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Abstract

We prove phase transition for the non-symmetric continuum Potts
model with background interaction, by generalizing the methods intro-
duced in the symmetric case by Georgii and Häggström [13]. The proof
relies on a Fortuin-Kasteleyn representation, percolation and stochastic
domination arguments.
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1 Introduction

In Gibbs point processes theory one of the main question of interest is the study
of phase transition. Indeed Gibbs point processes are defined through a family of
equations, the Dobrushin-Lanford-Ruelle equations, and it is a natural question
to ask whether there exists only one or several solutions to these equations.
Although phase transition is conjectured for most continuum models, It has
been rigorously proved only in a few cases. The first such result was obtain
by Ruelle [22] for the symmetric Widom-Rowlinson model, which is a two type
particles system with an hard-core repulsion between particles of different types,
using a continuum version of the Peierls argument. This technique was latter
generalized to the soft-core Widom-Rowlinson interaction in [19].

In the 1990’ Chayes, Chayes & Kotecký [3] and Georgii & Häggström [13]
generalized for continuum models the idea of the Fortuin-Kasteleyn represen-
tation [10] introduced for the lattice Ising and Potts models, and proved phase
transition results respectively for the symmetric Widom-Rowlinson model and
for the continuum Potts model with background interaction. This idea was
then used in a variety of articles, for instance to prove phase transition for the
symmetric Widom-Rowlinson model with unbounded radii [9, 17]. The idea of
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the Fortuin-Kasteleyn representation is generalized to the non-symmetric case
in the present article.

For the non-symmetric case where each type of particles have different inten-
sities, even fewer results are proved. A few results are proved for the Widom-
Rowlinson model using the Pirogov-Sinai technique, see for instance [2, 20].
Recently a sharp phase transition result for the Widom Rowlinson model was
obtained in [8], giving an almost complete picture of the phase diagram.

In this article we are interested in the Continuum Potts model with back-
ground interaction, as introduced by Georgii and Häggström [13]. We prove
that for any initial proportion of particles α̃ = (α1, . . . , αq) and for the activity
parameter z large enough, there is at least as many distinct Potts measures
as there are αi, i = 1 . . . q which are maximal in α̃. This result and its proof
is a generalization of the proof of the symmetric case done by Georgii and
Häggström [13].

The proof relies on a Fortuin-Kasteleyn representation which express the
coloration correlation as the connectivity in the so-called generalized Contin-
uum Random Cluster model. This is done using stochastic domination tools.
Therefore by proving a percolation-type bound for this process, one can con-
struct different Potts measures obtained by having different boundary condi-
tions. Such an idea was used in [1] for the lattice nearest neighbour Potts
model, and we are generalizing it for the continuum setting, to obtain a phase
transition result with the exact same assumptions as in [13].

The article is organized as follow: in Section 2 we introduced the model
and the tools needed later on. In Section 3 we give the assumptions and states
the theorems. In Section 4 is introduced the Fortuin-Kasteleyen representation
and we state and prove the percolation bound for the generalized Continuum
Random Cluster model. In Section 5 we prove the main theorems, and finally
in the appendix Section 6 we give the proofs of classical and technical lemmas.

2 Preliminaries

2.1 Space

Through the paper the dimension d ≥ 2 and the number of colours q ≥ 2 are
fixed integer numbers. We are considering the space Ω (respectively ΩΛ) of
locally finite configurations ω in Rd (respectively Λ). We will often consider
configurations marked by a colour. For those we are using the notation

σ :

{
ω −→ {1, . . . , q}
x 7−→ σx

and we write respectively Ω̃ = {ω̃ = (ω, σ)} The configurations spaces Ω and
Ω̃ are embedded with the usual sigma-algebras generated by the counting vari-
ables.

For Λ ⊆ Rd, we write ωΛ as a shorthand for ω ∩Λ. This notation naturally
extends to ω̃Λ. We write NΛ(ω) (respectively NΛ(ω̃)) for the cardinality of the
respected configuration inside Λ. We write |Λ| for the Lebesgue measure of
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Λ ⊆ Rd, and |j| for the sup norm of j ∈ Zd. We write ω′ω (respectively ω̃′ω̃)
has a shorthand for ω′ ∪ ω (respectively ω̃′ ∪ ω̃).

