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Abstract: 

Because the hand is a complex poly-articular limb, numerous methods have been proposed 

to investigate its kinematics therefore complicating the comparison between studies and the 

methodological choices. With the objective of overcoming such issues, the present study 

compared the effect of three local frame definitions on local axis orientations and joint angles 

of the fingers and the wrist.  

Three local frames were implemented for each segment. The “Reference” frames were 

aligned with global axes during a static neutral posture. The “Landmark” frames were 

computed using palpated bony landmarks. The “Functional” frames included a flexion-

extension axis estimated during functional movements. These definitions were compared with 

regard to the deviations between obtained local segment axes and the evolution of joint 

(Cardan) angles during two test motions. 

Each definition resulted in specific local frame orientations with deviations of 15° in 

average for a given local axis. Interestingly, these deviations produced only slight differences 

(below 7°) regarding flexion-extension Cardan angles indicating that there is no preferred 

method when only interested in finger flexion-extension movements. In this case, the 

Reference method was the easiest to implement, but did not provide physiological results for 

the thumb. Using the Functional frames reduced the kinematic cross-talk on the secondary 

and tertiary Cardan angles by up to 20° indicating that the Functional definition is useful 

when investigating complex three-dimensional movements. Globally, the Landmark 

definition provides valuable results and, contrary to the other definitions, is applicable for 

finger deformities or compromised joint rotations. 
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NOTATION 

),,( 0000 zyxB  Global frame and associated axes 

),,( d
s

d
s

d
s

d
s B zyx  Local frame and associated axes of the s segment obtained using the d 

local frame definition. (d  is “R” for Reference, “L” for Landmark or “F” 

for functional) 

2
1

d
d M  Transformation matrix between two local frames obtained with different 

definitions (d1 and d2) for a given segment. 

2
1

s
s T  Transformation matrix between two segments (s1 and s2) for a given local 

frame definition. 

),( αvR  Elementary rotation matrix for a rotation of α  about a v axis. 

)2,1( PPu  Unit vector associated to the vector going from the P1 to the P2 points 

)(tIHAv  Instantaneous helical axis for a given time sample 

flexv  Flexion-extension axis estimated during a functional movement 

varθ  Variation in direction of instantaneous helical axis regarding the final 

flexion-extension axis. 

 totΔ  Total deviation between the local frames obtained with two different 

definitions of a given segment. 

zyx ΔΔΔ ,,  Axis deviations between the local axes obtained with two different 

definitions of a given segment. 

 



BM-D-13-01063 – Rev. 2  Manuscript (unmarked copy) - 4 / 22 

INTRODUCTION 

Assessment of hand and wrist kinematics is relevant for many domains such as hand 

rehabilitation (Carpinella et al. 2006; Ellis & Bruton 2002) and finger musculoskeletal 

modelling (Goislard de Monsabert et al., 2012; Sancho-Bru et al., 2001). However, because 

the hand is composed of many relatively small segments and comprises more than 15 joints, 

the measurement of its kinematics is actually quite challenging. Overall, the hand includes 22 

degrees of freedom (DoF). Flexion-extension is the primary DoF for all hand joints and 

abduction-adduction is also possible for several joints but in smaller amplitudes. For the long 

fingers (i.e. the index, middle, ring and little fingers), while the distal and proximal 

interphalangeal joints have only one DoF in flexion-extension, the metacarpophalangeal joint 

additionally allows abduction-adduction. For the thumb, the interphalangeal and 

metacarpophalangeal joints only moves in flexion-extension whereas the trapeziometacarpal 

(TMC) joint additionally allows abduction-adduction. The other finger joint rotations are 

considered as passive, i.e. not mobilised by muscles. The wrist is generally considered as a 

two-DoF joint (Buchanan et al., 1993).  

