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Abstract

We study a parabolic Lotka-Volterra equation, with an integral term representing

competition, and time periodic growth rate. This model represents a trait structured

population in a time periodic environment. After showing the convergence of the solu-

tion to the unique positive and periodic solution of the problem, we study the in�uence

of di�erent factors on the mean limit population. As this quantity is the opposite of

a certain eigenvalue, we are able to investigate the in�uence of the di�usion rate, the

period length and the time variance of the environment �uctuations. We also give

biological interpretation of the results in the framework of cancer, if the model rep-

resents a cancerous cells population under the in�uence of a periodic treatment. In

this framework, we show that the population might bene�t from a intermediate rate of

mutation.
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1 Introduction

1.1 Motivations

Evolution is a complex phenomenon, which intervenes in various scales of time and population
sizes. In this article, we study an integro-di�erential model of a trait-structured population in
a changing environment. This model aims at analysing the e�ect of environmental oscillations
on the heterogeneity of a population. This question has emerged from the observation of
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phenotypical and genetic diversity inside solid tumours [4, 31]. It is conjectured that this
heterogeneity might be a consequence of the variations in the external conditions during
tumour growth: oxygen and nutrients availability [13], immune system response and presence
of chemotherapy [24] are varying during time. This phenomenon has been coined as bet
hedging [18], in the sense that a large heterogeneity allows a tumour to better react to a
non constant environment. The model we will study arises from more general models of
adaptive evolution of phenotype-structured populations, however we will often come back to
the cancer cells model to give biological insights on the theoretical results.

The study of evolving populations under constant environment has been carried out in
several mathematical frameworks. Game theory and adaptive dynamics for example have
been used in several studies [3, 15, 22, 23]. Replicator-mutator models [1] focus on the
frequency of phenotypes in a group, without studying the actual size of the population.
Stochastic models are relevant for small size populations, and integro-di�erential models can
be derived from them in the limit of large size populations [9, 10]. The integro-di�erential
equations framework has been studied especially in the case of small mutations [7, 12], to
model the evolution of species on very large scales of time. Still in the case of constant
environment, it has been studied with non local competition [11], or for speci�c growth
terms [32].

We will study here an integro-di�erential model with a time-periodic environment, and
investigate the role of mutations in the �nal outcome.

Consider Ω an open, connected bounded domain. We consider the following model:
∂tn(t, x) = D∆n(t, x) + n(t, x)

(
R(t, x)− ρn(t)

)
in (0,∞)× Ω,

ρn(t) =
∫

Ω
n(t, y)dy for all t ≥ 0,

∂νn(t, x) = 0 on (0,+∞)× ∂Ω,
n(0, x) = n0(x) for all x ∈ Ω.

(1.1)

Here, n(t, x) represents the density of individuals of trait x at time t. We suppose that
mutations occur randomly and are reversible, which is represented by the Laplace term of
di�usion in the traits space, with a mutation rate coe�cient D. The term R(t, x) is a time-
periodic function of period T , which represents the growth rate of individuals subject to
a varying environment. The term ∂νn is the normal derivative of the function n on the
boundary ∂Ω.

This model with periodic coe�cients is very similar to models studied in [14, 26, 2].
However, the means and scopes of our article are di�erent.

In [14], the authors consider a general growth rate which is periodic in t. They prove sim-
ilar existence and large-time behaviour results for the solutions of (1.1), but their approach
is slightly di�erent since they consider traits belonging to the full space x ∈ Rk (as in [2, 26]),
while we consider traits in a bounded domain x ∈ Ω, but this is mostly a small technical
di�erence. But our approach diverges after this �rst step, since the authors of [14] are mostly
interested in the asymptotic D → 0, and investigate the in�uence of the time-heterogeneity
for the asymptotic problem they derive. In the present paper, one of our aims is to show
that, in time-periodic media, it is sometimes more advantageous for the population to keep
a positive mutation rate D > 0, in the sense that it could give a larger mean population
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than D ' 0. As an application of our results, we for example derive from [25] that time-
heterogeneity always increases the mean population, while such a positive dependence is not
clear when D ' 0.

The authors of [26] do consider large mutations, but for a speci�c growth term R of
Gaussian type, where only the position of the maximum of R varies over time. They focus
on the fact that, R being there unimodal, the population n is also unimodal and is shifting
over time to follow the maximum of R. Our results derive from a more general model, and
we give a theoretical result on the e�ects of the mutation coe�cient on the �nal population
density.

In [2], the authors carry calculations that are very similar to what we perform in Section 4,
however once again for a particular choice of R, in this case quadratic in x. They demonstrate
that, for a certain range of parameters, a more plastic population can invade a less plastic
one. We show in Section 4 that in general, a species achieving alone a larger mean population
will invade a species less performing when alone.

The di�erent results we will present in this article arise from the study of principal
eigenvalues of periodic parabolic operators. To �nd references on such problems, we refer
the reader mainly to [8, 17, 20, 21], and for more recent works to [5, 6, 25, 27, 28, 29], and
references therein.

1.2 Assumptions and application framework

In the model (1.1), the domain Ω ⊂ Rk is the set of all possible traits for the population, we
consider it to be connected, bounded and smooth.

We make very few assumptions on the growth rate R, except that it is T−periodic with
respect to time and that it belongs to L∞

(
(0, T )×Ω

)
. This will guarantee the regularity of

solutions, without imposing a particular term.
We consider initial data n0 ∈ L∞(Ω) that are non-negative and non null.
As announced in the introduction, we will often consider the framework of tumour growth

to put the theoretical results in a biological perspective. For this, we will consider Ω = (0, 1)
and R of the following form:

R(t, x) = p(x)− α(x)C(t) for all (t, x) in (0,∞)× Ω. (1.2)

In this case, the phenotype x will denote a proliferation trait and a trait of resistance to
a certain chemotherapy. The function p(x) is then the proliferation rate of the cells of
phenotype x, α(x) the e�ciency of the treatment on those cells, and C the concentration of
the treatment.

The question we will ask then, is how one should allocate a dose of treatment during each
period of time? In particular, if one can give a quantity M of treatment during each period,
we want to investigate the in�uence of τ on the outcome, where

C(t) =

{
TM
τ

if 0 ≤ t < τ,

0 if τ ≤ t < T.

A treatment schedule with a small time of drug administration τ can be linked to MTD
(maximal tolerated dose) protocols, where drugs are given at a very high dose for short
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periods of time. A time of administration τ close to the time period T can be linked to
metronomic treatments, where smaller doses of drugs are used but for longer periods of
time.

1.3 Main results and their biological interpretation

We �rst state a proposition on the regularity of solutions of (1.1).

Theorem 1.1 (Regularity). There exists a unique weak solution n of (1.1), with
ρn ∈ L∞(0,∞).

