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Abstract: Following the fast development of microfluidics over the last decade, the need for methods
for mixing two gases in flow at an overall flow rate ranging from 1 to 100 NmL·min−1 with
programmable mixing ratios has been quickly increasing in many fields of application, especially in
the calibration of analytical devices such as air pollution sensors. This work investigates numerically
the mixing of pure gas pulses at flow rates in the range 1–100 NmL·min−1 in a newly designed
multi-stage and modular micromixer composed of 4 buffer tanks of 300 µL each per stage. Results
indicate that, for a 1 s pulse of pure gas (formaldehyde) followed by a 9 s pulse of pure carrier
gas (air), that is a pulses ratio of 1/10, an effective mixing up to 94–96% can be readily obtained
at the exit of the micromixer. This is achieved in less than 20 s for any flow rate ranging from 1 to
100 NmL·min−1 simply by adjusting the number of stages, 1 to 16 respectively. By using an already
diluted gas bottle containing 100 ppm of a given compound in an inert gas same as the carrier gas,
concentrations ranging from 10 to 90 ppm should be obtained by adjusting the pulses ratio between
1/10 and 9/10 respectively.

Keywords: gas mixing; pulsed flow; modular micromixer; multi-stage micromixer; modelling

1. Introduction

The homogenization of a gaseous chemical mixture is of particular interest in many, sometimes
complex processes with multiple and varied applications [1–6]. This is particularly the case for the
generation of gas mixtures of known concentrations for supplying chemical reactors [7,8] or analytical
devices for their calibration [9,10]. Most of the time, the applied flow rates vary from a few litres per
minute for gas calibration generators [11–13] to several m3 per hour for industrial processes [14].

Today, analytical devices become more and more miniaturized and industrial processes are
increasingly using microfluidic devices to improve energy [15] and chemical reactions [16] yields. Thus,
low gas flow rates, typically less than 1 NmL·min−1, start to be considered. However, some applications
still require flow rates over 1 NmL·min−1 but lower than few hundreds of NmL·min−1. Then,
manipulating gas in microchannels has become a way of achieving the miniaturization of many devices
in several fields of application. Fluids manipulation implies, inter alia, droplets generation [17–19],
multi-phase flows [20,21] and fluids mixing which is a crucial aspect in several fields of application.
Various ways of mixing gas flows presenting a radial heterogeneity (Figure 1a) already exist, going
from passive to electronics- or sound-driven mixing techniques [22] but none have been already
experimentally used to solve for axial heterogeneity (Figure 1b).
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Figure 1. Schematic representation of a two-fluid flow with radial (a) or axial (b) heterogeneity 
before diffusion mixing operates. 

At total flow rates around or lower than a few NmL·min−1 (e.g., for air pollution sensors), low 
mixing ratios become an issue for the usual mixers since they require to control a very small flow 
rate of the fluid to be diluted (typically below 1 NmL·min−1). This implies to rely on highly accurate 
flow controllers which is a real issue for gas flows technologies. However, this issue is negated by 
the pulsed flow mixing, where only the generation time of each fluid matters in the mixing process. 
In this case, the flow pattern is characterized by sequences of alternated slugs of two different gases 
flowing in a channel which are expected to be fully mixed at the exit of the mixer. Such flow pattern 
is obtained by generating alternate pulses of the two individual gas flows while keeping the overall 
flow rate constant. In this case, the mixing ratio depends on the ratio between the generation time of 
the first fluid and that of the second fluid. 

Numerous studies in the literature have focused on the design, manufacture and validation of 
microfluidic chips for the homogenization of liquid solutions as reported in a recent review paper 
[23]. Conversely, far fewer studies have focused on obtaining homogeneous gas mixtures using 
microfluidic devices [24–29], with only one paper to date proposing a way of mixing axially 
heterogeneous gaseous flows [10] (see Table 1).

Figure 1. Schematic representation of a two-fluid flow with radial (a) or axial (b) heterogeneity before
diffusion mixing operates.

At total flow rates around or lower than a few NmL·min−1 (e.g., for air pollution sensors), low
mixing ratios become an issue for the usual mixers since they require to control a very small flow
rate of the fluid to be diluted (typically below 1 NmL·min−1). This implies to rely on highly accurate
flow controllers which is a real issue for gas flows technologies. However, this issue is negated by
the pulsed flow mixing, where only the generation time of each fluid matters in the mixing process.
In this case, the flow pattern is characterized by sequences of alternated slugs of two different gases
flowing in a channel which are expected to be fully mixed at the exit of the mixer. Such flow pattern is
obtained by generating alternate pulses of the two individual gas flows while keeping the overall flow
rate constant. In this case, the mixing ratio depends on the ratio between the generation time of the
first fluid and that of the second fluid.