Generally, the joint kinematics are deduced from the relative motions between the distal 

and proximal segments (Cappozzo et al., 2005). To this aim, a local frame should be 

computed for each segment for which two definitions exist (Kontaxis et al., 2009). i) An 

anatomical frame represents a local expression of the anatomical reference planes, namely 

sagittal, frontal and transversal, and is generally defined by bony landmarks (further referred 

as “Landmark” frames) or aligned with an external frame during a postural pose (further 

referred as “Reference” frames). ii) A functional frame is specifically intended to describe the 

kinematics of a joint with one of its axes aligned with a joint functional axis (further referred 

as “Functional” frames).  
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For metacarpals and phalanges, the ISB recommended an anatomical frame with a 

longitudinal axis defined between the geometrical centres of the head and the base of the 

segment (Wu et al., 2005). However, these points are neither palpable nor easy to estimate 

experimentally. As a result, alternative local frame definitions are used based on either 

palpable bony landmarks (Buczek et al., 2011; Metcalf et al., 2008) or functional axes 

(Cerveri et al., 2005; Miyata et al., 2004; Zhang, 2003). For the TMC joint, the ISB 

recommended to refer to Cooney et al. (1981) who have expressed the trapezium local frame 

relatively to the third metacarpal one. Because the trapezium bone does not present palpable 

landmark, the TMC joint rotations have been either expressed regarding the third metacarpal 

(Carpinella et al., 2006; Cooney et al., 1981) or investigated through medical imaging of the 

thumb bones (Cerveri et al., 2008; Cheze et al., 2009). For the radius, the recommendations of 

the ISB for the elbow joint are generally used (van der Helm and Veeger, 1996; Wu et al., 

2005).  

Since no consensus exists for the computation of local frames for hand segments, the 

comparison and integration of results from different investigations of hand kinematics is 

complicated at least. In addition, all approaches have specific pros and cons that thwart the 

use of a standard approach. To overcome such issues, the objective of this study was to 

quantify the effect of the local frame definition for hand segments on local axes’ orientation 

and on estimated joint angles. A complete protocol was conducted, including bony 

landmarks’ palpation and functional movements, to implement three definitions: i) the 

Reference frame, ii) the Landmark frame (adapted from the ISB recommendations) and iii) 

the Functional frame. We hypothesise that each of the three definitions will result in specific 

orientations of the local segment axes and that using the Functional frames will reduce the 

kinematic cross-talk between the flexion-extension Cardan angles and the other angles.  
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MATERIALS AND METHODS 

Experimental set up and protocol 

A right-handed male (age: 31 years, height: 184 cm, hand length: 20.6 cm) with no history 

of trauma or pathologies to the right upper limb participated in the experiments after signing 

an informed consent. The comparison of the three definitions was based on a same single 

dataset acquired with this subject. The study of a population sample could have interfered 

with our objectives because the differences between local frame definitions could differ for 

each individual which could introduce a sample bias in the interpretation of the results. 

Three-dimensional positions of hand and forearm segments were tracked using three 

Optotrak camera sets (Northern Digital Inc., Canada, nominal accuracy: 0.3 mm) and 51 

active markers (Figure 1B) with a 25-Hz sampling rate. Each segment was tracked using three 

markers not located on bony landmarks (Kontaxis et al., 2009). To facilitate marker 

equipment, markers were glued on small plates, three per plate, which were then fastened on 

the hand using gel tube bandage for the phalanges, double-sided tape for the first and the third 

metacarpals, and elastic ribbons for the radius.  

First, data were acquired to implement the three definitions. This dataset included the 

position of bony landmarks (Table 1) palpated with a six-marker pointer (accuracy: 0.4 mm) 

and the positions of the markers during a static reference posture (described below) and 

functional flexion-extension movements (Table 2). Then, to compare the three definitions in 

dynamic conditions, the subject performed two test motions: the first consisted in a series of 

long finger flexion motions (straight fingers to fist posture) and the second to the grasping of 

a 7-cm diameter field hockey ball. 
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Local frame definitions  

Three local frame definitions were implemented for each hand segment (Table 3). In 

accordance with the terminology Kontaxis et al. (2009), the Reference and the Landmark 

definitions corresponded to two different implementations of anatomical frames and the 

Functional definition included a functional joint rotation axis. The axes’ names and the sign 

convention were the same for the three definitions:  

• x was the transverse axis and was radially oriented 

• y was the longitudinal axis and was proximally oriented 

• z was the sagittal axis and was dorsally oriented.  

These definitions were different from the ISB recommendations and were chosen for the 

estimation of Cardan angles. The sequence chosen for Cardan angles decomposition was 

flexion-abduction-pronation (x-z’-y’’ in this case) as proposed by An et al. (1979) and usually 

used for finger musculoskeletal modelling. The x axis corresponded to the flexion-extension 

movements and the axes’ orientations were such that flexion, abduction and pronation 

represented positive angles.  