Let τx, be the translation of vector x ∈ Rd. This means that τx(ω) =
{y − x, y ∈ ω}. We denote by P̃θ (respectively P̃θδ) the set of probability

measures on Ω̃ which are invariant under all translations of Rd (respectively all
translation in δZd). For δ > 0, we write ∆j = j⊕]− δ/2, δ/2]d with j ∈ δZd.

2.2 Poisson point processes

Let πz be the distribution on Ω of the homogeneous Poisson point process with
intensity z > 0. Recall that it means

• for every bounded Borel set Λ, the distribution of the number of points
in Λ under πz is a Poisson distribution of mean z|Λ|;

• given the number of points in a bounded Λ, the points are independent
and uniformly distributed in Λ.

We refer to [4] for details on Poisson point processes. We write π̃z,α̃ for the
distribution on Ω̃ of the Poisson point process of intensity z with independent
colour marks distributed according to a probability measure α̃ = (α1, . . . , αq)

on {1, . . . , q}. We have π̃z,α̃ ∈ P̃θ. We are assuming, without loss of generality,
that α̃ has non-zero marginals, i.e. αi > 0 for all i.

For Λ ⊆ Rd, we denote by πzΛ (respectively π̃z,α̃Λ ) the restriction of πz (re-
spectively π̃z,α̃) on Λ.

2.3 Continuum Potts model with background interaction

For Λ ⊆ Rd bounded, we define the Λ-Hamiltonian HΛ such that, for ω̃ ∈ Ω̃,

HΛ(ω̃) :=
∑
{x,y}⊆ω
σx 6=σy

{x,y}∩Λ6=∅

φ(x− y) +
∑
{x,y}⊆ω
{x,y}∩Λ6=∅

ψ(x− y) := Hφ
Λ(ω̃) +Hψ

Λ (ω),

where φ, ψ : Rd →]−∞,+∞] are even measurable functions. The first potential
φ describes a repulsion between points of different colours. The second ψ is a
type-independent pair potential. The most classical Potts model is the Widom-
Rowlinson model [23], for which ψ = 0 and φ(x) = +∞1|x| small.

Definition 2.1. For a boundary condition ω̃, we define the Potts specification
on a bounded Λ ⊆ Rd as

Ξz,α̃Λ,ω̃(dω̃′Λ) =
exp(−HΛ(ω̃′Λω̃Λc))

Zz,α̃Λ (ω̃)
π̃z,α̃Λ (dω′Λ),

where Zz,α̃Λ (ω̃) =
∫

Ω̃
exp(−HΛ(ω̃′Λω̃Λc))π̃

z,α̃
Λ (dω′Λ) is the partition function.

At this point nothing is ensuring the well definiteness of the Potts specifi-
cation. Conditions ensuring the well-definiteness of the Potts specification will
be introduced later.
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Definition 2.2. A probability measure P on Ω̃ is a Potts measure of potentials
φ, ψ, of activity z and of colours proportion α̃, written P ∈ Gpotts(z, α̃), if
for every bounded Λ ⊆ Rd and every bounded measurable function f , we have
0 < Zz,α̃Λ (ω̃) <∞ for P (dω̃) almost every configuration, and∫

Ω̃
fdP =

∫
Ω̃

∫
Ω̃Λ

f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃(dω̃′Λ)P (dω̃). (2.1)

We write Gpottsθ (z, α̃) as a shorthand for the set of Potts measures which are

invariant under all translations of Rd, i.e. Gpottsθ (z, α̃) := Gpotts(z, α̃) ∩ P̃θ.

The equations 2.1, for every Λ, are called DLR equations, named after
Dobrushin, Lanford and Ruelle. They prescribed the conditional probability
kernels of a Gibbs-Potts measure.

