition (C18-1, C18-2 and C18-3) to higher inhibition (43% 

and 50% for C18-4 and C18-5, respectively). SiOH column was the less efficient separation strategy as most of 

the weight was recovered in fraction SiOH-2 along with most of the activity, contrarily to SiOH-5 which was not 

tested due to the absence of mass. 

Interestingly, from this elution matrix, a first insight into the chemical nature of bioactive compounds could be 

hypothesized as being rather non-polar. Indeed, highest activity levels were observed in the last fractions of 

reversed phase and in the second fractions of normal phase columns. From this perspective, LH20 and StrataX 

columns also seemed to release the most active compounds in the last fractions meaning hydrophobic 

interactions may play an important role in these columns [60]. Interestingly, sufficiently distinct activity profiles 

were observed for C18, LH20 and StrataX columns, allowing further comparison of their respective fraction 

compositions. It is important to note that several compounds should be responsible for the activity as a slight 

inhibition was observed for LH20-1 while this activity was lost for the following fraction and recovered 
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afterwards. Finally, the maximum of proliferation inhibition obtained for individual fractions appeared at similar 

levels as RCE, meaning there was no loss of activity during fractionation and that activity was not depending on 

synergistic effect between compounds from different fractions. However, activities of the four RCE (48-51%) 

while close to the initial CE activity (61%), were slightly lower, probably in relation to the mass loss on the 

column.  

3.2.2. Chemical profiling and samples characterization 

 

All fractions obtained from E-SPE were analysed with liquid chromatography coupled to high-resolution mass 

spectrometry (LC-HRMS) to compare their chemical profiles. Peaks only appearing in active fractions and not in 

inactive fractions were potential candidates for the observed bioactivity. However, no differences were revealed 

by manual comparison of the chromatograms, as their noticeable differences (corresponding to major peaks) 

were not linked to activity modulation (Supplementary information S2.3). Moreover, this manual inspection 

tends to be a very time-consuming task, in particular when differences are not obvious and if the active 

compounds correspond to low intensity peaks. Therefore, in this configuration, a metabolomics strategy appears 

more appropriate for the analysis of LC-MS profiles in regards to measured cell proliferation inhibition. This 

allows a more comprehensive description of the chemical composition of each fraction. Thus, automatic peak 

detection was here performed on raw chemical profiles by using Mzmine2 software [20], which allowed to 

obtain a list of 795 individual features among all samples, corresponding to peaks characterised by their m/z 

values and associated retention times (referred as “m/z_RT”), with their respective peak areas. The aligned data 

matrix was amended with biological data (inhibition percentages and groups as defined previously) and applied 

to the newly developed R FiBiCo script for statistical analyses.  

After the first two steps consisting of filling needed information, defining appropriate parameters, uploading and 

normalizing the data, the script proceeded to the third step. The chemical diversity of fractions obtained from the 

E-SPE was then investigated using principal component analysis (PCA), an unsupervised multivariate statistical 

approach. PCA is based on a linear transformation that preserves as much of the variance in the original data as 

possible in a lower dimensional space (usually two- or three-dimensions). The first three components of the PCA 

explained 78.6% of the total variability of the model (with 41.7%, 28.3% and 8.3% for components 1, 2 and 3 

respectively). PCA score plot (Fig. 4A) obtained for the components 1 versus 2, revealed that the chemical 

composition of the fractions from fractionation using SiOH column were very different from the other fractions. 

One exception was SiOH-2, which corresponded to the most active fraction of this specific fractionation. This 
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confirms that separation on this phase was orthogonal to the other E-SPE phases. Interestingly, the PCA seemed 

to show that bioactive samples stood out from the others according to component 1. However, no feature on the 

loadings plot (Fig. 4B) related to the observed biological activity could be selected from PCA. Therefore, 

additional specific statistical models provided by the R FibiCo script were needed to provide accurate insight 

into the biologically active chemical constituents. 

 

3.2.3. Biochemometrics analysis 

After running the fourth step of the script corresponding to the biochemometrics analysis, the four statistical 

models returned very interesting features “highly” related to the biological activity (Table 2). This observation 

was consistent with the possibility to find bioactive metabolites produced by P. chrysogenum. Differences in 

features importance levels were observed. For example, among the 795 features detected by LC-MS, the script 

allowed to highlight 50, 42, 38 and 51 features with “high” importance level for Spearman, F-PCA, PLS and 

PLS-DA, respectively. 