Reference frame 

The Reference frames corresponded to anatomical axes which were aligned with the 

laboratory global frame during the static reference posture (Table 3). To help the subject in 

positioning his hand with regard to the global frame, a “reference board” was specially 

designed (Figure 1). In particular, the calibration of the optoelectronic system was adapted so 

that the reference board was aligned with the laboratory global frame and defined a global x0-

y0 plane with an ascendant z0 axis. The static reference posture corresponded to neutral joint 

positions as described in the ISB recommendations and was such that the third metacarpal 

was aligned with the long axis of the forearm, the long fingers’ phalanges were aligned with 

each other and also with the long axis of the forearm and the thumb phalanges were aligned 
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with each other. Since the TMC joint rotations cannot be visually assessed, it was decided that 

the thumb should be in the palm plane and oriented at 35° of abduction of the third 

metacarpal.  

Landmark frame 

The Landmark frames corresponded to anatomical axes which were implemented using 

bony landmarks’ position and global axes (Table 3). Overall, 30 bony landmarks were 

palpated on the hand and forearm segments (Table 1) to define local frames. The 

implementation of this definition (presented in Table 3) was adapted from the propositions of 

the ISB. For the radius, the landmarks and the local frame computation were identical to those 

proposed by the ISB for the elbow motions (Wu et al., 2005). The local frame of the 

trapezium bone was expressed regarding to the third metacarpal using this transformation 

matrix:  

)82 , ()35 , ()46 , (3 °°° ××= yzx RRRTMC
TRA  [1] 

Functional frame 

The Functional frames were implemented using functional flexion-extension axes and 

global axes (Table 3). The flexion-extension axes of all considered hand joints were estimated 

from the relative orientation of proximal and distal marker clusters during the functional 

movements (Table 2). The functional axis ( funcv ) was the optimal direction vector computed 

from the instantaneous helical axes (IHA) obtained during the calibration movement (Veeger 

et al., 1997; Woltring, 1990). For the TMC joint, the clusters of the third and the first 

metacarpals were used. Contrary to the Landmark definition, the flexion-extension (x) axis 

was computed first and was directly the funcv  vector. 

To assess the accuracy of functional axes’ direction, the angle between the final functional 

axis ( flexv ) and an IHA ( )(tIHAv ) of a given joint was computed for each sample and averaged: 
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Deviations between two definitions 

For each segment, the three definitions were compared regarding the deviations between 

obtained local segment axes. These deviations were characterized by two variables. First, a 

total deviation value (Δtot) between two local frame definitions was computed for each 

segment using the axis-angle representation (de Vries et al., 2010). For example, the total 

deviation between the Reference and the Landmark frame of a given segment is computed as 

follows: 

( ) ( )       with
2

1arccos 1
LRR

LR
L

tot BBMMtrace
×=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=Δ −  ,  [3] 

where the LMR matrix describes the relative orientation of the Reference (BR) and the 

Landmark (BL) local frames. 

Then, axis deviations (Δx , Δy , Δz) between the local axes obtained with two different 

definitions were computed for each segment as the smallest angles between two vectors (de 

Vries et al., 2010). For instance, the three axis deviations between the Reference frame and 

the Landmark frame of a given segment were implemented as follows: 

( )
( )
( )LRz

LRy

LRx

zz
yy
xx

⋅=Δ

⋅=Δ
⋅=Δ

arccos
arccos
arccos

 [4] 

Comparison of estimated joint angles   

The local frame definitions were also compared regarding the amplitudes of the joint 

angles estimated during the two test motions, i.e. finger-flexion and ball-grasping. The 

orientation of the local frames obtained with each definition was updated sample-by-sample 
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based on the orientation of the marker clusters. The joint angles were then estimated, sample-

by-sample and for each definition, by decomposing the relative orientation of proximal and 

distal local frames using the x-z’-y’’ sequence of Cardan angles presented above. For each 

definition, the amplitudes of the three Cardan angles were computed for each joint as the 

difference between the maximum and the minimum angle values observed over all samples of 

a given test motion. 

 

RESULTS 

Accuracy of functional axis  

The variation in direction of IHA vectors (θvar) ranged from 5.3° for the index finger PIP 

joint to 23.4° for the thumb TMC joint with a mean value of 11.04 ± 4.43° among all joints. 

Except for the TMC joint, the θvar value was lower than 15° for each joint.  