3 Results

In the theory of infinite volume Gibbs probability measures, the objects are
defined through a family of equations, the DLR equations (2.1). With such def-
inition the questions of existence and uniqueness/non-uniqueness of the defined
objects are natural and interesting questions studied by the statistical mechan-
ics community for a variety of interactions. In the following we are stating
an existence result and a phase transition (meaning the non-uniqueness of the
Potts measures) result.

We are considering the following assuptions on φ, ψ: there exist u > 0 and
0 ≤ r1 ≤ r2 < r3 ≤ r4 <∞ such that

(A1) (strict repulsion of φ) φ ≥ 0 and φ(x) ≥ u when |x| ≤ r3;

(A2) (finite range of φ) φ(x) = 0 when |x| ≥ r4;

(A3) (strong stability and regularity of ψ) either ψ ≥ 0, or ψ is superstable and
lower regular in the sense of Ruelle, meaning that

– (superstability) there exist constants a, b > 0 such that for every
finite configuration ω,

Hψ(ω) := Hψ
Rd(ω) ≥

∑
j∈Zd

(
aN∆j (ω)2 − bN∆j (ω)

)
– (lower regularity) there exist positive numbers ψn, n ∈ N such that∑

n∈N n
d−1ψn <∞ and such that for every configuration ω,∑
x∈ω∆k

∑
y∈ω∆j

ψ(x− y) ≥ −ψδ−1|j−k|N∆k
(ω)N∆j (ω)

(A4) (short range of repulsion for ψ) ψ(x) ≤ 0 when |x| > r2, and the positive
part ψ+ of ψ satisfies ∫

|x|≥r1
ψ+(x) dx <∞;

4



(A5) (scale relations) r2 < r3/2
√
d+ 3, and r1 is sufficiently small (but inde-

pendtly of α̃, see (4.5)).

Those assumptions are exactly the same as the one considered by Georgii and
Häggström in [13]. In their paper they are considering the symmetric case
(i.e. αi = 1/q for all i) and are proving a phase transition result. Our result
generalized their approach to prove phase transition for the non-symmetric case.

Our first theorem states the existence of at least one translation invariant
Potts measure.

Theorem 1. Assume that assumptions (A1) to (A3) are satisfied. Then for
every z and every α̃, there exists at least one Potts measure P ∈ Gpottsθ (z, α̃),
which is ergodic with respect to the translation group (τx)x∈Rd.

The second theorem states the phase transition for large enough z. To
state it, let us first define #α̃

max as the number of colours that have maximal
proportion in α̃, i.e.

#α̃
max = card{i = 1 . . . q | αi ≥ αi′ for all i′ 6= i}.

This quantity is between 1 and q. For simplicity we are assuming that the colour
1 is one of the colours with maximal proportion, i.e α1 ≥ αi for all i = 1 . . . q.

In the symmetric case when αi = 1/q for all i, which means that q = #α̃
max,

Georgii and Häggström [13] proved for large enough z the existence of at least
q ergodic Potts measures. The following theorem generalizes their result to the
non-symmetric case.

Theorem 2. Assume that assumptions (A1) to (A5) are satisfied. Then for z
large enough, depending on q, u and r1 to r4, but independent of α̃, there exists
at least #α̃

max Potts measures for φ, ψ, z, α̃ which are ergodic with respect to the
translation group (τx)x∈Rd.

This theorem does not give any indication in the case when #α̃
max = 1, and

we are conjecturing that in this case there is no phase transition. This conjecture
is motivated by similar result proved for the (lattice) nearest neighbour Ising
model, see [11] for instance. Recently this conjecture was partially solved in the
specific case of Widom-Rowlinson model (q = 2, ψ = 0 and φ(x) =∞1|x|small)
in [8]: they proved that for large activity z, phase transition is only possible in
the symmetric case.

The idea of the proof of Theorem 2 is the same as in [13]: a Fortuin-
Kasteleyn representation and a percolation bound uniform in the volume which
pass through the limit. The novelty is the introduction of the Generalized
Continuum Random Cluster model. This is a random connection model with an
interaction depending on the number of connected components and their sizes.
This model allows the construction of a Fortuin-Kasteleyn representation, even
in the non-symmetric case. Such an idea was already used for the (lattice)
nearest-neighbour Potts model in [1].