This theorem is obtained from classical analysis arguments, see for example [11, 17].
Before stating the next theorem, we de�ne λ1(R,D) as the �rst eigenvalue of the linear

time-periodic operator L de�ned by:

Lφ = ∂tφ−D∆φ−R(t, x)φ, (1.3)

with Neumann boundary condition on (0,∞) × ∂Ω. The existence of λ1(R,D) is demon-
strated in Lemma 14.3 of [17], in which useful properties of λ1(R,D) can be found.

The long time behaviour of solutions is described by the following theorem:

Theorem 1.2 (Existence, Uniqueness and attractiveness).

� If λ1(R,D) ≥ 0 then all solutions of the Cauchy problem for equation (1.1) converge
towards 0.

� If λ1(R,D) < 0, then there exists a unique positive periodic solution N of (1.1). More-
over, this solution attracts all the solutions of the Cauchy problem with non-negative
bounded initial data, and 1

T

∫ t+T
t

ρn(s)ds converges to −λ1(R,D) as t→ +∞.

To study the long time behaviour of solutions of (1.1), we thus have to study the periodic
solution N in the case λ1(R,D) < 0. Especially, we are interested in the variation of

ρ̄N = 1
T

∫ T
0

∫
Ω
N(t, x)dxdt, the mean limit total population, with respect to the di�erent

parameters of (1.1). As Theorem 1.2 yields that

ρ̄N = lim
t→+∞

1

T

∫ t+T

t

ρn(s)ds = −λ1(R,D),

we have to study the in�uence of D, R and other parameters on λ1(R,D).
We then derive from earlier works on the optimization of principal eigenvalues the fol-

lowing results.

Proposition 1.3 (Minimization of ρ̄N). The mean limit population ρ̄N is a convex function

of R. Consecutively, for a given R̄(x) = 1
T

∫ T
0
R(t, x)dt, ρ̄N is minimal for a constant in

time R.

The proof of this proposition is a direct application of Proposition 2.10 in [27].
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Remark 1. In the framework of cancer treatment, i.e. if R is as described in (1.2), this
proposition gives us a method of minimization of the �nal mean tumour burden. Indeed,
for a given quantity of drug M to be delivered during each treatment period, the protocol
minimizing ρ̄N is C(t) ≡ M

T
. Moreover, if two treatments C1, C2 are of the form:

C1(t) =

{
M
τ
if 0 < t ≤ τ,

0 if τ < t ≤ T
, C2(t) =

{
M
2τ

if 0 < t ≤ 2τ,

0 if 2τ < t ≤ T

then by convexity of ρ̄N , since C2(t) = C1(t)+C1(t+τ)
2

, the mean �nal total population ρ̄N,2
associated to C2 is smaller than the mean �nal total population ρ̄N,1 associated to C1. In
other words, concentrating the same quantity of treatment on half the time of administration
will make the �nal mean population of cells higher. It is also true for a concentration on an
administration time of τ/n, for any n ∈ N. We conjecture it to be true for any real factor of
concentration.

Theorem 1.4 (In�uence of mutations). Decompose R in the following way:

R(t, x) = r(x) + γS(t, x) where

∫ T

0

R(t, x)dt = r(x) for all x ∈ Ω.

Then if S is not zero and R is not spatially uniform, for γ large enough, there exists D0 > 0
such that, in the neighbourhood of D0, the mean limit population ρ̄N is an increasing function
of the mutation rate D.

Remark 2. A biological interpretation of this theorem is that bet hedging tumours are more
successful in some conditions. Indeed, if R satis�es the conditions of Theorem 1.4, then a
tumour with a higher mutation rate D will have a higher mean �nal population. We identify
here the heterogeneity with a high plasticity.

Proposition 1.5 (The case of a non-increasing growth rate). Let k = 1 and Ω = (0, 1).
Assume that x ∈ (0, 1) 7→ R(t, x) is non-increasing for all t ∈ (0, T ), and that ∂xR is de�ned
for a.e. x ∈ (0, 1) and bounded over (0, 1)×(0, T ). Lastly, assume that R(t, ·) is not constant
with respect to x for a non-negligible set of t ∈ (0, T ).

Then D > 0 7→ ρ̄N(R,D) is decreasing.

Remark 3. Proposition 1.5 presents some conditions in which the result presented in The-
orem 1.4 does not hold. Theorem 1.5 in [29] presents a similar result: their proof follows the
same type of reasonning. We will provide here our own proof for sake of completeness.

Proposition 1.6 (Minimization of the minimal size among time). Assume that

R(t, x) = p(x)− α(x)C(t) for all (t, x) ∈ (0,∞)× Ω.

Let Cmax > 0, T > 0 and 0 < σ < 1. Consider the solution nhom of (1.1) associated
with the constant function C(t) = Cmaxσ for all t ∈ (0,+∞) and the solution nhet of (1.1)
associated with the T−periodic function

C(t) =

{
Cmax if 0 ≤ t < σT,

0 if σT ≤ t < T.
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Assume that maxx∈Ω

(
p(x)− α(x)Cmax

)
< 0 and minx∈Ω

(
p(x)− α(x)Cmaxσ

)
> 0. Then

if T is large enough, one has

lim inf
t→+∞

ρnhet(t) < lim inf
t→+∞

ρnhom(t).

Remark 4. Proposition 1.6 gives, in the framework of cancer treatment, an interesting
comparison between constant and "bang-bang" treatments. Indeed, it demonstrates that
in some situations, the population ρn(t) will reach regularly a smaller size if subjected to
a "bang-bang" protocol than if the same amount of treatment is given constantly, even if
the mean limit population ρ̄N is higher, as demonstrated by Proposition 1.3. Biologically, if
ρn(t) reaches a very small size, it is very likely that the population is in fact extinct, and thus
ρn(t) = 0 afterwards. Thus, while the constant treatment reduces the global mean tumoural
charge, the "bang-bang" treatments increases the chances of eradicating the tumour.

The next Proposition is indeed an immediate corollary of Theorem 1.1 of [25], but we
state it here since its biological interpretation is meaningful.

Proposition 1.7 (In�uence of the period). Assume that R is 1−periodic in t and cannot be
written as R(t, x) = R1(t) +R2(x). De�ne RT (t, x) := R(t/T, x). Then T > 0 7→ ρN(RT , D)
is increasing.

We refer to [25] for the proof of their theorem, but will not present here the proof of this
proposition, since it is a very straightforward corollary.

Remark 5. The condition for this theorem to hold does not have a straightforward biological
interpretation, but the outcome is interesting. Indeed, if T is large, the environment RT is
changing slowly, allowing the population n to approach equilibrium values if R is constant
in time on some interval. On the contrary, if T is short, the population faces a fast changing
environment, which does not give it time to adapt to any new situation. Hence, n achieves
a smaller total mean population ρ̄N if T is short than if T is large.