Deviations between two definitions  

The deviations between two local frames differently defined varied widely depending on 

the segment considered (Figure 2 and Table 4). The total deviation ranged from 4.9° to 36.9° 

among segments of the long fingers and the radius, and up to 70.8° for the thumb. For each 

segment except those of the thumb, the largest total deviation values were observed between 

Functional and Landmark frames. In correspondence with total deviation values, the axis 

deviations varied largely among segments and ranged between 0.1° to 32.5° for the long 

fingers and the radius, and up to 70.2° for the thumb. On average, the axis deviation (x, y or z) 

between two definitions was around 15°, except for the thumb, where 60° deviations were 

observed. Low deviation values (below 10° in average) were observed between the x axis of 
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the Landmark and Reference frames and between the y axis of the Functional and Reference 

frames. 

Comparison of estimated joint angles  

The differences between Cardan angles obtained with each definition during the finger-

flexion and the ball-grasping test motions are summarized in Table 5 and illustrated in Figure 

3 and 4. For the finger-flexion motion, the amplitudes estimated for the flexion-extension 

were comparable with a maximal difference of 7.0° between two definitions for a given joint 

(Table 5). During this motion, the Functional frames resulted in reduced amplitudes for 

abduction-adduction and pronation-supination with differences with another definition of up 

to 23.6° and 18.8°, respectively. During the ball grasping-motion, the long finger joints and 

the wrist exhibited similar results as during the finger-flexion motion with lower differences 

between definitions. For the thumb, the Cardan angles estimated with the Reference frames 

during ball-grasping resulted in higher amplitudes on all three Cardan angles with differences 

of up to 15° with other definitions (Figure 4).  

 

DISCUSSION 

Currently, the investigation of the hand kinematics remains challenging and there is 

neither a consensus on which method should be used nor a clear proposal regarding what 

could be used (Kontaxis et al. 2009). In this context, it is important to quantify how the choice 

of a method can influence the kinematic analysis in order to facilitate the comparison and the 

integration of results from different studies. With this in mind, the present study conducted a 

complete protocol, including bony landmarks’ palpation and functional movements, for the 

kinematic analysis of hand and wrist joints and compared three existing local frame 

definitions.  
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In agreement with our hypotheses, each definition resulted in specific local frame 

orientations with deviations between estimated axes of about 15° on average and up to 23.6° 

among long fingers’ segments and the radius. Despite these deviations, the three definitions 

showed only small differences regarding flexion-extension Cardan angles, i.e. below 7° for all 

long finger joints. Therefore, for kinematic analyses focusing only on the estimation of 

flexion-extension for the long fingers regardless of the segment orientations, all three methods 

thus appear to be as suitable. However, the Functional frame definition exhibited lower 

amplitudes on the secondary (abduction-adduction) and tertiary (pronation-supination) Cardan 

angles and differed from other definitions for more than 20° on several joints. As Piazza and 

Cavanagh (2000) demonstrated for the knee, using a functional flexion axis tends to reduce 

the cross-talk between the three Cardan angles, leading to an easier interpretation of the 

second and third axis in terms of ‘real’ motion occurring in the joint. However, the larger 

amplitudes observed for the Reference and Landmark frames were not mechanically incorrect 

but resulted of different deviations between the joint rotation axes and the local frames axes. 

The Functional frame method seems therefore easier applicable for the analysis of complex 

hand movements involving combined joint rotations and/or multiple fingers such as 

unscrewing a bottle cap or folding a paper (Rácz et al., 2012).  

Compared to long fingers, the deviations between the three local frame definitions for the 

thumb were particularly large, with axis deviations between two definitions reaching 70°. 

These high values were due to the particular definition of the Reference frame for the thumb 

which consisted of rotating the global frame at 35° of abduction. Although the Reference 

longitudinal (y) axis was similar to the Landmark one (Table 4), the Reference flexion (x) and 

abduction (z) axes were largely deviated from those of the Landmark and the Functional 

definitions (Figure 2 and Table 4). Because of these high deviations, the Reference frames 

resulted in not physiologically interpretable Cardan angles for all thumb joints (Figure 4) and 
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are therefore inappropriate to study thumb movements. Therefore, while the Reference frames 

represent a relatively simple way to investigate finger flexion-extension, when studying hand 

movements involving the thumb, the Landmark and Functional frames are more appropriate 

since they provided more physiological results.  