The rest of the article is divided as follows: in Section 4 we are introducing
the Fortuin-Kasteleyn representation and proving a percolation bound for the
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Generalized Continuum Random Cluster model. In Section 5 we are proving
Theorem 1 and Theorem 2. Finally in the appendix Section 6 we are proving
some technical lemmas used during the previous sections.

4 Fortuin-Kasteleyn representation and percolation
bound for the Generalized Continuum Random
Cluster model

At the core of the proof of Theorem 2 lies a representation of the Potts model
called Fortuin-Kasteleyn representation which provides the mean proportion
of each colour in the Potts model, expressed as connectivity probabilities in a
percolation model. This representation was introduced first by Edwards and
Sokal and then used to prove phase transition results in many models, including
the symmetric Widom-Rowlinson model [3] and more generally continuum Potts
models [13]. It needs to study connectivity in the so-called Continuum Random
Cluster model, which is a Gibbs model with an interaction depending only on
the number of connected components. This model was first introduced in [18]
and then used in [13] and [3] to prove phase transition, by providing an uniform
bound (with respect to the finite volume box Λ) of the percolative probability
that the boundary is connected to the origin. The Continuum random cluster
model was also studied on its own in [7, 17].

In our approach we are generalizing this method to the non-symmetric case
and introducing the Generalized Continuum Random Cluster model. This is
a continuum version of the Generalized Random Cluster model, used in [1] to
prove phase transition for the non-symmetric lattice nearest neighbour Potts
model.

4.1 FK representation

We consider the set E of locally finite families of edges of the form E =
∪i∈I(xi, yi) with xi 6= yi are in Rd. This set is embedded with the classical
σ-algebra generated by the counting variables. We write Eω ⊆ E for the fami-
lies of edges between points of ω.

From now on we are fixing Λ ⊆ Rd bounded. We are defining a Point process
Pz,α̃Λ on Ω̃× E the following way:

• The distribution of points is given by the potential ψ:

P z,ψΛ (dω) =
exp

(
−Hψ

Λ (ω)
)

ZψΛ(∅)
πzΛ(dωΛ),

where ZψΛ(∅) is the corresponding partition function, well defined thanks
to the stability of the potential ψ. The ”∅” is there to emphasis that this
point process measure is free of boundary condition. Notice here that
P z,ψΛ is a point process measure on ΩΛ.
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• Knowing the location of the points, the colouring are independent random
variables of law α̃ with deterministic colour for the points too close to the
boundary of Λ, i.e

λα̃,1ω,Λ(ω̃) =
1

Zα̃Λ,ω(1)

( ∏
x∈ωΛ

ασx

)
1A1

r4
(ω̃), (4.1)

where A1
r4 = {ω̃|σx = 1, ∀x s.t. dist(x,Λc) ≤ r4} and Zα̃Λ,ω(1) is the

corresponding normalizing constant. The ”1” in the partition function is
there to emphasis on the fact that the points close to the boundary of Λ
are coloured deterministically.

• Finally the edge drawing mechanism between points of ω is the probability
µφω on Eω such that

µφω(E) =
∏

{x,y}⊆ω
{x,y}∈E

(
1− e−φ(x−y)

) ∏
{x,y}⊆ω
{x,y}6∈E

e−φ(x−y). (4.2)

The probability measure Pz,α̃Λ is then defined as the product measure

Pz,α̃Λ (dω̃, dE) = µφω(E)λα̃,1ω,Λ(ω̃)P z,ψΛ (dω).

Then we consider the event A on ω̃×E of authorized configurations where every
connected points have the same colour. This event has positive Pz,α̃Λ -probability,
as the configuration empty of points in Λ is authorized. We can then consider
the probability measure Pz,α̃Λ,A := Pz,α̃Λ (.|A).

Remark 4.1. In [13], they constructed the measure with a periodic boundary
condition of points of type 1. We could have made the same but we do believe
that our construction, forcing points close to the boundary to be of colour 1, is
easier to understand and closer to the constructions made for the Ising model
for instance.