Numerous studies in the literature have focused on the design, manufacture and validation of
microfluidic chips for the homogenization of liquid solutions as reported in a recent review paper [23].
Conversely, far fewer studies have focused on obtaining homogeneous gas mixtures using microfluidic
devices [24–29], with only one paper to date proposing a way of mixing axially heterogeneous gaseous
flows [10] (see Table 1).
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Table 1. Technological solutions used to obtain homogeneous gas mixtures in microfluidic devices

Short Description/Technology Used Approach Applications Type of
Heterogeneity

Total Flow Rate
(NmL·min−1)

Mixing Time
(s)

Microchip
Design Reference

Fluids collision inducing oscillations
for mixing liquids or gases

Experimental
(liquids) Fuel technology Radial - - Fixed Tesař et al.,

2000 [24]

Multilamination by using V-shaped
microstructures Experimental Chemical reaction

engineering Radial 1000–10,000 6 × 10−4 Modular Haas-Santo et al.,
2005 [25]

Microchannels network generating
discrete concentrations of O2 in N2

Experimental Biotechnology, cell
culture Radial 16.2 4 Fixed Polinkovsky et al.,

2009 [26]

Mixing of 9 gas flows at different O2
concentrations to create O2

concentration gradients
Experimental Cell culture Radial 108 24 Fixed Adler et al.,

2009 [27]

Diffusion between parallel flow
channels through PDMS layer to

create an O2 concentration gradient
Experimental Cell culture Radial 80 20 Modular Lo et al.,

2010 [28]

Splitting of the flow between inlet
and outlet chambers, followed by a

buffer tank
Modelling Calibration gases

generation Axial - 120 Fixed Martin et al.,
2012 [10]

Basic T-shaped mixer Experimental Microcombuster,
fuel technology Radial 5–250 3.7 × 10−3 Modular Huang et al.,

2017 [29]

Multistage mixing microchips for
pulsed gas flow Modelling Gas mixture

generation Axial 1–100 20 Modular This work
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Here, Martin et al. reported a way of mixing such gaseous flows but in a non-flexible approach as
the mixing device was designed for a given flow rate and a given mixing ratio. However, many
processes require to either use several mixing ratios (chemical reactions) or varying flow rates
(industrial processes, calibration of analytical devices) and often both of them. Therefore, another
approach is needed for these applications. Table 1 summarizes the main technological solutions
envisaged for obtaining homogeneous gas mixtures using microfluidic circuits at modular flow
rates and mixing ratios. All these methods except for one have been used to mix continuous gas
flows resulting in radial heterogeneity. Haas-Santo et al. [24] presented a very interesting way of
mixing at flow rates up to 10,000 NmL·min−1, with a mixing time lower than 600 µs by using
V-shaped microstructures that are splitting the flow into numerous sub-flows before recombining them.
Another approach to create various concentrations of gases consists in injecting in two different inlet
microchannels discrete concentrations of gases (pure N2 and pure O2) that are physically mixed in a
three split and recombined levels of a tree-shaped micromixer [25]. In the nine outlet microchannels,
the resulting concentrations of O2 varied from 0 to 100%. In another study, a gradient of O2 in N2

(0–100%) was obtained by using nine parallel inlet microchannels of three different O2 concentrations
(0%, 50% or 100%). The gradient of concentration was achieved by diffusion through the PDMS
walls in between the microchannels [26,27]. Here, the flow rates are smaller, ranging from 1 to
80 NmL·min−1, which corresponds to the investigated flow rates range. However, these methods
cannot be used to generate a single chosen concentration. The gradient method makes it impossible to
pick up one concentration inside the flow and the discrete concentrations method is limited by the
number of concentrations being generated. This latter would also imply heavy wastes of gases, as one
would pick only one channel for the chosen concentration and leave the others to exhaust. Finally,
the basic T-shaped mixer studied by Huang et al. [28] shows homogeneity after only a few millimetres
at 200 NmL·min−1 in a 550 µm × 125 µm (width × height) channel, showing the effectiveness of
the diffusion process while mixing gases. However, this process is not as effective to balance the
concentration of species in an axially heterogeneous flow, because the movement induced by the flow
is opposed to diffusion between the two gases.