The present findings confirmed our hypotheses that each definition results in specific local 

frame orientations and that the deviations between local axes result in important differences 

regarding secondary and tertiary Cardan angles. Therefore, care should be taken when 

choosing a local frame definition and when comparing results of studies using different 

definitions. For example, segment and joint kinematics are used in inverse musculoskeletal 

modelling to compute joint torques and muscle moment arms to further estimate muscle 

forces. In this case, two local frame definitions might therefore result in important differences 

regarding the estimated muscle load sharing (Valero-Cuevas et al., 2003; Vigouroux et al., 

2009). However, the comparison of anatomical (Reference and Landmark definitions) and 

functional axes did not point out an ideal method for the kinematic analysis of the wrist and 

fingers. All three methods indeed present specific advantages and drawbacks so that the 

choice of a definition will depend on the research questions and the protocol possibilities. It 

should also be noted that, regardless of the chosen definition, care should always be taken 

when interpreting Cardan angles as neither anatomical nor functional axes represent the “true” 

axes of rotation of a joint (Piazza and Cavanagh, 2000). 

The advantage of the Functional definition was the use of an individualised estimation of 

the flexion axes which resulted in more physiologically interpretable Cardan angles on the 

three joint rotations. However, functional axes might be difficult to estimate for persons with 

compromised joint rotations such as rheumatoid arthritis patients suffering from ulnar 

deviations (Figure 5A) or boutonniere deformities (Figure 5B).  



BM-D-13-01063 – Rev. 2  Manuscript (unmarked copy) - 14 / 22 

If the kinematic analysis only focuses on finger flexion-extension, our results show that all 

three methods provide satisfying results. In that case, the Reference method is very easy to 

implement as only a recording of the marker cluster positions in the neutral posture is needed. 

Such a setup can be interesting when the protocol must be as short as possible, e.g. when pain 

is involved. However, the Reference frames are not sensitive to anatomical differences. For 

instance, patients presenting compromised joint postures might not be able to align their 

segments in the neutral posture so that the Reference definition will poorly represent the bone 

orientation (Figure 5). For similar reasons, the Reference definition was not adapted for 

tracking thumb motions (discussed above). 

The Landmark definition provides a subject-specific and segment-specific estimation of 

the segment orientation and, contrary to the two other definitions, can be used despite hand 

deformities (Figure 5). For these reasons, the use of bony landmarks has been widely 

recommended as a standard for the kinematic analysis of both the upper (Kontaxis et al., 

2009; Wu et al., 2005) and lower (Cappozzo et al., 2005; Wu et al., 2002) extremities. The 

main drawbacks of this definition are the palpation of numerous bony landmarks and, as with 

the Reference method, a risk for cross-talk misinterpretation.  

Several points should be highlighted when considering the findings of this study. For 

instance, the skin movement artefacts, reaching up to 10 mm for finger segments (Ryu et al., 

2006), have not been corrected here and might have different effects on each method. The use 

of plates equipped with markers might also amplify skin movements due to their own inertia 

(Leardini et al., 2005), although no significant differences between the kinematics estimated 

with skin-mounted and plate-mounted markers has yet been proved (Nester et al., 2007). 

Since more than 50 markers were required to track each segment with three markers, further 

studies could investigate how the number of markers influences the estimation of finger 

kinematics in order to optimize experimental procedures. It should also be noted that the 
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functional flexion-extension movements presented here might have included other joint 

rotations which could influence the direction of estimated axes. Nevertheless, since “pure” 

uniaxial motions can neither be actively executed nor controlled by external examination, the 

functional movements were designed to be relatively intuitive and simple tasks while 

reducing at best other rotations than flexion-extension.  

Elaborating standardised kinematic analysis is an important step to improve our 

knowledge of hand kinematics. In the long-term, the main goal would be to build reference 

databases, as it has been done for gait analysis, describing healthy finger free movements or 

grasping tasks. Before that, the local frame definitions tested here should be validated by 

comparing the results obtained with each definition using external markers with the real bone 

movements measured by medical imaging. Overall, designing standardized definitions of 

local frames should remain a priority since, regardless of the measurement technology 

employed, their computation will remain a necessary step to track bone movements and 

estimate joint rotations. 
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Table 1 – Name and location of the palpated bony landmarks. 