The indicator in (4.1) should be understand as if all points close to the
boundary of Λ are connected to a imaginary point ”at infinity” which is of colour
1. The connected component of points connected to this imaginary point ”at
infinity” will be called the infinite cluster and written C∞. Furthermore in the
definition on the event A1

r4 one does not need to take the same radius as in the
condition (A2). Every choice of finite radius would work as well.

Proposition 4.1. The projection of the measure Pz,α̃Λ,A on Ω̃ is

Ξz,α̃Λ,1(dω̃Λ) := 1A1
r4

(ω̃)
exp(−HΛ(ω̃Λ))

Zz,α̃Λ (1)
π̃z,α̃Λ (dω̃Λ).

The measure Ξz,α̃Λ,1 has to be understood the following way: one can imagine
that at the boundary of Λ there are a continuum of boundary points of colour
1, forcing points too close to Λ to be of colour 1. But this continuum of points
don’t give an interaction coming from ψ, only a colour exclusion.
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Proof. Let f be a measurable bounded function on Ω̃.∫
Ω̃×E

f(ω̃) Pz,α̃Λ,A(dω̃, dE)

= Pz,α̃Λ (A)−1

∫
Ω

∫
Ω̃
f(ω̃)

[∫
E
1A(ω̃, E)µφω(E)

]
λα̃,1ω,Λ(ω̃)P z,ψΛ (dω),

and thanks to simple computation we have∫
E
1A(ω̃, E)µφω(dE)

=
∑
E∈Eω ,
σx=σy
∀{x,y}∈E

∏
{x,y}⊆ω
{x,y}∈E

(
1− e−φ(x−y)

) ∏
{x,y}⊆ω
{x,y}6∈E

e−φ(x−y) = e−H
φ
Λ(ω̃)

and therefore∫
Ω̃×E

f(ω̃)Pz,α̃Λ,A(dω̃, dE) = κ

∫
Ω̃
f(ω̃Λ)e−HΛ(ω̃Λ)1A1

r4
(ω̃)π̃z,α̃Λ (dω̃Λ)

=

∫
Ω̃
f(ω̃Λ)Ξz,α̃Λ,1(dω̃′Λ).

We are considering now the projection of Pz,α̃Λ,A on Ω × E . We say that two
points x, y ∈ ω are connected in (ω,E) if there is a path x1, . . . , xn with x1 = x,
xn = y and such that {xi, xi+1} ∈ E for all i. Recall also that points x such that
dist(x,Λc) ≤ r4 are connected to the same imaginary point ”at infinity”. We
are then considering the connected components with respect to this connectivity
rule. The number of connected components is Pz,α̃Λ − a.s. finite, with zero or
one connected component connected ”at infinity”. We call it infinite connected
component and write it C∞.

Let us now consider the measure Cz,α̃Λ,wired on Ω×E , called Generalized Con-
tinuum Random Cluster model on Λ with wired boundary condition, defined
as

Cz,α̃Λ,wired(dω, dE) =
α
|C∞|
1

ZgΛ(α̃)

∏
C∞ 6=C⊆ω

cluster of (ω,E)

(
q∑
i=1

α
|C|
i

)
µφω(E)P z,ψΛ (dω),

with ZgΛ(α̃) being the associated partition function.

Proposition 4.2. The projection of Pz,α̃Λ,A on ω × E is Cz,α̃Λ,wired.

Proof. Let f be a measurable bounded function on Ω× E .∫
Ω̃×E

f dPz,α̃Λ,A = Pz,α̃Λ (A)−1

∫
Ω

∫
E
f(ω,E)

[∫
Ω̃
1A(ω̃, E)λα̃,1ω,Λ(ω̃)

]
µφω(E)P z,ψΛ (dω),
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but thanks to the product structure of the measure λα̃,1ω,Λ, and denoting by
Ci ⊆ ω the finite (i.e. not connected ”at infinity”) connected components of
(ω,E), we have∫

Ω̃
1A(ω̃, E)λα̃,1ω,Λ(ω̃) =

α
|C∞|
1

Zα̃Λ,ω(1)

∑
ω̃C1
|ωC1

· · ·
∑

ω̃Cn |ωCn

n∏
i=1

1A(ω̃Ci , E)
∏
x∈ωCi

ασx

=
α
|C∞|
1

Zα̃Λ,ω(1)

∏
C∞ 6=C⊆ω

cluster of (ω,E)

(
q∑
i=1

α
|C|
i

)
,

which implies the wanted result.