The objective of this work is then to develop a flexible mixing device made of microfluidic chips
able to mix and homogenize pulsed gaseous flows at flow rates ranging from 1 to 100 NmL·min−1.
To meet this challenge, the strategy is based on the creation of 4 parallel sub-flows entering buffer tanks
patterned on a microchip in order to decrease the gas linear velocity and promote gas diffusion and
mixing. The gases mixture being recombined passed the buffer tanks. The innovative part concerns the
flexibility of the device with respect to the targeted gas flow rate. Indeed, to adapt to the needs of the
user, a novel multi-stage modular system has been imagined and validated by numerical simulations
in the range 1–100 NmL·min−1.

2. Materials and Methods

2.1. Design of the Microfluidic Chip

The design of all the chips presented in this work have been made using the Autodesk
Inventor software.

2.1.1. Technical Constraints and Objectives

The objective of this study is to develop a design to mix pulses of a standard gas A delivered during
tA = 1 s with pulses of pure air B delivering during tB = 9 s both at the inlet flow rate Q = 5 NmL·min−1,
this case being considered as the extreme case in terms of pulses ratio (tA/(tA+tB)=1/10) and axial
heterogeneity. Afterwards, several copies of this design may be used in series for mixing at higher
flow rates up to 100 NmL·min−1 with the same values of tA and tB. The pressure at the device’s outlet
and the temperature of the gas mixture are set to 1 atm and 23 ◦C respectively. Under these conditions
at Q = 5 NmL·min−1, the volume of a pulse of standard gas A is VA = 0.0832 NmL and the volume of a
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pulse of pure air B is VB = 0.7488 NmL. Finally, the depth of the design is set to 1 mm, so that the mixer
fits into a 5 cm × 10 cm rectangular chip.

2.1.2. Strategy used to Design and Define the Mixing Microchip Pattern and Size

In the case of gases, diffusion coefficients are very high, in the order of 0.1 cm2·s−1 [30], compared
to those of liquid, generally in the order of 1.10−5 cm2·s−1 [7,8]. This makes diffusion very effective at
low flow rates, where the mass transfer by diffusion is significantly higher than that from advection.
This is illustrated by the Peclet number Pe, which is the ratio of the rate of advection to rate of diffusion
and is given by the following equation [31]:

Pe =
Lc × v

D
, (1)

where Lc is the characteristic length (in m), v is the average fluid’s velocity (in m·s−1) and D is the
diffusion coefficient (in m2·s−1).

Increasing the flow rate increases the value of Pe and then makes mass transfer by diffusion less
efficient. Therefore, it is harder to achieve a fully homogeneous mixture at high flow rates by relying
mainly on diffusion. The value of Pe can be reduced by decreasing the fluid velocity. This can be done
either by increasing the cross-section area through which the fluid passes or by splitting the flow.

However, increasing the cross-section is even more interesting because it also increases the contact
area between two mixture layers [32], enhancing the effectiveness of the axial diffusion process.
Splitting the flow into several channels of same cross-section decreases the velocity but it does not
increase this contact area between layers. It is why it has been chosen to focus mainly on increasing
the cross-section and creating an optimized design using buffer tanks.

The volume of this buffer tank must be at least equal to VAB = VA + VB = 0.8333 NmL in order
to properly mix every pulse of standard gas A with a pulse of pure air B at Q = 5 NmL·min−1.
Nevertheless, this volume should be kept close to the volume VAB to minimize the response time of the
mixer. Therefore, the choice was arbitrarily focused on a buffer tank volume that was approximately
1.5 × VAB, that is, 1.2 mL.

Given this latter volume and an imposed depth of 1 mm for the buffer tank, key variables become
its width and its length. At a constant volume, increasing its length implies a decrease in its width and
a reduction in the cross-section area, which would reduce the effectiveness of axial diffusion. On the
other hand, increasing the width creates important variations in fluid velocity, leaving dead volumes
at the edges of the buffer tank. Indeed, Figure 2a shows that there is a corridor with a stable mean
velocity (in green) in the middle of the buffer tank. The velocity then decreases quickly down to almost
0 away from this corridor.
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these maximum dimensions, some convenience distances must be respected between the different 
elements for fabrication and assembly constraints, as illustrated in Figure 3: 
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Figure 2. Velocity amplitude of a 3 cm long and 4 cm wide buffer tank (a) and of a set of 4 buffer tanks
in parallel of 3 cm long and 1 cm wide each (b). The depth is fixed to 0.1 cm, the flow rate at the inlet is
set to 5 NmL·min−1 and the pressure at the outlet is maintained at atmospheric pressure. The velocity
scale is in cm·s−1 and is the same for insets. In red are represented areas with a velocity superior or
equal to 0.5 cm·s−1. Both chips are 86 cm long and 49 cm wide. These simulations were performed
using the Autodesk CFD (Computational Fluid Dynamics) software.