Theorem 1.8 (Competition). Let (n,m) be a solution of:

∂tn(t, x)−D1∆n(t, x) = n(t, x)(R(t, x)− ρn(t)− ρm(t)),

∂tm(t, x)−D2∆m(t, x) = m(t, x)(R(t, x)− ρn(t)− ρm(t)),

ρn(t) =
∫

Ω
n(t, x)dx, ρm(t) =

∫
Ω
m(t, x)dx,

n(0, x) = n0(x), m(0, x) = m0(x),

Neumann conditions for both functions on the border of Ω.

(1.4)

We consider that n0 6≡ 0 and m0 6≡ 0 are non-negative functions on Ω. Suppose that D1, D2

are such that 0 > λ1(R,D1) > λ1(R,D2). Then

n(t, ·) −→
t→∞

0 and m(t, ·)−M(t, ·) −→
t→∞

0,

where M is the T -periodic solution of (1.1) with D = D2.

Remark 6. This theorem ensures that, if two populations with di�erent plasticities are in
competition, the one with the largest equilibrium population will dominate.
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This article is divided as follows: section 2 is devoted to the demonstration of results of
existence, i.e. Theorems 1.1 and 1.2, and Proposition 1.5, which proof is closely linked to
these theorems. Theorem 1.4 is demonstrated in section 3, along with Proposition 1.6, as
both results give interesting insight on treatment protocol choice, when R is of the form (1.2).
Section 4 is devoted to the demonstration of Theorem 1.8 on competing species. Finally,
section 5 presents numerical simulations of the model, illustrating di�erent phenomenons
described earlier.

2 Existence of a T -periodic solution and treatment opti-

mization

Proof of Theorem 1.1. Consider the operator T that associates with ρ ∈ L∞(0,∞) the func-
tion t 7→

∫
Ω
n(t, x)dx, where n is the solution of ∂tn(t, x) = D∆n(t, x) + n(t, x)

(
R(t, x)− ρ(t)

)
in (0,∞)× Ω,

∂νn(t, x) = 0 for all (t, x) ∈ R× ∂Ω,
n(0, x) = n0(x) for all x ∈ Ω.

(2.5)

Clearly, as n0 ≥ 0 by hypothesis, one has n ≥ 0. Moreover, it follows from classical Lp

regularity for parabolic equations that the operator T : ρ 7→ ρn is compact over L∞(0,∞).
Assume that there exist σ ∈ (0, 1) and ρ ∈ L∞(0,∞) such that ρ = σT (ρ) = σρn, with

ρn(t) :=
∫

Ω
n(t, x)dx ≥ 0. Integrating the equation satis�ed by n, one gets

ρ′n(t) ≤ ρn(t)
(
Rmax − ρ(t)

)
= ρn(t)

(
Rmax − σρn(t)

)
on (0,∞),

from which we easily derive σρn(t) ≤ max{Rmax, σ
∫

Ω
n0} for all t > 0. Hence,

0 ≤ ρ ≤ max{Rmax, σ
∫

Ω
n0} and the set of all such ρ is bounded. We can thus apply the

Shaefer �xed point theorem and get the existence of solution n of (1.1), with ρn ∈ L∞(0,∞).
We now prove the uniqueness of such a solution. Let n1, n2 be two solutions of the system

(1.1) with the same initial condition n0. Then the function

ñ(t, x) = n1(t, x) exp(

∫ t

0

ρn1(s)ds)

satis�es the following equation:
∂tñ(t, x) = D∆ñ(t, x) + ñ(t, x)R(t, x) in (0,∞)× Ω,

∂νñ(t, x) = 0 for all (t, x) ∈ R× ∂Ω,

ñ(0, x) = n0(x) for all x ∈ Ω.

(2.6)

By uniqueness of the solution of (2.6), we deduce that:

n1(t, x) exp(

∫ t

0

ρn1(s)ds) = n2(t, x) exp(

∫ t

0

ρn2(s)ds). (2.7)
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Moreover,
∫

Ω
ñ(t, x)dx > 0 for all t ≥ 0 since n0 6≡ 0, thus ρni > 0. By integrating (2.7) on

Ω and derivating in time, we get that ρn1 satis�es the following di�erential equation:

y′(t) = y(t)(
ρ′n2

(t)

ρn2(t)
+ ρn2(t)− y(t)). (2.8)

Since ρn2 also satis�es (2.8) with the same initial condition, we deduce that ρn1 = ρn2 , and
thus that n1 = n2 on [0,+∞)× Ω by (2.7).

Proof of Theorem 1.2. We �rst prove Theorem 1.2 in the case λ1(R,D) < 0. The proof
is organized in three parts: we �rst prove the existence of a periodic solution, then its
uniqueness, and �nally its attractiveness.

Existence Let φ be the eigenfunction of (1.3) associated to λ1(R,D), with normalization∫
Ω
φ(0, x)dx = 1. By de�nition, φ > 0. We de�ne:

ρφ(t) =

∫
Ω

φ(t, x)dx > 0 for all t ∈ R

Consider the following di�erential equation:

y′ = y(
ρ′φ
ρφ

+ (−λ1(R,D))− y). (2.9)

Since
ρ′φ
ρφ

is a T -periodic function, equation (2.9) admits a single T -periodic solution, namely

ρ(t) =
ρφ(t)e−λ1(R,D)t(e−λ1(R,D)T − 1)∫ T

0
ρφ(s)e−λ1(R,D)sds+ (e−λ1(R,D)T − 1)

∫ t
0
ρφ(s)e−λ1(R,D)sds

Notice that this function does not depend on our choice of normalization for the eigen-
function φ. We de�ne the following functions:

Ñ(t, x) = ρ(0)φ(t, x) for all (t, x) ∈ R+ × Ω,

N(t, x) = Ñ(t, x) exp(−
∫ t

0

ρ(s)ds− λ1(R,D)t).

By direct calculations one sees that N is a T -periodic in time solution of (1.1), with

ρ(t) =

∫
Ω

N(t, x)dx for all t ∈ R+.

This concludes the proof of existence of a periodic solution to problem (1.1).
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Uniqueness Let N1 and N2 be two T -periodic solutions of (1.1). We de�ne the following
functions:

Ñ1(t, x) = N1(t, x) exp(

∫ t

0

ρN1(s)ds− ρN1
t),

Ñ2(t, x) = N2(t, x) exp(

∫ t

0

ρN2(s)ds− ρN2
t)

where ρNi = 1
T

∫ T
0
ρNi(s)ds for i = 1, 2. Then Ñi are positive eigenfunctions of

∂tφ − D∆φ − R(t, x)φ associated with the eigenvalues −ρNi respectively. Thus we have

ρN1
= ρN2

= −λ1(R,D), and there exists λ > 0 such that Ñ1 = λÑ2.

We denote f(t) = λ exp(
∫ t

0
(ρN2(s)− ρN1(s))ds). Then f is T -periodic and N1 = f(t)N2.