These features of interest were highlighted in blue (“high” importance level) on the combined graph representing 

the results of the four models (Fig. 5). Spearman score plot (Fig. 5A) displayed two main groups of 

chromatographic peaks indicating potential bioactive compounds were either moderately polar (RT=10-15 min) 

or apolar (RT=20-28 min). Similarly, F-PCA (Fig. 5B) also revealed two groups of “high” importance features: 

one in the upper right corner and another in the upper left corner presenting many dots being more significantly 

correlated to the activity (because closer to the central red point representing the biological activity variable) 

with r coefficients between 0.6 and 0.8. In accordance with the previously defined parameters for the 

classification, these features (coloured in blue) were highlighted because they had both an absolute F-PCA score 

value significantly different from 0 at the 5% level (inside the red circle) and a positive correlation sign. Among 

these highlighted features, F-PCA allowed to obtain additional information of the relationship between features 

themselves. In fact, many of these dots were closely located on the graph because they also correlated between 

them, meaning they possessed similar presence pattern across fractions. However, no strong negative correlation 

was observed between them (absence of diametrically opposed blue dots). The fact that two groups of features 

were observed in contiguous quadrants could mean that not only one compound (but at least two) has an 

influence on the activity observed. Interestingly, PLS model results (Fig. 5C) highlighted similar peaks as 

Spearman in the RT range 20-28 min. Additionally, the two first VIP from PLS-DA model (Fig. 5D) seemed to 

highlight features at 26.8 min presenting high area value in the most active group of samples (group 3). The 
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results obtained from PLS and PLS-DA gave satisfying R² values (0.82 and 0.96 respectively), meaning the 

models were correctly fitting the data, allowing to trust their results [61,62]. From these first observations, it 

appeared interesting to compare highlighted features and especially bring out those which were common in all 

models. This is where the last step of the FiBiCo script was carried out to provide a “Super list” of most 

interesting features and their corresponding radar charts (Supplementary information S2.4 and S2.5), based on 

the combination of the top ten of each model. In the case of P. chrysogenum MMS5 a total of 23 highly 

interesting features was present in the “Super list”. The corresponding Venn diagram (Fig. 6) displayed the 

importance of combining the results from the four different statistical analyses as they highlight complementarily 

the features of importance. In fact, among the 23 highlighted in the “Super list”, only 2 where highlighted by all 

the models, while 13 were selected by only one of them, i.e. 3, 2, 2 and 6 features by Spearman, F-PCA, PLS 

and PLS-DA respectively (Fig. 6A). It is important to note that complementarity between the models remained 

even when increasing the number of features to select in each model to the top-20, as in this case, only 6 (out of 

41) were highlighted by all the models (Fig. 6B). The user should then be careful on the definition of this 

number of features (10, 20 or more) to select in each model for the construction of the “Super list”, according to 

his/her own data, as if too restrictive, it may exclude features of interests in some models. 

3.2.4. Identification of highlighted hits and confirmation of biological activity 

The “Super list” of 23 features was then thoroughly investigated to annotate and identify the potential bioactive 

compounds. Overlay of their extracted ion chromatograms (XICs) revealed a perfect overlap for 12 out of the 23 

features. Consequently, this overlap suggested that the 12 features arose from the same molecule. It was 

identified as ergosterol, as expected, by comparison to HPLC-UV-HRMS profiles of a standard (Supplementary 

information S2.6). The workflow proposed and developed in the present article, combining E-SPE and 

biochemometrics, was then successful in identifying the main bioactive compound responsible for the initial 

activity observed from a complex mixture (MMS5 P. chrysogenum extract). It is important to note that, while 

present in large amounts in the extract, ergosterol was not detected at high levels by mass ESI-spectrometry, 

because of a poor ionization. This means that the script developed allowed to highlight minor peaks as 

corresponding to potential bioactive compounds.  