So from both propositions, the colour of one particle in the Potts model is
directly related to the connectivity of this point in the Generalized Continuum
Random Cluster model. In particular the points connected ”at infinity” (i.e.
those in C∞) have fixed deterministic colour 1.

For a configuration ω̃ = (ω, σ) ∈ Ω̃, and for ∆ ⊆ Λ ⊆ Rd, we write N∆,1(ω̃)
for the number of points of colour 1 inside ∆. We also write N∆↔∞(ω,E) for
the number of points in C∞ ∩∆.

Proposition 4.3. Assume that #α̃
max > 1 and that i 6= 1 is one of the other

colours with maximal proportion. Then∫
(N∆,1 −N∆,i) dΞz,α̃Λ,1 =

∫
N∆↔∞ dCz,α̃Λ,wired.

Proof. From Proposition 4.1 the left hand side is∫
(N∆,1−N∆,i)dΞz,α̃Λ,1

=

∫
Ω

∫
E

∫
Ω̃

1A(ω̃, E)

Pz,α̃Λ (A)
(N∆,1(ω̃)−N∆,i(ω̃))λα̃,1ω,Λ(ω̃)µφω(E)P z,ψΛ (dω)

=

∫
Ω

∫
E

∑
x∈ω∆

1x∈C∞

[∫
Ω̃

1A(ω̃, E)

P(A)
λα̃,1ω,Λ(ω̃)

]
µφω(E)P z,ψΛ (dω).

The integrated quantity does no longer depend on the colouration of the con-
figuration, and from Proposition 4.2 we get the result.

Intuitively if the quantity
∫

(N∆,1 −N∆,i)dΞz,α̃Λ,1 is bounded from below uni-

formly in Λ by some ε > 0, then when Λ goes to Rd the limit of Ξz,α̃Λ,1 will be
a Potts measure with more particles of colour 1 than any other colour. By
repeating the same with a boundary condition of different colour, we get the
existence of several different Potts measures. From Proposition 4.3, to control
the quantity

∫
(N∆,1−N∆,i)dΞz,α̃Λ,1 we need to study the connectivity in the Gen-

eralized Continuum Random Cluster model Cz,α̃Λ,wired. The following proposition
is the key tool in proving Theorem 2.
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Proposition 4.4. Assume that assumptions (A1) to (A5) are satisfied, and z
is large enough (depending on the parameters, but not on α̃). Then there exists
ε > 0 such that ∫

N∆↔∞(ω,E)Cz,α̃Λ,wired(dω, dE) ≥ ε

for every cell ∆ = ∆j defined after equation (5.3), every Λ finite union of cells
∆j′

4.2 Proof of Proposition 4.4

The general idea is to use stochastic domination to compare our model to a
mixed site-bond Bernoulli percolation model. First we are decoupling the edges
E and constructing a probability measure C̄z,α̃Λ the following way:

• The distribution of particle positions is given by

M z,α̃
Λ = Cz,α̃Λ,wired(.× E).

• Given the points ω, we draw between two points x, y ∈ ω such that
|x− y| ≤ r3 an edge with probability

p̄ =
1− e−u

q2e−u + 1− e−u
(4.3)

where r3 and u come from assumption (A1). The equation (4.3) defines
on Eω the edges distribution µ̄ω.

We therefore define the measure C̄z,α̃Λ (dω, dE) = µ̄ω(dE)M z,α̃
Λ (dω).

Remark 4.2. First remark that we have Cz,α̃Λ,wired(dω, dE) = µα̃ω,Λ(dE)M z,α̃
Λ (dω)

with

µα̃ω,Λ(dE) ∼ α|C∞|1

∏
C∞ 6=C⊆ωΛ

cluster of (ω,E)

∑
i=1..q

α
|C|
i

µφω(E)

being the ”discrete” Generalized Random Cluster model. The definition of µα̃ω,Λ
depends on Λ only through the definition of the infinite connected component
C∞.