Moreover f satis�es f ′(t) = ρN2(t)f(t)(1− f(t)). Thus f(t) ≡ 1, and N1 = N2.

Attractiveness Let n0 ≥ 0 be non null, and n be the solution to the Cauchy problem
(1.1).

Let ñ(t, x) := n(t, x)e
∫ t
0 ρn(s)ds+λ1(R,D)t.

Then ñ satis�es:
∂tñ−D∆ñ = ñ(R(t, x) + λ1(R,D)). (2.10)

Let φ0 an eigenvector of operator L associated to the eigenvalue λ1(R,D), and φ̃0 a
principal eigenvector of the adjoint operator. The same computations as in Lemma 6.4 of
[30], with H(x) = x2, yield for all α > 0:

d

dt

∫
Ω

φ̃0(t, x)

φ0(t, x)

∣∣ñ(t, x)− αφ0(t, x)
∣∣2dx = −2

∫
Ω

φ̃0(t, x)φ0(t, x)
∣∣∇( ñ(t, x)

φ0(t, x)

)∣∣2dx.
Let α := 1

|Ω|

∫
Ω
ñ(0, x)φ̃0(0, x)dx, so that, by Lemma 6.4 of [30], with H(x) = x, one has

1
|Ω|

∫
Ω
ñ(t, x)φ̃0(t, x)dx = α for all t > 0. Now, the positivity and boundedness of φ̃0 and φ0

and the Poincaré-Wirtinger inequality yield the existence of a constant C > 0 such that:

d

dt

∫
Ω

φ̃0(t, x)

φ0(t, x)

∣∣ñ(t, x)− αφ0(t, x)
∣∣2dx ≤ −2C

∫
Ω

φ̃0(t, x)

φ0(t, x)

∣∣∣ñ(t, x)− φ0(t, x)× 1

|Ω|

∫
Ω

ñ(t, y)

φ0(t, y)
dy
∣∣∣2dx

≤ −2C

∫
Ω

φ̃0(t, x)

φ0(t, x)

∣∣∣ñ(t, x)− αφ0(t, x)
∣∣∣2dx

since ñ(t, ·)−αφ0(t, ·) is the projection of ñ(t, ·) on Rφ0(t, ·) with respect to the L2(Ω) scalar

product with weight φ̃0(t,·)
φ0(t,·) . It follows from the Gronwall inequality, the boundedness of φ0

and the positivity of φ̃0 that, for some constant that we still denote C > 0, one has:∫
Ω

∣∣ñ(t, x)− αφ0(t, x)
∣∣2dx ≤ Ce−2Ct
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Hence, ñ(t, x)− αφ0(t, x) −→ 0 as t→ +∞.
Next, we will show that ρn(t)− ρN(t) −→ 0 as t→ +∞.
By derivating the logarithm of the integral of the de�nition of ñ, we see that ρñ satis�es

ρ′n(t) = ρn(t)(
ρ′ñ(t)

ρñ(t)
− ρn(t)− λ1(R,D)).

Thus, since ρn(0) > 0, there exists A0 > 0 such that

ρn(t) =
ρñ(t)e−λ1(R,D)t

A0 +
∫ t

0
ρñ(s)e−λ1(R,D)sds

.

Similarly, there exists B0 > 0 such that

ρN(t) =
ρφ0(t)e

−λ1(R,D)t

B0 +
∫ t

0
ρφ0(s)e

−λ1(R,D)sds
.

Thus:

ρn(t)− ρN(t) =
ρñ(t)e−λ1(R,D)t

A0 +
∫ t

0
ρñ(s)e−λ1(R,D)sds

− ρφ0(t)e
−λ1(R,D)t

B0 +
∫ t

0
ρφ0(s)e

−λ1(R,D)sds

=
B0ρñ(t)− A0ρφ0(t) + ρñ(t)

∫ t
0
ρφ0(s)e

−λ1(R,D)sds− ρφ0(t)
∫ t

0
ρñ(s)e−λ1(R,D)sds

(A0 +
∫ t

0
ρñ(s)e−λ1(R,D)sds)(B0 +

∫ t
0
ρφ0(s)e

−λ1(R,D)sds)
e−λ1(R,D)t

Since there exists a > 0 such that ρφ0(t) ≥ a and ρñ(t) ≥ a for all t ≥ 0, we can see that:

(A0+

∫ t

0

ρñ(s)e−λ1(R,D)sds)(B0+

∫ t

0

ρφ0(s)e
−λ1(R,D)sds) ≥ a2

λ1(R,D)2
e−2λ1(R,D)t+O(e−λ1(R,D)t)

as t→ +∞.
We now treat the numerator: we will show that

A(t) := ρñ(t)

∫ t

0

ρφ0(s)e
−λ1(R,D)sds− ρφ0(t)

∫ t

0

ρñ(s)e−λ1(R,D)sds = o(e−λ1(R,D)t).

We �rst decompose A: set µ > 0 such that µ < −λ1(R,D), and write:

A(t) = ρñ(t)

∫ t

µ
−λ1(R,D)

t

ρφ0(s)e
−λ1(R,D)sds− ρφ0(t)

∫ t

µ
−λ1(R,D)

t

ρñ(s)e−λ1(R,D)sds

+ ρñ(t)

∫ µ
−λ1(R,D)

t

0

ρφ0(s)e
−λ1(R,D)sds− ρφ0(t)

∫ µ
−λ1(R,D)

t

0

ρñ(s)e−λ1(R,D)sds

Note that∫ µ
−λ1(R,D)

t

0

ρφ0(s)e
−λ1(R,D)sds ≤ max(ρφ0)

eµt − 1

−λ1(R,D)
= o(e−λ1(R,D)t).
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Furthermore

ρñ(t)

∫ t

µ
−λ1(R,D)

t

ρφ0(s)e
−λ1(R,D)sds− ρφ0(t)

∫ t

µ
−λ1(R,D)

t

ρñ(s)e−λ1(R,D)sds

= ρñ(t)

∫ t

µ
−λ1(R,D)

t

(ρφ0(s)− ρñ(s))e−λ1(R,D)sds− (ρφ0(t)− ρñ(t))

∫ t

µ
−λ1(R,D)

t

ρñ(s)e−λ1(R,D)sds.

Noting that∫ t

µ
−λ1(R,D)

t

|ρφ0(s)−ρñ(s)|e−λ1(R,D)sds ≤ max
µ

−λ1(R,D)
t≤s≤t

|ρφ0(s)−ρñ(s)|e
−λ1(R,D)t − eµt

−λ1(R,D)
= o(e−λ1(R,D)t),

we conclude that all terms ofA are in fact o(e−λ1(R,D)t), and thus ρn(t)−ρN(t) = O(eλ1(R,D)t)
as t→ +∞. Thus, ρn(t)− ρN(t) −→ 0 as t→ +∞.