In order to increase the cross-section area without creating large dead volumes, it has been chosen
to combine both aforementioned solutions and split the flow into numerous parallel buffer tanks before
collecting all the fluid back into one single outlet. Figure 2b shows an example with 4 buffer tanks. The
total cross-section area and the length of each of them are equal to those of the buffer tank presented in
Figure 2a but the width of each buffer tank is 4 times smaller. In this way, the dead volumes have been
greatly minimized. Of course, this final geometry may still be slightly improved in absence of size
constraints in order to make the fluid velocity gradient even smoother.

Even though doubling several times the number of buffer tanks would have improved the mixer’s
effectiveness, it has to be fitted into the 10 cm × 5 cm maximum size of the chip. In addition to these
maximum dimensions, some convenience distances must be respected between the different elements
for fabrication and assembly constraints, as illustrated in Figure 3:

- 5 mm between the inlet/outlet and the edges of the chip, to leave space for the fluidic connectors;
- 8 mm for every flow division: 4 mm for splitting and 4 mm for redirecting the flow into the

right direction;
- 3 mm between channels and the walls of the chip;
- 1 mm between channels.
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Because of these parameters, it would not be possible to increase the number of buffer tanks to
8, as it would exceed both target dimensions of 10 cm × 5 cm. Therefore, the 4 buffer tanks mixer
(Figure 2b) is considered as the optimal system for the targeted application.

As illustrated in Figure 3, each buffer tank is 3 cm long and 1 cm wide which, considering the
depth of 0.1 cm, makes the total volume of the 4 buffer tanks equal to 1.2 mL. Finally, the total volume
of the single stage chip including channels and buffer tanks is 1.686 mL.

2.1.3. Elaboration of the Multi-Stage Micromixer

In order to homogenize gases mixtures with the same tA = 1 s and tB = 9 s at higher flow rates,
several stages presenting the same pattern of 4 buffer tanks are connected in series. Thus, a flexible
multi-stage micromixer composed of many identical chips can be easily obtained. As an example,
Figure 4 represents a 4 stages micromixer. The first chip (1 on Figure 4), at the top and bottom of the
assembly, is equipped with inlet and outlet fluidic connectors for 1/16” outer diameter tubings. The
second chip (2 on Figure 4) presents a pattern of 4 buffer tanks on both sides. The third chip (3 on
Figure 4) consists in a single hole to connect the outlet of one chip n◦2 and the inlet of another chip n◦2
and simultaneously to bond the lower part and the upper part of these two chips. Since only holes and
two-dimensional patterns on each side of the stage are required, all these chips can be manufactured
easily using a micro-milling machine. With this flexible design, it is possible to connect many mixing
stages in series, with only one inlet and one outlet.
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Figure 4. (a) Principle of the multi-stage design. The red line displays the path of the fluid flow.
The design is made of 3 different chips: 1. This chip is used to fix a 1/16” outer diameter connector
serving as inlet or outlet ports. It is also the rooftop for microchannels; 2. The chip presents 2 patterns
containing 4 buffer zones each, one on each side of the chip. The outlet of one pattern is connected to
the inlet of the other via a hole. 3. An intermediate chip used as a rooftop for microchannels, separates
the channels of the different chips number 2. (b) 3D schematics of the 4-stage mixer.

Considering that a single chip is made of 2 stages, the total volume of one double side chip (2 on
Figure 4) including channels and buffer tanks is 3.372 mL, increasing the mixing capacity to mix pulses
of gas A of tA = 1 s with pulses of gas B of tB = 9 s at a theoretical flow rate Q = 10 NmL·min−1.

2.2. Methodology for Simulation of the Gas Flow and Mixing

Several simulations have been made to determine the impact of the number of stages and the
flow rate variations over the homogeneity and the time needed to achieve a steady state at the
outlet. These simulations have been conducted for a compressible gas phase using the Autodesk CFD
(Computational Fluid Dynamics) software and all the parameters used, and their values are listed
in Table S1. The gases used for these simulations were air and formaldehyde. The temperature was
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considered constant all over the micromixer and equal to 23 ◦C. Reynolds number was calculated to be
110 at the inlet of the micromixer, which has the lowest section and highest flow rate (100 NmL·min−1)
in the entire micromixer (1 mm2). This indicates that the flow is laminar in the whole system. In practice,
A may represent a mixture of gas pollutant already very diluted in air (typically commercially available
mixtures with concentrations in the range 0.1–100 ppm). However, the diffusion coefficient between
formaldehyde and air (0.176 cm2·s−1) is very close to the self-diffusion coefficient of air (0.178 cm2·s−1),
so the results would be identical.