Name Location 

Forearm  

   EL Most caudal point on lateral epicondyle  

   EM Most caudal point on medial epicondyle 

   US Most caudal-medial point on ulnar styloid 

   RS Most caudal-lateral point on radial styloid 

Fingers  

   MCb Most dorsal point of the metacarpal base 

   MCh Most dorsal point the metacarpal head 

   PPh Most dorsal point of the proximal phalanx head 

   MPh Most dorsal point the medial phalanx head 

   DPh Most distal point of the distal phalanx head 

Thumb  

   MC1b Most dorsal point of the first metacarpal base 

   MC1h Most dorsal point of  the first metacarpal head 

   MC1u Most dorsal-ulnar point of the first metacarpal head 

   MC1r Most dorsal-radial point of the first metacarpal head 

   PP1h Most dorsal point of the thumb proximal phalanx head 

   DP1h Most distal point the thumb proximal phalanx head 
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Table 2 – Description of the functional movements for the estimation of the flexion-

extension rotation axes. * indicates that Metacarpophalangeal and interphalangeal joints were 

moved at the same time. 

Joints Description of the global posture and the movement executed 

Wrist Forearm mid-pronated lying on a flat surface. The hand is moving 

alternatively in the palmar and dorsal direction with the ulnar side sliding on 

the surface.  

Fingers* Similar posture than for the wrist flexion.  

All long fingers are moving back and forth from straight position to closed 

fist. 

Thumb* Same posture than for the wrist flexion. 

At rest, the thumb tip lies on the middle phalanx of the index finger which 

joints are slightly flexed. Then, the thumb is moved upward and downward 

without deviating from the plane which contained its phalanges at rest. 

TMC joint  Same posture than for the wrist flexion.  

The thumb is moved in a plane as parallel as possible to the plane including 

the dorsal aspects of the second and third metacarpals. Subjects must 

minimise the thumb pronation-supination rotations. 
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Table 3 – Equations used to implement each definition. 

  Local frame definition  

 Reference (R) Landmark (L) Functional (F) 

Radius    

    1st axis 0xx =R  ( )ELRSL ,uy =  flexF vx =  

    2nd axis RR xzy ×= 0  LRSUSL yuz ×= ),(  FF xzy ×= 0  

    3rd axis RRR yxz ×=  LLL zyx ×=  FFF yxz ×=  

Fingers*    

    1st axis 0xx =R  ( )LDLPL ,uy = *** flexF vx =  

    2nd axis RR xzz ×= 0  0zyx ×= LL  FF xzy ×= 0  

    3rd axis RRR yxz ×=  LLL yxz ×=  FFF yxz ×=  

Trapezium    

    1st axis 0)35 , ( xx z °= RR  L
MC

MC
TRA

L T yy 3
3=  flexF vx =  

    2nd axis RR xzy ×= 0  ( )L
MC

MC
TRA

LL T zyx 3
3×=  RFF yxz ×=  

    3rd axis RRR yxz ×=  LLL yxz ×=  FFF xzy ×=  

Thumb**    

    1st axis 0)35 , ( xx z °= RR    ( )LDLPL ,uy =  flexF vx =  

    2nd axis RR xzy ×= 0  LMPUMPRL yuz ×= ),(  RFF yxz ×=  

    3rd axis RRR yxz ×=  LLL zyx ×=  FFF xzy ×=  

*: “Fingers” refers to the 2nd to 5th metacarpals and the phalanges of the long fingers 

**: “Thumb” refers to the first metacarpal and the phalanges of the thumb 

***: LP and LD refer to the landmarks representing the proximal and distal ends of the segment, respectively. 

Other notations are defined in the text or in the Nomenclature section. 
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Table 4 –Mean and range ([min ; max] ; ±SD) values of the deviations (in degrees) 

between two local frame definitions for the long fingers and the Radius (17 segments) and for 

the thumb (4 segments). 

Long fingers and Radius  Thumb 
Land. / Ref Func. / Ref Land. / Func. Land. / Ref Func. / Ref Land. / Func.