From this, it is easy to check that ρñ(t) − ρÑ(t) −→ 0 when t → +∞. Thus, φ0 = Ñ ,
and we conclude that n(t, x)−N(t, x) −→ 0 as t→ +∞.

The case λ1(R,D) ≥ 0. First note that n is a subsolution of the parabolic equation
satis�ed by Cφ(t, x)e−λ1(R,D)t, where C is large enough so that Cφ ≥ n0. Hence, in the case
where λ1(R,D) > 0, as φ is periodic in t, one gets n(t, x) → 0 as t → +∞ uniformly with
respect to x ∈ Ω.

If λ1(R,D) = 0, consider again ñ(t, x) := n(t, x)e
∫ t
0 ρn(s)ds. This function satis�es

∂tñ(t, x) = D∆ñ(t, x) + ñ(t, x)R(t, x) in (0,∞)× Ω,
∂νñ(t, x) = 0 for all (t, x) ∈ R× ∂Ω,
ñ(0, x) = n0(x) for all x ∈ Ω.

(2.11)

The same arguments as in the proof of the attractiveness in Theorem 1.2 yield that
ñ(t, x) − C ′φ(t, x) → 0 as t → +∞ uniformly in x ∈ Ω (see for example chap.6 of [30]), for
some C ′ > 0. Next, one has

ρ′n(t) = ρn(t)
(ρ′ñ(t)

ρñ(t)
− ρn(t)

)
,

and we know that ρ′ñ(t)/ρñ(t) − ρ′φ(t)/ρφ(t) → 0 as t → +∞. It easily follows that, up to
extraction, one can assume that ρn converges as t→ +∞ to a non-negative bounded solution
ρ of

ρ′(t) = ρ(t)
(ρ′φ(t)

ρφ(t)
− ρ(t)

)
.

Dividing by ρ and integrating over (0, kT ) with k large, one �nds that the only such
solution is ρ ≡ 0. Hence, limt→+∞ ρn(t) = 0. It follows that n(t, ·)→ 0 as t→ +∞ in L1(Ω)
and the convergence in L∞(Ω) follows by parabolic regularity.
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Proof of Proposition 1.5. Consider the periodic principal eigenfunction φ associated with
λ1(R,D), that is, the unique positive and T−periodic solution, up to multiplication, of{

∂tφ−D∂xxφ−R(t, x)φ = λ1(R,D)φ in (0, T )× (0, 1),

∂xφ(t, 0) = ∂xφ(t, 1) = 0 for all t ∈ (0, T ).

Let �rst show that this function is decreasing with respect to x. Let ψ := ∂xφ. As
∂xR ≤ 0 and ψ > 0 by hypothesis, one has{

∂tψ −D∂xxψ −R(t, x)ψ − λ1(R,D)ψ ≤ 0 in (0, T )× (0, 1),

ψ(t, 0) = ψ(t, 1) = 0 for all t ∈ (0, T ).

Consider now z := ψ/φ. One has{
∂tz −D∂xxz − 2D ∂xφ

φ
∂xz ≤ 0 in (0, T )× (0, 1),

z(t, 0) = z(t, 1) = 0 for all t ∈ (0, T ),

and z is T−periodic. If z admits a positive maximum over R × [0, 1], then this maximum
is reached at an interior point, and the parabolic maximum principle, together with the
T−periodicity, would imply that z is constant, meaning that ψ = ∂xφ would be proportional
to φ. But as ∂xφ(t, 0) = ∂xφ(t, 1) = 0 for all t ∈ (0, T ), one would then necessarily have
∂xφ ≡ 0, which is impossible since R(t, ·) is not constant with respect to x for a non-negligible
set of t ∈ (0, T ). We have thus reached a contradiction, which proves that z ≤ 0. Moreover,
if z(t, x) = 0 for some (t, x) ∈ R × (0, 1), then this point is an interior maximum point
and the parabolic maximum principle would again give z ≡ 0 and a contradiction. Hence,
z(t, x) < 0 in R× (0, 1), that is, ∂xφ(t, x) < 0 for all (t, x) ∈ (0, T )× (0, 1).

Now, we know from Lemma 2.3 of [20] that

d

dD
λ1(R,D) =

D

T

∫
(0,T )×Ω

∂xφ(t, x)∂xφ̃(t, x)dtdx,

where φ̃ is the adjoint principal eigenfunction, that is, the positive T−periodic solution of{
−∂tφ̃−D∂xxφ̃−R(t, x)φ̃ = λ1(R,D)φ̃ in (0, T )× (0, 1),

∂xφ̃(t, 0) = ∂xφ̃(t, 1) = 0 for all t ∈ (0, T )

normalized by 1
T

∫
(0,T )×Ω

φφ̃ = 1. Indeed, one could prove as above that, as ∂xR ≤ 0, one

has ∂xφ̃(t, x) < 0 for all (t, x) ∈ (0, T )× (0, 1). It immediately follows that

d

dD
λ1(R,D) > 0,

which yields the result since ρN = −λ1(R,D).
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3 Advantage of a large mutation rate

This section is devoted to the proof of Theorem 1.4 and Proposition 1.6. The proof of
Theorem 1.4 is very similar to the proof of Theorem 2.2 in [20]: for sake of clarity, we state
it here, but we would like to refer to it for other corollaries, and to [17] for the crucial part
of the proof. We also present an interpretation of the theorem in the case where R is as
described in (1.2).

Proof of Theorem 1.4. Let r = maxx∈Ω
1
T

∫ T
0
R(t, x)dt and r(x) = 1

T

∫ T
0
R(t, x)dt− r, so that

we have R(t, x) = r + r(x) + γS(t, x) and r(x) ≤ 0 on Ω. Consider the following periodic
eigenvalue problem:

∂tψ −D∆ψ − (r(x) + γS(t, x))ψ = µ1(r, γS,D)ψ in (0,∞)× Ω,
∂νψ(t, x) = 0 for all (t, x) ∈ R× ∂Ω,
ψ(t+ T, x) = ψ(t, x) for all (t, x) ∈ R× Ω,

(3.12)

Here µ1(r, γS,D) denotes the principal eigenvalue of the problem. Note that
∫ T

0
S(t, x)dt = 0

for all x ∈ Ω, and that
∫ T

0
maxx∈Ω S(t, x)dt > 0 since S is not uniform in x. Then, Lemma

15.4 in [17] states that:
∀D > 0, lim

γ→+∞
µ1(r, γS,D) = −∞. (3.13)

Since limD→0 µ1(r, γS,D) = −maxx∈Ω r(x) does not depend on γ, there exists γ0 > 0 such
that µ1(r, γ0S, 1) < limD→0 µ1(r, γ0S,D). Then there exists D0 in (0, 1) such that:

µ1(r, γ0S,D0) < 0 and ∂Dµ1(r, γ0S,D0) < 0.