The mixing of both gases at different points along the flow pathway was monitored using a
scalar variable denoted S which is representative of gas A concentration in the mixture. For pure
formaldehyde, the scalar was 1, while for pure air the scalar was 0. Therefore, a fully homogeneous
mixture made of half formaldehyde and half air would have then got an average scalar of 0.5. In this
study, mixing 1 s of formaldehyde at scalar 1 with 9 s of pure air at scalar 0 led to an average scalar of:

S =
tairA

tairA + tairB
= 0.1. (2)

The properties of the microchips’ material are those of Polyether Ether Ketone (PEEK), which
is a non-reactive material used in many microfluidic applications, especially for tubings and
fittings [33] and easily manufactured by micro-milling machines. An average reference mesh density of
757 nodes cm−3 was used for all the simulations. A comparison, for a flow rate of 25 NmL·min−1 and
a pulses ratio of 1/10, with densities twice higher and lower has been made in order to confirm that
the results achieved a satisfactory precision (Figure S1). Doubling the mesh density led to variations of
the scalar value at the exit of the 4th mixing stage in the range of 2% compared to the reference mesh
density. This was assumed to be a reliable test to validate the mesh density used for the simulations.

The diffusion coefficient between formaldehyde and air was calculated using Chapman-Enskog
equation with a precision of about 8% according to Cussler [34]:

D =
1.86 × 10−3 × T

3
2 ×

(
1

MA
+ 1

MB

) 1
2

p × σ2
AB × Ω

, (3)

where D is the diffusion coefficient (in cm2·s−1), T is the temperature (in K), MA and MB are the
molecular weights of gas A and gas B respectively (in g·mol−1) and p is the pressure (in atm) σAB is
the average kinetic diameter between gases A and B, given by:

σAB =
σA + σB

2
, (4)

where σA and σB are the kinetic diameters of gases A and B respectively. The collision integral Ω is
a dimensionless quantity in the order of 1, which represents the interaction between both gases at
a given temperature. Its value can be more precisely determined by calculating the Lennard-Jones
potential between the two species [34]. Considering Ω = 1 and given the other parameters for gases
A and B having the same properties than those of pure air, the diffusion coefficient used in these
simulations was D = 0.178 cm2·s−1.

The values of both molecular weight M and kinetic diameter σ of air and several Volatile Organic
Compounds (VOCs) are given in Table 2 [35–37], as well as their diffusion coefficient in air, resulting
from these 2 parameters according to Equation (3). The calculated diffusion coefficients of VOCs
in air vary in the range 0.071–0.176 cm2·s−1, the value of 0.071 cm2·s−1 being 2.5 times lower than
air’s self-diffusion coefficient. Because this factor could have an impact on the effectiveness of the
mixing device, a comparison was done between an air-formaldehyde mixture (D = 0.176 cm2·s−1)
and an air-toluene mixture (D = 0.087 cm2·s−1). Even though other compounds such as o-Xylene and
Naphthalene have lower diffusion coefficient in air, toluene was chosen for this comparison because it
is one of the major indoor air pollutants along with formaldehyde.
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Table 2. Diffusion coefficient of several gases in air at 1 atm and 23 ◦C.

Gas Molecular Weight
(g·mol−1)

Kinetic Diameter
σ (Å)

Diffusion Coefficient in
Air (cm2·s−1)

Air 28.97 3.71 [8] 0.178
Formaldehyde (HCHO) 30.03 3.73 [35] 0.176

Acetaldehyde (CH3CHO) 44.05 7.27 [36] 0.074
Benzene (C6H6) 78.11 5.85 [37] 0.089
Toluene (C7H8) 92.14 5.85 [37] 0.087
Ethylbenzene 106.17 6.00 [37] 0.083

p-Xylene 106.16 5.85 [37] 0.086
m-Xylene 106.16 6.80 [37] 0.071
o-Xylene 106.16 6.80 [37] 0.071

Naphthalene 128.17 6.20 [37] 0.078

Regarding the simulations, there were 2 boundary conditions at the inlet, which were the flow rate
and the scalar of the gas entering the channels. The individual gases flow rates were varied depending
on the scenario, while the scalar of the gas at the inlet is 1 for 1 s, then 0 for 9 s alternatively, simulating
pulses of 1 s of formaldehyde alternating with pulses of 9 s of pure air. The boundary condition at the
outlet was 1 atmosphere, since the set-up is supposed to operate at the atmospheric pressure.