The other 11 features highlighted by the “Super list” were further investigated to understand if they could also 

have an influence on the activity observed or be considered as false positives. By grouping them according to 

peak shapes and retention times, eight other putative molecules could be revealed with the following retention 
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times: 1.5 min, 4.2 min, 14.2 min, 15.1 min, 23.4 min, 25.9 min, 26.9 min and 27.3 min. Among these, 

annotation was tentatively carried out based on the observed adducts and the predicted molecular formula 

(Supplementary information S2.7). One of them matched with ergosterol-5,8 endoperoxyde, which was further 

confirmed by the injection of a standard. Its biological activity on MCF-7 breast cancer cell was then confirmed 

with a proliferation inhibition percentage of 48.7% at 50 µM, which is much lower than ergosterol but in 

accordance with our results (lower score: 1.34 compared to 3.51 for ergosterol). Moreover, annotation of 

chaetoglobosin derivatives could be proposed for the compound at 15.1 min (global score of 1.91). Interestingly, 

cytotoxicities were reported on breast cancer cells lines for chaetoglobosins A, C and G with IC50 of 37.56, 19.97 

and 38.77 µM on MDA-MB-231 cells, respectively [63]. The last compound with a good score at 27.3 min had a 

hit for an ergosterol derivative, which could make sense regarding the activities of both ergosterol and ergosterol 

endoperoxyde in this series. Other annotations included putative diketopiperazine derivatives for compounds at 

1.5 and 4.2 min, which biological activities on breast cancer cells were not reported. It is important to note here 

that these corresponded to signals that were not detected in the crude extract. It could be due to a concentration 

phenomenon inherent to the fractionation step. For other features, due to the difficulty to predict the molecular 

formula or a number of matches in databases too important, a good annotation could not be obtained. Further 

purification work is then currently in progress towards these other features that were not identified. In fact, even 

if we cannot ascertain that all the features highlighted by the script have an activity on MCF-7 cells, these first 

results leading to the annotation of two other ergosterol derivatives, with one of them presenting proliferation 

inhibition properties, together with chaetoglobosin derivatives already reported to inhibit breast cancer cells 

proliferation, tends to prove our method is quite powerful. 

3.3. Performance evaluation of the R FiBiCo script 

3.3.1. Estimation of the robustness of the approach 

As calculating false positive and false negative rates revealed impossible here on a real case study, because it 

would require the isolation and testing of all the molecules from the natural crude extract, alternatively, an 

assessment of the robustness of the approach based on the literature was performed. So far, among the 

metabolites reported from P. chrysogenum species (around 200), only 15 metabolites have been reported to 

inhibit breast cancer cells proliferation (including MCF-7) (Supplementary information S2.8). Four compounds 

in this list matched (MS and UV spectra) with features from the peak list (obtained from MMS5 P. 

chrysogenum), namely ergosterol, ergosterol-5,8-endoperoxide, roquefortine C and meleagrin. Additionally, the 
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molecular formula C32H36N2O5 (corresponding to chaetoglobosins A, C and G) also appeared to be a good match 

with one feature at 15.1 min. Its UV spectrum could not be recovered and compared due to low intensity. For the 

other compounds reported to have antiproliferative activity on breast cancer cells from P. chrysogenum species, 

no matches within the peak list of 795 features were found. This is easily understandable as the conditions used 

in the present study may have not been appropriate to obtain the biosynthesis of these other metabolites. Among 

these matches, ergosterol, ergosterol-5,8-endoperoxide and chaetoglobosins corresponding features were 

effectively highlighted by the R FiBiCo script, while meleagrin and roquefortine C were not. However, the 

activity of these two latter compounds originating from the same biosynthetic pathway [64], may be questionable 

as meleagrin has been tested twice on MCF-7 cells with completely different results [65,66]. One reports an IC50 

of 1.9 µM while the other reports no activity at all. It seems like the MCF-7 cell line used in the present study is 

not sensitive to this type of molecules. Preliminary results on fractions enriched with meleagrin and roquefortine 

C (data not shown) tend to prove this absence of inhibition on this cell line. 

Given to these different investigations (dereplication on the “Super list” in table S2.7 and the list of molecules 

from P. chrysogenum reported for their activity on breast cancer cells in table S.2.8), we can assume the .false 

positive and false negative rates of this method are quite low. Nevertheless, the main purpose of the method 

described in the present article is to highlight molecules of interest in an extract and orientate further purification 

work in a more rational way. Even if, there may be false positives, it still helps drastically reducing the number 

of molecules to be further investigated for their biological activity. Additionally, false positives could correspond 

in many cases, to molecules presenting the same chromatographic behaviour than the active ones, and then 

probably to chemically related derivatives, which would also be worth isolating to study structure-activity 

relationships. However, if no false positive is preferred, one easy option is to focus only on hits returned by the 4 

models. In the present case, this would only return two features only corresponding to ergosterol (See Table 

S.2.7). 