Since for any D ≥ 0 we have:

−λ1(R,D) = −µ1(r, γS,D) + r,

this concludes the proof of Theorem 1.4.

Parameter γ in the proof of 1.4 is a measure of the amplitude of changes in the environ-
ment during one period of time. Let us now consider the particular case where R is de�ned
as (1.2). The quantities r, r and γS can be expressed by:

r = max
x∈Ω

(p(x)− α(x)
1

T

∫ T

0

C(s)ds),

r(x) = p(x)− α(x)
1

T

∫ T

0

C(s)ds− r,

γS(t, x) = α(x)(

∫ T

0

C(τ)dτ − C(t)).

Parameter γ can not be isolated simply in this situation. However, we can conclude from
Theorem 1.4 that there exist p, α such that for certain treatment schedules C that are not
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constant in time, the �nal population ρ̄N is around some D0 increasing in D. In other words,
under non constant treatments, more plastic populations might realise a larger �nal mean
population.

Proof of Proposition 1.6. First, as minx∈Ω

(
p(x)−α(x)Cmaxσ

)
> 0, one has λ1(p−αCmaxσ,D) < 0.

Since Rhom(t, x) := p(x)−α(x)Cmaxσ does not depend on time, the corresponding limit pop-
ulation Nhom is also constant in time, and thus

` := lim inf
t→+∞

ρnhom(t) = ρ̄Nhom = −λ1(p− αCmaxσ,D) > 0.

Notice that ` does not depend on T .
On the other hand, integrating the equation satis�ed by nhet, we �nd that for any k ∈ N,

∀t ∈ (kT+σT, (k+1)T ), ρ′nhet(t) =

∫
Ω

(
p(x)−Cmaxα(x)

)
nhet(t, x)dx−ρ2

het(t) ≤ −mρhet(t),

where m := −maxx∈Ω

(
p(x)− Cmaxα(x)

)
> 0. Hence, it follows that

ρnhet((k + 1)T ) ≤ e−m(1−σ)Tρnhet(kT + σT ).

On the other hand, we know that ρnhet ≤ max
{
ρn0 ,max(0,T )×Ω R

}
. Hence,

min
t∈[kT,(k+1)T ]

ρnhet(t) ≤ e−m(1−σ)T max
{
ρn0 , max

(0,T )×Ω
R
}
→ 0 as T → +∞.

This shows that, for T large enough, one will get

lim inf
t→+∞

ρnhet(t) < lim inf
t→+∞

ρnhom(t).

4 Competition

This section is devoted to the demonstration of Theorem 1.8. We begin with a preliminary
lemma.

Lemma 4.1. The solution (n,m) of (1.4) does not converge to (N, 0), where N is the T -
periodic solution of (1.1) with mutation coe�cient D = D1.

Proof. Suppose that (n,m) −→ (N, 0) as t→ +∞. Set ε > 0 such that−(λ1(R,D1)−λ1(R,D2)) > 2ε.
Then there exists t0 > 0 such that:

∀t ≥ t0,

∫
Ω

|N(t, x)− n(t, x)|dx ≤ ε and

∫
Ω

m(t, x)dx ≤ ε. (4.14)
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Let φ be the T -periodic eigenfunction satisfying:
∂tφ(t, x)−D1∆φ(t, x)−R(t, x)φ(t, x) = λ1(R,D1)φ(t, x),

∂νφ(t, x) = 0 for t ≥ 0, x ∈ ∂Ω,∫
Ω
φ(t0, x)dx = 1.

(4.15)

Since m(t0, x) > 0 for any x ∈ Ω, there exists η > 0 such that:

∀x ∈ Ω, m(t0, x) ≥ ηφ(t0, x).

Now de�ne the following function:

m̃(t, x) = m(t, x) exp

(∫ t

t0

(ρn(s) + ρm(s))ds+ tλ1(R,D1)

)
.

Then m̃ is a solution of (4.15), and for all x ∈ Ω we have m̃(t0, x) ≥ ηφ(t0, x). By
comparison principle, for any t ≥ t0 and x ∈ Ω, we have m̃(t, x) ≥ ηφ(t, x). Going back to
m, this implies for any l ∈ N:

m(lT + t0, x) = m̃(lT + t0, x) exp

(
−lTλ1(R,D1)−

∫ lT+t0

t0

(ρn(t) + ρm(t))dt

)
≥ ηφ(t0, x) exp

(
−lTλ1(R,D1)−

∫ lT+t0

t0

ρN(t)dt−
∫ lT+t0

t0

(ρn(t)− ρN(t) + ρm(t))dt

)
≥ ηφ(t0, x) exp (−lTλ1(R,D1) + lTλ1(R,D2)− 2lT ε) ,

so that

ρm(lT + t0) ≥ η exp (−lTλ(R,D1) + lTλ1(R,D2)− 2lT ε) .

Thus ρm(lT + t0) −→
l→+∞

+∞, which contradicts (4.14).

Lemma 4.2. The solution (n,m) of (1.4) satis�es

lim inf
t→+∞

inf
x∈Ω

(
m(t, x) + n(t, x)

)
> 0.

Proof. First, the Harnack inequality yields that there exists a constant C > 0 such that

∀t > 1, sup
x∈Ω

m(t− 1, x) ≤ C inf
x∈Ω

m(t, x), sup
x∈Ω

n(t− 1, x) ≤ C inf
x∈Ω

n(t, x).

Take ε < min{−λ1(R,D1),−λ1(R,D2)} and assume that there exists t0 ≥ 0 such
that infx∈Ω

(
n(t0 + 1, x) + m(t0 + 1, x)

)
≤ ε/(C|Ω|). Then the above inequalities

yield supx∈Ω

(
n(t0, x) + m(t0, x)

)
≤ ε/(C|Ω|). Let τ to be the largest time such that

supx∈Ω

(
n(t0 + τ, x) + m(t0 + τ, x)

)
≤ ε/(C|Ω|), even if it means τ = +∞, and assume

that τ > 1.
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Let ψ be the T -periodic eigenfunction satisfying:
∂tψ(t, x)−D2∆ψ(t, x)−R(t, x)ψ(t, x) = λ1(R,D2)ψ(t, x),

∂νψ(t, x) = 0 on [0,+∞)× ∂Ω,∫
Ω
ψ(0, x)dx = 1,

(4.16)

and φ the similar eigenfunction associated with λ1(R,D1). Then one can easily prove, with
the same arguments as in the proof of Lemma 4.1, that

∀t ∈ (t0+1, t0+τ),∀x ∈ Ω, m(t, x) ≥M0ψ(t, x)e−λ1(R,D2)(t−t0), where M0 =
minΩ m(t0 + 1, ·)
maxΩ ψ(t0 + 1, ·)

> 0.