The time step of the simulations was always 1 s, with 5 iterations per time step which allowed
attaining a satisfactory convergence criterium (residual value of 1.0 × 10−7). This time step was
verified to be low enough to guarantee reliable results by comparing the convergence criterium with
that of a simulation performed with a time step of 0.1 s. The calculated scalar values were found to
be the same within a difference lower than of 0.5%. However, for simulation time saving purposes,
the time step of 1 s has been preferred for all simulations. For the same reasons, the results were saved
only every 3 time’ steps (3 s).

3. Results

For every simulation, the first pulse of gas A entered the first stage at t0 = 20 s. Because of the
compressibility of the gas, pure gas B was generated during the first 20 s in order to reach a steady-state
flow. Table 3 summarizes all the simulations that have been run, depending on the flow rate of the
gaseous mixture and the number of mixing stages. Flow rates of 1, 5 and 10 NmL·min−1 have not been
studied for 8 and 16 stages since (i) a satisfactory mixing has been reached with only 4 stages at these
low flow rates, (ii) their corresponding response time at the outlet would have been become too long.
Similarly, the 16 stages running at 25 NmL·min−1 was not studied either.

Table 3. Presentation of the simulations realized at different flow rates varying between 1 and
100 NmL·min−1 and numbers of stages in the range 1–16. Configurations marked with a 3 have
been simulated, while configurations marked with a 8 have not been studied. The total microfluidic
circuit volume of the stages set is also calculated and mentioned on the right.

Flow Rate
(NmL·min−1) 1 5 10 25 50 100

Total Volume
(mL)

Number of Stages

1 3 3 3 3 3 3 1.686
2 3 3 3 3 3 3 3.372
3 3 3 3 3 3 3 5.058
4 3 3 3 3 3 3 6.744
8 8 8 8 3 3 3 13.488

16 8 8 8 8 3 3 26.976

The scalar value for pure formaldehyde is monitored at the cross-section’s centre of the
microchannel’s exit of the studied stages, as shown in Figure 5 for the 4th stage. At flow rates
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of 5 and 10 NmL·min−1, the scalar value slowly approaches the target value of 0.1 and stabilizes
afterwards. At high flow rates, the scalar value oscillates around the targeted scalar value and the
amplitude of these oscillations increases with the flow rate. For 50 NmL·min−1, the percentage of
oscillation around the targeted scalar value is close to 20% while for flow rates from 25 NmL·min−1

and below, it is under 5%. This witnesses that the flow rate of 50 NmL·min−1 is too high to achieve a
good mixing and indicates that more stages are required as illustrated in the following (see Figure 6).
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To investigate whether the gas mixing operates in the buffer tanks of a stage or in the channels
connecting the stages, the variations of the scalar value has been plotted versus time for a flow rate
of 25 NmL·min−1 between (i) the inlet and outlet of one of the four parallel tank of the first stage
(Figure S2a) and (ii) the exit of one tank of the first stage and the inlet of one tank of the second stage
(Figure S2b). It is clearly seen that the mixing takes place exclusively in the tanks.

Figure 6 shows for the 4 stages device both variations of the residence time and the percentage
of oscillation around the targeted value as a function of the flow rate for 3 different pulses ratios
(1/10; 1/5; 1/2). As expected, it is observed that the residence time decreases with the flow rate while
the percentage of oscillation at a pulses ratio of 1/10 sharply increases for flow rates higher than
10 NmL·min−1. Assuming that a satisfactory mixing is characterized by a percentage of oscillation
lower than 5–6%, only flow rates up to 25 NmL·min−1 can be considered for the highest pulses ratio
investigated, that is 1/10. For lower pulses ratios, since the axial diffusion pathway for gas mixture
homogenization is reduced, the flow rate to reach the targeted percentage of oscillations is increased.
In other terms, for a given flow rate, the lower the pulse flow rate, the lower is the percentage of
oscillations and better is the mixing. For example, at 100 NmL·min−1, the percentage of oscillations
reaches 64.4%, 6.4% and 1.0% for a pulses’ ratio of 1/10, 1/5 and 1/2 respectively and 24.7%, 2.8% and
0.2% at 50 NmL·min−1.

The percentage of oscillations for different number of stages is plotted versus the flow rate in the
range 1–100 NmL·min−1 (see Figure S3). For a given flow rate and a pulses ratio of 1/10, the percentage of
oscillations decreases with the number of stages since a longer residence time promotes a better gas mixing.

The number of stages requested to achieve a percentage of oscillation lower than 5–6% as a
function of the flow rate and the subsequent residence time is represented in Figure 7 for a pulses ratio
of 1/10. Above 1 NmL·min−1, the number of required stages increases linearly (R2 = 0.99) from 1 to 16
for flow rate ranging between 5 and 100 NmL·min−1, respectively whereas the residence time stays
almost constant in the range 16.2–20.2 s. It means that whatever the flow rate desired, it is possible to
adjust the number of stages to achieve a satisfactory mixing with a constant residence time of around
16–20 s. Furthermore, this number of stages will decrease in case of a higher pulses’ ratio, for example,
1/5 or 1/2.