3.3.2. Virtual trainning 

While the application of the workflow to a real case proved to be successful in the detection of the main active 

compound, further evaluation of the FiBiCo script was performed with virtual modifications of the data matrix to 

verify its ability to detect interesting features and investigate its limits. A virtual feature was then added on the 

initial MMS5 P. chrysogenum data matrix with different peak area values according to proliferation inhibition 

for each sample. A total of 16 matrices were constructed with one additional feature, which peak area values in 
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the 19 samples, were attributed according to linear, exponential, logarithmic, monotonic, non-monotonic or 

random relationships to biological activity. To avoid perfect fit and be closer to real conditions, random 

variations of 30 and 50% were applied on each peak area value defined for this additional feature in the different 

matrices. After uploading the matrices on the R FiBiCo script, the results obtained were analysed and reported 

on a graphical representation (Figure 7 and Supplementary information S2.9). For each assay, the position of the 

additional virtual feature in the “Super list” was picked together with the information on which of the 

biochemometrics models allowed the selection of this feature. Data results obtained with a random variation of 

30% performed in triplicate for all relationships (Fig. 7) revealed that R FiBiCo script was able to highlight the 

additional feature for all meaningful relationships except for the random model, for which no hit was expected. 

The selection of the additional feature was very good when the relationship was linear or logarithmic, i.e. 

detected by three or four statistical models (Spearman, F-PCA, PLS and PLS-DA) and with the best global score 

in the super list (ranking 1st). However, for other activity-to-peak area relationships, some statistical models 

appeared to be more adapted. For example, for monotonic and non-monotonic relationships, Spearman 

correlation was the only model able to catch the additional feature. Moreover, while its global score of ranked it 

in the 19th position, it actually ranked in the two first positions in the Spearman model alone, proving the 

relevance of Spearman for this type of relationship. Another example is given by the exponential relationship, 

which was only detected by F-PCA model (in positions 3-5). These results demonstrate the importance to use the 

combination of the four biochemometrics models to highlight interesting features, because in dose-response 

curves, different relationships can be observed between the amount of a compound and its biological activity. It 

is important to note that the previously described experiments were performed on values, which were quite low 

and in a small range (“8.96E3” – “7.68E5”), with a 30% variation on each. These were chosen to test the model 

and approach its limits. Other experiments on broader ranges of values (Supplementary information S2.9) 

showed that increasing the maximal peak area allowed a better detection of the additional feature presenting an 

interesting relationship with activity. This means that for highly detected compounds, more statistical models 

may respond. In addition, the smaller the variation of the values (10 %), the better the detection as well. Further 

assays were also performed using groups of biological activity (not the activity for each of the 19 samples). They 

allowed to confirm the efficiency of the script in the detection, because the additional feature was highlighted 

only if its peak area values in samples of a group were in accordance with biological activity (i.e. 

group3>group2>group1 or group2<group3<group1). 

3.3.3. Comparison with the NMR pharmacophoric deconvolution approach 
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The recrudescence of “omics” and the development of new strategies in bioactive NP research allowed to 

compare our strategy using LC-MS analyses with a recently biochemometrics approach developed by 

Margueritte et al. [49] using NMR pharmacophoric deconvolution approach. This strategy was based on the use 

of an NMR fingerprint obtained by automatic differential analysis of 2D NMR data to target and identify 

bioactive natural product(s) in a complex crude extract. The NMR pharmacophoric fingerprint is obtained 

through the common cross-peaks in the 1H-1H COSY NMR spectra of the active fractions. Common cross-peaks 

give partial structural information about the activity-bearing compound because successive fraction obtained by 

the fractionation should contain shared molecules. Therefore, 1H-1H COSY spectra were recorded for the five 

C18 fractions obtained from P. chrysogenum crude extract. NMR data was processed by Plasmodesma program. 

This program written in Python was developed to process automatically NMR data set and provide the best 

analysis differential of NMR data. To achieve this, Plasmodesma divides NMR data in buckets and measures 

different variables. Then, the generated bucketlist were used by a Python script on the Jupiter notebook 

environment. Areas values of buckets were subjected to a cleaning and symmetrization steps to remove a large 

part of the noise and artefacts. The correlation analysis between spectral features and activity levels was 

performed with the set of regression tools from the scikit-learn library. A linear regression was applied between 

areas values and the bioactivity of fractions to produce the pharmacophoric fingerprint (Fig. 8.B). Its chemical 

shifts of correlation peaks suggested a terpenoid skeleton. The overlay of ergosterol spectrum (Fig. 8.A) and the 

pharmacophoric fingerprint (Fig 8.B) allowed to highlight 14 common cross-peaks (Fig. 8.C), suggesting 

ergosterol was the main molecule responsible for the biological activity. This result was in accordance with the 

previous FiBiCo analysis further confirming its efficiency.  