Similarly, one gets

∀t ∈ (t0+1, t0+τ),∀x ∈ Ω, n(t, x) ≥ N0φ(t, x)e−λ1(R,D1)(t−t0), where N0 =
minΩ n(t0 + 1, ·)
maxΩ φ(t0 + 1, ·)

> 0.

Adding these two inequalities, using the Harnack inequality and the fact that φ and ψ are
both uniformly positive and bounded, one gets the existence of a positive constant, that we
still denote C > 0, such that

∀t ∈ (t0 + 1, t0 + τ), ∀x ∈ Ω, m(t, x) + n(t, x) ≥ C sup
x∈Ω

(
m(t0, x) + n(t0, x)

)
eε(t−t0).

Thus τ < +∞ and

ε/|Ω| = sup
x∈Ω

(
m(t0 + τ, x) + n(t0 + τ, x)

)
≥ C sup

x∈Ω

(
m(t0, x) + n(t0, x)

)
eετ .

If t0 = 0, this provides a bound on τ . Otherwise, one can assume that t0 is such that
supx∈Ω

(
m(t0, x) + n(t0, x)

)
= ε/|Ω|, and thus τ ≤ − lnC/ε. This bound being independent

of t0, we thus eventually obtain, by using the parabolic regularity and the Harnack inequality,

inf
t∈(t0,t0+τ)

inf
x∈Ω

(
m(t, x) + n(t, x)

)
> Cε for some positive constant C.

In other words, we have proved that there exist ε > 0 and C > 0 such that for all t > 1
such that infx∈Ω

(
n(t+ 1, x) +m(t+ 1, x)

)
≤ ε/|Ω|, one has infx∈Ω

(
m(t, x) + n(t, x)

)
> Cε.

It easily follows that lim inft→+∞ infx∈Ω

(
m(t, x) + n(t, x)

)
> 0.

Proof of Theorem 1.8. Consider the sequences nk(t, x) := n(t+kT, x) andmk(t, x) := m(t+kT, x).
Parabolic regularity yields that one can assume, up to extraction, that these two sequences
converge to some limits n∞ and m∞ in W

1,p/2;2,p
loc (R,Ω), which are time-global solutions of:

∂tn∞(t, x)−D1∆n∞(t, x) = n∞(t, x)(R(t, x)− ρn∞(t)− ρm∞(t)),

∂tm∞(t, x)−D2∆m∞(t, x) = m∞(t, x)(R(t, x)− ρn∞(t)− ρm∞(t)),

ρn∞(t) =
∫

Ω
n∞(t, x)dx, ρm∞(t) =

∫
Ω
m∞(t, x)dx,

∂νn∞(t, x) = 0 on [0,+∞)× ∂Ω,

∂νm∞(t, x) = 0 on [0,+∞)× ∂Ω.

(4.17)
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We know from Lemma 4.2 that inft∈R,x∈Ω

(
n∞(t) +m∞(t)

)
> 0.

Assume �rst that m∞ ≡ 0. Then we know from Lemma 4.1 that n∞ cannot be identically
equal to 0 nor N . We now use Proposition 2.7 of [19], which yields that the equation

∂tu−D1∆u = R(t, x)u,

admits a unique time-global positive solution u up to multiplication. Using the change of
variables

u(t, x) := n∞(t, x) exp

(∫ t

0

ρn∞(s)ds

)
we obtain that

n∞(t, x)e
∫ t
0 ρn∞ (s)ds ≡ CN(t, x)e

∫ t
0 ρN (s)ds for some constant C > 0.

Integrating in x, taking the log and derivating in t, we obtain, as above, that

ρ′n∞(t) = ρn∞(t)
(ρ′N(t)

ρN(t)
+ ρN(t)− ρn∞(t)

)
.

We know (see for instance [27]) that this equation admits a unique time-global solution which
is uniformly positive and bounded. As ρN is also a solution, we get ρn∞ ≡ ρN and thus C = 1
and n∞ ≡ N . This is a contradiction with Lemma 4.1. Hence, m∞ 6≡ 0. As this is true for
any extraction of the sequence (mk), we have thus even proved that infR×Ω m∞ > 0.

Next, using the change of variables

m̃∞(t, x) := m∞(t, x) exp

(∫ t

0

(
ρn∞(s) + ρm∞(s)

)
ds

)
and, again, by Proposition 2.7 of [19], we get

m̃∞(t, x) ≡ C1ψ(t, x)e−λ1(R,D2)t

where C1 > 0 and ψ is the T -periodic eigenfunction satisfying:
∂tψ(t, x)−D2∆ψ(t, x)−R(t, x)ψ(t, x) = λ1(R,D2)ψ(t, x),

∂νψ(t, x) = 0 on [0,+∞)× ∂Ω,∫
Ω
ψ(0, x)dx = 1.

(4.18)

Assume now by contradiction that n∞ 6≡ 0. The parabolic strong maximum principle
gives n∞ > 0. Then we could prove similarly as above that

ñ∞(t, x) ≡ C2φ(t, x)e−λ1(R,D1)t

with obvious notations. Hence,

n∞
m∞
≡ ñ∞
m̃∞
≡ C2φ

C1ψ
e

(
λ1(R,D2)−λ1(R,D1)

)
t.

The right-hand side goes to +∞ as t → +∞ since φ and ψ are both positive and
periodic, and λ1(R,D2) > λ1(R,D1). But the left-hand side is bounded since n∞ is bounded
and infR×Ω m∞ > 0. We have thus reached a contradiction. Hence, n∞ ≡ 0.

We then easily deduce from the above identities that m∞ ≡ M , which concludes the
proof.
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Figure 1: Proliferation and sensitivity functions chosen for the simulations

5 Numerical simulations

We present in this section some numerical illustrations of the properties exposed in the
previous sections. The simulations were done with R of the form (1.2). We considered
functions p and α of the following form:

p(x) = 10(x− 1)2 + 2,

α(x) = 9 max(−x2 +
4

9
, 0).

These functions were chosen arbitrarily to illustrate our results. They are represented
in �gure 1. In this case, phenotypes around x = 0 represent more proliferative but more
sensitive cells, while phenotypes around x = 1 represent resistant cells, which have a de�cit
in proliferation.

5.1 In�uence of the mutation rate

In �gure 2, we represent the �nal mean population ρ̄N as a function of the mutation rate
D for di�erent treatment schedules. All schedules deliver the same mean quantity of drug
M = 1

T

∫ T
0
C(t)dt = 2 over each period of time, but the length of the administration time

varies. We recall that in this situation, the quantities limD→0 ρ̄N and limD→+∞ ρ̄N will not
depend on τ : for our particular choice of p, α and M they are equal to:

lim
D→0

ρ̄N = max
x∈[0,1]

(p(x)− α(x)
M

T
) = 3.8, lim

D→+∞
ρ̄N =

∫ 1

0

(p(x)− α(x)
M

T
)dx = 1.7.