Micromachines 2019, 10, x FOR PEER REVIEW 9 of 17 

 

possible to adjust the number of stages to achieve a satisfactory mixing with a constant residence 
time of around 16–20 s. Furthermore, this number of stages will decrease in case of a higher pulses’ 
ratio, for example, 1/5 or 1/2. 

 
Figure 7. Number of stages (Δ) required for the oscillations of the scalar value at the micromixer’s 
exit to be lower than 5% of the targeted value 0.1 at flow rates ranging from 1 to 100 NmL·min−1. 
Variations of the residence time (•) with the flow rate for the corresponding number of stages 
required. At 100 NmL·min−1, the 5% threshold is not reached: the percentage of oscillations is 6.1% 
after the 16th stage of mixing. 

Finally, a comparison between an air-formaldehyde mixture, an air-toluene mixture and air-air 
has been made in order to investigate the effect of the diffusion coefficient on the mixing’s efficiency. 

In Figure 8a,b, the scalar value is monitored at the exit of a 2-stages and a 4-stages device 
respectively for different gas mixtures where B is pure air (tB = 9 s) and A is either pure 
formaldehyde, pure toluene or pure air (tA = 1 s) at a given flow rate of 25 NmL·min−1. At the 2 stages 
device’s exit, the amplitude of the oscillations is close to 20% of the targeted scalar value whatever 
the nature of gas B, while it reaches 5 % for the 4-stages device. 

Flow rate (NmL/min)

0 20 40 60 80 100 120

R
es

id
en

ce
 ti

m
e 

(s
)

0

20

40

60

80

100

120

N
um

be
r o

f s
ta

ge
s

0

2

4

6

8

10

12

14

16

18

Figure 7. Number of stages (∆) required for the oscillations of the scalar value at the micromixer’s
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16th stage of mixing.



Micromachines 2019, 10, 205 12 of 16

Finally, a comparison between an air-formaldehyde mixture, an air-toluene mixture and air-air
has been made in order to investigate the effect of the diffusion coefficient on the mixing’s efficiency.

In Figure 8a,b, the scalar value is monitored at the exit of a 2-stages and a 4-stages device
respectively for different gas mixtures where B is pure air (tB = 9 s) and A is either pure formaldehyde,
pure toluene or pure air (tA = 1 s) at a given flow rate of 25 NmL·min−1. At the 2 stages device’s exit,
the amplitude of the oscillations is close to 20% of the targeted scalar value whatever the nature of gas
B, while it reaches 5 % for the 4-stages device.Micromachines 2019, 10, x FOR PEER REVIEW 10 of 17 
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One may have expected that the gas mixing efficiency would have been dependent on the diffusion
coefficient in air for the different studied gases, that is DHCHO = 0.176 cm2·s−1; Dtoluene = 0.087 cm2·s−1

and Dair = 0.178 cm2·s−1. However, the simulations shown in Figure 8 demonstrate that differences
between those 3 gases are already very small after 2 stages and negligible for the 4 stages device. Such
results indicate the strong efficiency of the mixing device developed in this work.

Because there is no difference, neither in stability nor in response time, between air, formaldehyde
and toluene, it can be assumed that the simulations of this work can be used for all the VOCs listed in
Table 2, with diffusion coefficients ranging from 0.071 to 0.176 cm2·s−1.

In case of gas A is already composed of a diluted gaseous component in air, the same behaviour
is expected as that observed for a pure gas A, which permits to potentially generate extremely low gas
concentrations of A.

Other alternative solution to dilute more the gas A consists in increasing the ratio between times tA
and tA + tB, for example, tA= 0.1 s and tB = 9.9 s. For a given flow rate of 5 NmL·min−1, the percentage
of oscillation decreases with number of stages: 44.7% (1 stage); 10.1% (2 stages); 3.4% (3 stages) and
0.5% (4 stages). As illustrated in Figure S4, the corresponding residence time is increased from 16s to
around 48 s and 64 s for 3 and 4 stages, respectively.

4. Discussion

As aforementioned, few experimental studies have investigated the mixing of 2 gases in
microfluidic devices (see Table 1) by the radial approach. Only one study [10] refers to the axial
approach and was a numerical investigation like in the present work.