Finally the choice q2 in (4.3) is not optimal, but is uniform with respect to
α̃. In [13], the value q was enough for the symmetric case.

Definition 4.1. For two probability measures µ, µ′ on E, we say that µ′ domi-
nates µ, written µ′ � µ, if

∫
fdµ′ ≥

∫
fdµ for all measurable increasing function

(with respect to the natural order on E).
This notion of domination naturally extend to probability measures in Ω×E.

Lemma 4.1. Assume that assumption (A1) is satisfied. Then for all α̃ and ω
we have µα̃ω,Λ � µ̄ω and therefore Cz,α̃Λ,wired � C̄

z,α̃
Λ .

10



This lemma is one the principal improvement with respect to the work of
Georgii and Häggström [13].

Proof. The second assertion is a direct consequence of the first one. For the
first assertion we will use the well-known Holley inequality, see for instance [16,
Th. 2.3]. Let e = {x, y} with x, y ∈ ω, we have

µ̄ω(e ∈ E|Eec) = µ̄ω(e ∈ E) =

{
p̃ = 1−e−u

q2e−u+1−e−u if |x− y| ≤ r3

0 if |x− y| > r3

with µ̄ω(e ∈ E|Eec) being the probability that e is an edge of E conditioned on
knowing all the other edges. From easy computations we also get

µα̃ω,Λ(e ∈ E|Eec) =



1− e−φ(x−y) if x↔ y in (ω,Eec)(
1 + e−φ(x−y)

1−eφ(x−y)

∑
i

(
αi
α1

)|Cy |)−1

if x 6↔ y and x↔∞(
1 + e−φ(x−y)

1−e−φ(x−y)

∑
i α
|Cx|
i

∑
j α
|Cy |
j∑

i α
|Cx|+|Cy |
i

)−1

if x 6↔ y and x, y 6↔ ∞

where ↔ denotes the connectivity in (ω,Eec) and Cx, Cy are the connected
component of x, y in (ω,Eec). Remember that the connectivity of two points
can be through the imaginary point at infinity.

To apply Holley’s inequality, we have to check that µ̄ω(e ∈ E|Eec) ≤
µα̃ω,Λ(e ∈ E|Eec). We will only do it for the last expression of µα̃ω,Λ(e ∈ E|Eec).

This inequality is trivially true when |x− y| > r3. Otherwise from assump-

tion (A1) we have e−φ(x−y)

1−e−φ(x−y) ≤ e−u

1−e−u . Furthermore

∑
i α
|Cx|
i

∑
j α
|Cy |
j∑

i α
|Cx|+|Cy |
i

=

∑
i(αi/α1)|Cx|

∑
j(αj/α1)|Cy |∑

i(αi/α1)|Cx|+|Cy |

≤
(

1

α1

)2 1

#α̃
max

≤ q2,

which implies the wanted inequality. The other cases can be treated the same.

From Lemma 4.1 it is enough to prove Proposition 4.4 for the measure C̄z,α̃Λ .
This will be done by a discretization and a comparison to the random connection
model. For this remember the definition of the cells ∆j done just before the
beginning of Section 2.2.

Definition 4.2. Starting now we take δ = r3√
d+3

, to ensure that any two points

in two adjacent cells ∆j ,∆j′ are at distance at most r3.

• We call a cell good if it contains at least n∗ points forming (with the
edges) a connected graph.

• Two cells are said linked if there exists an edge connecting two points in
the two cells.

11



This defines a correlated site-bond percolation on Zd. The next lemma
states the usual percolation result for the independent site-bond percolation
model.

Lemma 4.2. Consider on Zd the Bernoulli site-bond percolation model where
each site and each edge between sites at distance 1 is open with probability p
and close otherwise, independently of everything else. Let us write Probp the
probability measure associated to this model.

There exists pc = pc(d) ∈]0, 1[ such that for p > pc,

θ(p) = Probp(the origine is connected to infinity) > 0.