We observe, as stated in Propositions 1.3 and 1.5, that if R is constant in time (case τ = T ),
then ρ̄N is a decreasing function of D. However, if τ is shorter, ρ̄N is in some range of D
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Figure 2: Final mean populations ρ̄N represented as functions of the mutation rate D for
various treatment schedules. The treatments are of the form C(t) = 10≤t≤τM/τ , withM = 2
and τ varying between 1/4 and T = 2. Populations A, B and C are detailed in �gure 3.

an increasing function of D. Moreover, for τ = 1/4, the maximum of ρ̄N is reached for
D = 0.3 > 0. In this case, a population with a positive mutation rate will be favoured.

On �gure 3, we represent the phenotype repartition for three particular populations A,
B and C, corresponding to D = 0.3, D = 4 ∗ 10−3, and D = 2 respectively, all illustrated
for τ = 1/4. As we compare A and B, we can argue that ρ̄N(D = 0.3) > ρ̄N(D = 4 ∗ 10−3)
because the high mutation rate is so that, at the beginning of the treatment, a larger pop-
ulation is already present around x = 1. Thus during treatment, the resistant part of the
population will reach higher levels. However, if D is too large as in population C, then it
does not pro�t enough of the high growth rate at x = 0 before treatment starts.

5.2 In�uence of the time of administration

We stated in the introduction that for any κ ∈ N, a convexity argument proves that if
0 < κτ < T and

C1(t) =

{
M
τ
if 0 < t ≤ τ,

0 if τ < t ≤ T
, C2(t) =

{
M
κτ

if 0 < t ≤ κτ,

0 if κτ < t ≤ T
,

then λ1(p−αC1, D) < λ1(p−αC2, D). We conjectured that this is true for any κ ∈ [1, T/τ ],
in other words, that if Cτ is de�ned by

Cτ (t) =

{
M
τ
if 0 < t ≤ τ,

0 if τ < t ≤ T
,

then the �nal mean population (ρ̄N) associated to Rτ = p−αCτ is a non-increasing function
of τ . This is illustrated in �gure 4.
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Figure 3: Populations A, B and C of �gure 2 are detailed for τ = 1/4. We represent the
population repartition in phenotypes just before treatment, just after treatment and the
mean population.
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(a) Final mean population ρ̄N as a function

of the time of administration τ .
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Figure 4: Illustration of the conjecture that ρ̄N is a decreasing function of the time of drug
administration τ . These numerical simulations were performed for T = 2.
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Figure 5: Illustration of Proposition 1.7 on the in�uence of T on the population size. These
numerical simulations were performed for τ = T/2 and a �xed di�usion coe�cient D = 0.1.

On �gure 4a, we observe that for di�erent values of the di�usion D, the �nal mean
population ρ̄N is a decreasing function of τ . On �gure 4b, we observe the population over
time under two types of treatments: one with τ = 0.7T , the other with τ = 0.1T . We see
there that for a short τ , the population oscillates during each period between two extreme
values, while for a larger τ the population �uctuates less.

On �gure 5, we illustrate Proposition 1.7, which concerns the in�uence of the period
length T on the �nal mean population ρ̄N . As the function R we chose does satisfy the
conditions of application of Proposition 1.7, we observe on �gure 5a that ρ̄N is a non-
decreasing function of T . Furthermore, we depict on �gure 5b the time evolution of two
particular populations, where we only changed the period length T . We observe that when
T is large, the population ρn(t) approaches, at each period, a maximal plateau during the
time without treatment (C = 0). On the contrary, if T is smaller, ρn(t) does not have time to
reach these values before treatment is applied again. However, if T is large, the population
ρn(t) reaches at each period very low values. As discussed in Proposition 1.6, biologically,
there exists at these moments a possibility of extinction of the population.

5.3 Varying the treatment dosage

In this part, we numerically investigate the role ofM =
∫ T

0
C(t)dt, the total drug used during

each period, on the �nal mean population ρ̄N .
On Figure 6, we represent ρ̄N for a treatment of the form C(t) = 10≤t≤τM/τ with τ = 1/4,

for di�erent values of the di�usion D and on the drug dosage M .
If M is small, ρ̄N reaches its maximum for D = 0. Indeed, if M is too small, R is

decreasing in x for all t ≥ 0, and thus ρ̄N is a decreasing function of D, as stated in
Proposition 1.5. But if M increases, around M = 3 we see that bet hedging occurs, in the
sense that ρ̄N is in some region increasing in D, illustrating the phenomenon described in
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Figure 6: Mean limit population ρ̄N as a function of both di�usion and drug dosage per
period M .

Theorem 1.4. Moreover, for M > 4, ρ̄N reaches its maximum for a positive value of D. As
M increases further, the maximum of ρ̄N over di�usion D slowly decreases.

5.4 Random �uctuations in the environment

The results we presented in this article address periodic changes of the environment, corre-
sponding in the framework of cancer treatment to a regular chemotherapy schedule. But,
as we stated in the introduction, chemotherapy is not the only reason why the environment
changes: tumour vascularisation, immune system reaction and other phenomena can vary
over time, with a less regular timing. We present here a numerical simulation where the
environment no longer changes periodically, but randomly. More precisely, still using the
same p, α, M de�ned in Section 5.1, for each time unit ∆t we have:

R(t, x) =

{
p(x) with probability 1− γ,
p(x)− α(x)M

γ
with probability γ,

for a certain γ ∈ (0, 1). Notice that the expected value of the growth rate E(R) does not
depend on γ: this way, we are doing something similar as in 5.1, with γ being an analogue
of τ

T
. We are interested in the mean value of ρn over time, namely the following quantity:

ρ̂n = lim
t→∞

1

t

∫ t

0

∫
Ω

n(s, x)dxds

when it exists. We conjecture it to be independent of the initial condition.
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Figure 7: Populations for random changing of environment with same mean value.

Figure 7 presents simulations for di�erent values of γ, and an initial condition n0(x) = 1
for all x ∈ Ω. If γ = 1, we are in fact in a situation of constant environment, and thus retrieve
previous results: ρ̂n is a non-increasing function of D, and its limit values for D → 0 and
D → +∞ are known. If γ decreases, we observe that for the same D the mean population ρ̂n
increases, and for γ small enough, D 7→ ρ̂n seems to no longer be a non-increasing function.

As far as the authors know, the in�uence of stochastic �uctuations of the environment has
only been investigated numerically for an ODE in [16]. Simulation suggest that theoretical
results on periodic �uctuations might be extended to stochastic ones. It would be of great
interest to investigate this, as biological phenomena often present stochastic �uctuations.

Conclusion

We demonstrated in this article some properties of trait-structured populations in time peri-
odic environment. Especially, we showed that in some situations, a population might bene�t
from a large mutation rate. Moreover, in such an environment, a more plastic population
would replace a less plastic one. This motivates the study of this equation in the regime of
intermediate mutations, thus of large di�usion rates.
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