The use of NMR data was of great interest in this presented case, as ergosterol presents an unusual ionisation 

pattern with low signal in ESI-MS, even though it is a major component of the extract. Therefore an analytical 

method having a more linear link between content and signal should provide an alternate accurate approach. 

In fact, while NMR is able to detect all hydrogenated molecules, it suffers from a lack of sensitivity, making 

minor compounds much more difficult to detect. On the contrary, MS is highly sensitive but is limited by the 

ability of molecules to ionize depending on the ionization source of the instruments. Therefore, it is important to 

remember that all strategies reported in the literature have their limits and can be complementary. 

Conclusion 
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Currently, the central challenge in NP research is the discovery of new bioactive compounds. With the 

recrudescence of “omics” studies in this domain, several strategies based on NMR and MS analyses, are 

currently emerging to highlight and identify bioactive compound from natural complex mixtures at a very early 

stage. In this study, a complete workflow is proposed, which combines explorative SPE and chemometrics tools 

using LC-MS data with the integration of four statistical models (Spearman, F-PCA, PLS and PLS-DA) to 

highlight potential bioactive compounds. Additionally, a script encoded with R software (named FiBiCo) was 

here developed to automatically highlight the most interesting features by including the complementary results 

of all statistical analyses, and made available for the scientific community (Supplementary information S1). 

This complete workflow applied to a bioactive P. chrysogenum MMS5 crude extract, where ergosterol was the 

main active component, successfully highlighted this compound as responsible for the proliferation inhibition of 

MCF-7 breast cancer cells. This allowed to prove the efficiency of the developed R FiBiCo script. This is even 

more interesting as ergosterol was very poorly ionised with electrospray ionization showing that minor 

compounds can be highlighted, which is essential in bioactive natural product research. The performance of the 

FiBiCo script was evaluated with virtual modifications of the data matrix, proving its ability to detect different 

types of relationships between activities and chemical compounds amounts. The complementarity of the 

statistical models proved to be very important, especially if a low false positive rate is preferred. Moreover, the 

performance of the script in picking only one feature (among 796), with low values in a small range and with a 

high variation (30-50%), proved its efficiency to “find the needle in the haystack”. The workflow was also 

evaluated by comparing the results obtained to those given by another recently described automatic 

deconvolution strategy using NMR data. The pharmocophoric fingerprint revealed also ergosterol as the 

bioactive compound, strengthening the validity of the workflow described and developed in the present study.  

Perspective of this work will be to apply the methodology to other bioactive extracts, in the context of drug 

discovery screening programs. It effectively responds to one of the many issues encountered in this field, by 

rationalizing subsequent purification work to directly focus on compounds responsible for the activity. 
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Table 1. Different values recovered from the statistical analyses performed by the FiBiCo script and conditions 

defined for correlation levels classification  

Models 
Values generated and exported 

in the final tables 

Classification of importance levels 

High Medium Low 

Spearman Spearman coefficient score “r” r ≥ 0.5 0.5 > r > 0 r ≤ 0 

F-PCA F-PCA score (combining distance 

and correlation sign) 

F-PCA score > 0 

& Significanta 

F-PCA score > 0 

& Non-significant 

F-PCA score ≤ 0 

Significant & 

non-significant 

PLS Selectivity Ratio (SR) 

Regression Coefficients (RC) 

Variable of Importance in the 

projection (VIP) 

Distances 1 and 2b 

SR ≥ 1  

& RC > 0 

NA 

 

NA 

SR < 1  

& RC >0 

NA 

 

NA 

NA 

RC ≤ 0 

NA 

 

NA 

PLS-DA Variable of Importance in the 

projection (VIP) 

Mean peak areas or intensities for 

each group C1, C2, …, Cx
c  

Regression Coefficients (RC) 

VIP ≥ 1 

 

Cx > C1 & Cx > C2 

& … & Cx > C(x-1)  

NA 

1 > VIP ≥  0.5 

 

Cx > C1 & Cx > C2 

& … & Cx > C(x-1) 

NA 

VIP < 0.5 

 

NA 

 

NA 

a F-PCA score (dot on the score plot) localised in the red significant circle (meaning F-PCA score > limit value 

of significance at 5% level calculated by the “psy” package and depending on the data, especially the number of 

features); b on the PLS loadings plot, distances 1 and 2 correspond to the distance to the point of biological 

activity, and to the regression line, respectively; c the number of defined groups being “x” (maximum x value = 

6) and the xth group being the most active; NA (not applicable) is noted when these values calculated by the 

script were not used for the classification of importance levels. 
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Table 2. Number of LC-HRMS features related to proliferation inhibition of MCF-7 cell lines with high, 

medium or low importance levels in the case of Penicillium chrysogenum MMS5 originating data matrix. 