Δtot (°)       
   [Min ; Max] [6.5 ; 22.4] [4.9 ; 28.1] [14.9 ; 36.9]  [58.9 ; 68.2 [45.0 ; 70.8] [14.1 ; 34.9] 
   Mean. ± SD 14.4 ± 4.1 16.5 ± 7.9 22.0 ± 6.6 62.9 ± 3.9 53.7 ± 12.2 24.5 ± 8.5 
Δx (°)       
   [Min ; Max] [0.1 ; 14.7] [4.9 ; 27.9] [4.9 ; 32.5]  [57.9 ; 60.3] [44.8 ; 70.2] [12.7 ; 19.1] 
   Mean. ± SD 5.4 ± 4.9 16.5 ± 7.9 16.6 ± 8.2 58.8 ± 1.1 53.0 ± 12.0 15.4 ± 3.0 
Δy (°)       
   [Min ; Max] [6.5 ; 22.4] [0.1 ; 18.9] [9.4 ; 25.9]  [8.2 ; 44.4] [10.6 ; 41.5] [9.5 ; 24.5] 
   Mean. ± SD 14.4 ± 4.1 8.5 ± 5.8 16.8 ± 4.8 21.8 ± 16.2 19.1 ± 15.0 18.3 ± 6.5 
Δz (°)       
   [Min ; Max] [4.1 ; 22.4] [0.5 ; 25.8] [7.5 ; 31.1]  [58.2 ; 62.9] [35.3 ; 69.6] [12.2 ; 39.5] 
   Mean. ± SD 12.4 ± 4.7 12.5 ± 8.8 18.7 ± 7.2 60.6 ± 2.0 48.1 ± 14.9 24.4 ± 11.4 

 

 

Table 5 – Mean and range ([min ; max] ; ±SD) of the differences (degrees) between the 

amplitudes of Cardan angles estimated with the three definitions during the finger-flexion and 

the ball-grasping test motions. Range, mean and standard values computed among the long 

fingers’ joints (4 metacarpophalangeal, 4 proximal interphalangeal and 4 distal 

interphalangeal joints). 

Flexion motion Ball-grasping motion 
Land. / Ref. Func. / Ref. Land. / Func. Land. / Ref. Func. / Ref. Land. / Func.

Flexion-extension       
   [Min ; Max] [0.1 ; 4.2] [0.1 ; 7.0] [0.4; 5.6] [0.0 ; 1.6] [0.1 ; 3.1] [0.2 ; 3.6] 
   Mean ± SD 1.2 ± 1.3 2.3 ± 2.1 1.9 ± 1.5 0.6 ± 0.5  1.6 ± 1.1  1.5 ± 0.9  
Abduction-adduction       
   [Min ; Max] [0.1 ; 8.2] [0.2 ; 23.6] [0.2 ; 21.2] [0.0 ; 5.9] [1.2 ; 10.3] [1.4 ; 5.5] 
   Mean ± SD 4.1 ± 3.2 10.7 ± 9.1 8.6 ± 6.9 1.6 ± 1.6 4.3 ± 2.8 3.6 ± 1.5  
Pronation-supination       
   [Min ; Max] [0.8 ; 12.7] [0.3 ; 13.2] [1.2 ; 18.8] [0.6 ; 6.2] [0.3 ; 6.3] [0.1 ; 12.4] 
   Mean ± SD 4.3 ± 3.5 5.3 ± 3.3 7.2 ± 6.2 2.1 ± 1.7  2.9  ± 2.1  3.0 ± 3.5  
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FIGURE LEGENDS 

Figure 1 – A: Experimental setup showing a subject’s hand apposed on the specially 

designed reference board prior to marker equipment. The bony landmarks were marked by 

dots prior to marker placement. - B: The marker set used to record kinematic data of the 

forearm and the five fingers. 

Figure 2 – Local frames obtained with the three definitions for several segments and 

expressed in the Reference frames. Solid black lines represent Reference frames, solid grey 

lines represent Landmark frames and dashed black lines represent Functional frames. x axes 

are indicated by filled circles and y axes by blank circles. 

Figure 3 – Representative results of the Cardan angles obtained with the three local frame 

definitions during the flexion-extension test motion. MCP4, PIP4, DIP4 refers to the ring 

finger metacarpophalangeal, proximal interphalangeal and distal interphalangeal joints.  

Figure 4 – Representative results of the Cardan angles obtained with the three local frame 

definitions during the ball-grasping test motion. MCP3 and TMC refer to the middle finger 

metacarpophalangeal joint and the thumb trapeziometacarpal joint. The first 50 frames 

correspond to the reaching movement and the 50 others to the grasping posture. 

Figure 5 – Illustration of the differences that could be observed between local axes of the 

proximal phalanx of the index finger computed with different methods for a patient with ulnar 

deviations (A) and for another with a boutonnière deformity (B). Black vectors (xR, yR, zR) 

represent the Reference definition and grey vectors (yL) represent the Landmark definition. 
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