As presented in Table 1, most of the microchips used for mixing gases have a fixed
design [10,25,26,29], meaning that either the flow rate or the mixing ratios or both, cannot be
changed using a single microchip. This is an issue for these devices where many applications
require on line and rapid parameters changes. For instance, this is the case for analytical calibration
instruments or during the generation of a protective gaseous mixture during welding. Conversely, the
technical flexible solution presented in this work offers to the user the possibility to have a modular
system where mixing ratios and total gas flow rates can easily vary in the ranges 1/10–9/10 and
1–100 NmL·min−1, respectively.

Most of gas mixing studies have been based on a radial approach where they required mixing
times ranging between 4 and 24 s (see Table 1) [25–27]. The technical solution proposed by
Polinkovski et al. [25] achieved homogeneity after 4 s using a microchannels network to generate
discrete concentrations of O2 in N2. Two other microchips, used to generate O2 concentrations for cell
culture, exhibited mixing time of 20–24 s [26,27]. In addition, most of them [26,27] proposed a fixed
design limiting any parameters changes. The proposed modular device allows the selection of the
right number of stages needed for a given flow rate in order to obtain a response time of 20 s whatever
the flow rate with oscillations of the targeted concentration lower than 5% (Figure 7).

Haas-Santo et al. [24] and Huang et al. [28] have developed very fast mixers for radial
heterogeneity, with mixing times down to 0.6 and 3.7 ms, respectively. The former allows efficient gas
mixing at very high flow rates up to 10,000 NmL·min−1, while the latter operates at a range of flow
rates (5–250 NmL·min−1) close to the range of interest (1–100 NmL·min−1). However, these devices
require very accurate and expensive techniques in clean rooms to manufacture microchips integrating
small microchannels in the order of 100 µm × 100 µm and 550 µm × 125 µm, respectively [24,28].
On the contrary, the chip has larger channels of 1 mm × 1 mm and tanks of 10 mm × 1 mm, so that it
can be thus easily manufactured using a micromilling machine. Furthermore, these two devices [24,28]
could never have been used for mixing pulsed gas flows since the small microchannels cross section
would have induced the generation of long plugs of gases to be mixed; which in turn would have
required a long mixing time. This fully justifies the development of a specific micromixer for the axial
mixing of gases.
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Moreover, the device allows response times of a few tens of seconds, by accommodating the
number of stages according to the total flow rate, conversely to the approximately 2 min reported by
the other axial numerical diffusion study [10], not to mention its lack of flexibility.

5. Conclusions

A new axial gas pulses multi-stage micromixer has been designed to allow an efficient mixing
between two pulses of different gases (A into B), easily allowing the generation of different gas
concentrations for many applications such as cell culture or analytical calibration.

Once the dimensions and the geometry of a single stage determined and optimized, modelling
was performed by CFD and has demonstrated that the device allows response times of few tens of
seconds. This response time was obtained by adjusting the number of stages (1 to 16) according to the
total gas flow rate (1 to 100 NmL·min−1) to reach 94–95% of the theoretical mixing ratio calculated by
the pulses ratio; and corresponds to the residence time of the micromixer. As an example, a single stage
of 4 buffer tanks achieves homogeneity at a flow rate of 5 NmL·min−1 within 20 s for a pulses ratio of
10% (tA = 1 s and tB = 9 s), while 16s and 16 stages are required for a flow rate of 100 NmL·min−1.

If the gas A is already diluted in gas B at a concentration of 100 ppm (commercial product), then
the targeted concentrations of A at the device exit can vary in the range 10–90 ppm for a given flow
rate by adjusting the A pulses ratio, 1/10 to 9/10 respectively. 1/100 dilution could be also achieved
by combining pulses of tA = 0.1 s and tB = 9.9 s if it is acceptable to have a longer mixing time. In
practice, pulses times can be easily controlled by software using electronic valves to become automatic
and user friendly. Thus, the proposed device could serve for calibration purposes for instance.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/10/3/205/
s1, Table S1: Parameters of the simulations, Figure S1: Comparison of the results for mesh densities equal
to 0.5, 1 and 2 times the reference mesh density with the same mixing parameters (Q = 25 NmL·min−1 and
tA/(tA + tB) = 1/10) at the exit of the 4th mixing stage, Figure S2: Scalar values variations with respect to time
between the inlet and the outlet of a tank from the first stage (a) and between the outlet of this tank and the inlet
of a tank from the second stage (b), Figure S3: Scalar variations at the exit of different numbers of mixing stages
with respect to the flow rate. The variations are presented as a +/- percentage of the targeted scalar 0.1, Figure S4:
Scalar value after 1 to 4 stages at a flow rate of 5 NmL·min−1 for a pulses ratio of 1/100.
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