Importance 

Levels 
Spearman F-PCA PLS PLS-DA 

High 50 42 38 51 

Medium 140 164 221 72 

Low 605 589 536 672 

Total 795 795 795 795 
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Figure 6 
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Figure 7 
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Captions 

Fig. 1. Bioactive natural products discovery workflow based on a combination of Explorative-Solid Phase 

Extraction (E-SPE) and four biochemometrics approaches (Spearman, F-PCA, PLS, PLS-DA). 

Fig. 2. Design of the “ FiBiCo” script with its 5 major steps and the different results generated. At the end of the 

script, one bioactive compound can correspond to several highlighted features on (A), (B) and (C), as the same 

compound can generate several ions by electrospray ionization. 

Fig. 3. Bioactivity elution matrix of the active crude extract indicating for each fraction the corresponding dry 

weight and proliferation inhibition percentage obtained at 50 µg mL-1 on MCF-7 cells (mean of triplicates ± SD), 

with the 3-group colour code defined as red (0-20%) for inactive, orange (20-40%) for moderately active and 

green (40-60%) for highly active samples. RCE and CE correspond to recombined crude extracts with fractions 

mixed in the same proportions and crude extract, respectively. 

Fig. 4. Principal Component Analysis (PCA) score plot (A) of fractions based on the 795 features (LC-MS 

peaks), with the 3-group colour code according to proliferation inhibition (MCF-7) defined as red (0-20%), 

orange (20-40%) and green (40-60%) and the corresponding PCA loadings plot (B). 

Fig. 5. Graphical representation of results obtained from the four statistical analyses: (A) Spearman, (B) F-PCA, 

(C) PLS and (D) PLS-DA. A colour-code “blue/orange/grey” was defined according to the feature importance 

level, with blue corresponding to features with high importance levels, most probably related to bioactive 

compounds. Orange refers to lower but positive relationships, while grey corresponds to features with low 

importance levels. The limit value used to select high important features was represented as a red line for 

Spearman (correlation coefficient (r) ≥ 0.5) and PLS (Selectivity Ratio (SR) ≥ 1 and Regression Coefficient (RC) 

≥ 0). For F-PCA model, the red circle corresponded to the limit value of significance for the F-PCA score at the 

5% level (features inside this circle have positive or negative correlations significantly different from 0). For 

PLS-DA, the greyscale on the right represents the mean peak area values in each group for the top-11 features, 

which are presented by decreasing VIP value (≥ 1) from top to bottom. Highly important features (in blue) 

correspond to those where the mean peak area value in the most active group is higher than in the others. 

Fig. 6. Venn diagrams representing overlapping interesting features returned by the 4 models of the script 

(Spearman, F-PCA, PLS and PLS-DA) with the combination of (A) the top-10 features from each model giving 

a total of 23 features and (B) the top-20 giving 41 features. 
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Fig. 7. Virtual evaluation of the FiBiCo script performance with the addition of a virtual feature in the MMS5 

P. chrysogenum data matrix. The figure presents the conditions tested for the additional feature designing the 

different relationships between peak area value and biological activity. In accordance with biological activity 

obtained from the 19 samples, a peak area value was assigned for the additional feature to represent six different 

relationships: linear, exponential, logarithmic, monotonic, non-monotonic, and random. To be closer to real 

conditions, a random variation of 30% was applied on the peak area values of the additional feature for each 

model to obtain a final range from “8.96E3” to “7.68E5”. The R FiBiCo script was applied on the modified 

initial matrix with this additional feature generating its position in the “Super list” and revealing which models 

allowed its selection. These experiments were performed in triplicate. Additional conditions tested are presented 

in Supplementary information S2.9. 

Fig. 8. NMR pharmacophoric approach applied to the five C18 fractions from P. chrysogenum MMS5 crude 

extract. A) 1H-1H COSY NMR spectrum of ergosterol, B) automatic pharmacophoric fingerprint, C) overlay of 

both with red arrows corresponding to common features. 

 