The proof of this lemma is done in the appendix Section 6. In order to
control the probability of a cell being good, we will use the following lemma.

Lemma 4.3. For a positive integer n and for 0 < p < 1, we consider the
random graph Gn,p of n vertices where each pair of vertices independently forms
an edge with probability p. Then

γ(n, p) = Prob(Gn,p is connected) −→
n→∞

1,

and therefore γ(p) = inf{γ(n, p) | n ≥ 1} > 0.

The proof is done in the appendix Section 6. Let us now introduce the
function

hΛ(ω) =
∑
E∈Eω

α
|C∞|
1

ZgΛ(α̃)

∏
C∞ 6=C⊆ω

cluster of (ω,E)

∑
i=1..q

α
|C|
i

µφω(E).

The function hΛ is the probability density of M z,α̃
Λ with respect to P z,ψΛ . For

fixed ω, hΛ(ω) is also the partition function of the discrete Generalized Random
Cluster Model µα̃ω,Λ.

Lemma 4.4. Under assumption (A2), there exists a constant κ̃ > 0 such that
for every ω ∈ ΩΛ and every x ∈ Λ,

hΛ(ω ∪ x) ≥ κ̃× hΛ(ω).

This lemma is one of the principal improvement of the initial work of Georgii
and Häggström [13]. Furthermore it is the only part of the article where the
finite range assumption (A2) on φ was used.

Proof. In the following, E is an edge configuration between points in ω, i.e.
E ∈ Eω, and E′ is an edge configuration between x and points of ω. The union
E ∪ E′ is in Eω∪x. We will denote Cj , j = 1..n the connected components of

12



(ω,E), one of which can be infinite (if so it will be the first one C1), which are
connected together in (ω ∪ x,E ∪ E′). Then we have

hΛ(ω ∪ x)

hΛ(ω)
=
∑
E∈Eω

µα̃ω,Λ(E)
∑
E′

α
1+

∑
j=1..n

|Cj |

1 + 1C1 finite
∑
i=2..q

α
1+

∑
j=1..n

|Cj |

i(
α
|C1|
1 + 1C1 finite

∑
i=2..q

α
|C1|
i

) ∏
j=2..n

∑
i=1..q

α
|Cj |
i

µφω∪x(E′)

≥
∑
E∈Eω

µα̃ω,Λ(E)
∑
E′

α
1+

∑
j=1..n

|Cj |

1∏
j=1..n

qα
|Cj |
1

µφω∪x(E′)

=
∑
E∈Eω

µα̃ω,Λ(E)
∑
E′

α1 µ
φ
ω∪x(E′)

qnumber of cc of (ω,E) connected to x
.

For a connected component to be connected to x it must, from assumption (A2),
contain a point at distance less than r4. We split the closed ball B(x, r4) into
a minimal number k of disjoint sets Bj , j = 1..k of diameter less than r3. On
each Bj , we consider the event Aj that the graph (ωBj , E ∩ EωBj ) is connected.

The events Aj are increasing and we have

hΛ(ω ∪ x)

hΛ(ω)
≥ α1

qk
µα̃ω,Λ

 ⋂
j=1..k

Aj


≥ α1

qk
µ̄ω

 ⋂
j=1..k

Aj

 ≥ α1

qk
γ(p̃)k := κ̃ > 0,

where the last line uses the stochastic domination of Lemma 4.1, the indepen-
dence of the events Aj with respect to µ̄ω, and where γ(p̃) is defined in Lemma
4.3.

We now have all the tools to compare C̄z,α̃Λ to the independent site-bond
Bernoulli percolation model. Let us fix p∗ > pc, where pc is defined in Lemma
4.2. Let us define λ(n, p̃) = 1−(1− p̃)n2

as a lower bound for the µ̄ω-probability
that there exists at least one edge between points in two neighbouring cells
containing at least n points each. From Lemma 4.3, we have the existence of
n∗ such that

γ(n, p̃) ≥
√
p∗ and λ(n, p̃) ≥ p∗ for all n ≥ n∗. (4.4)

We are now in position to make clear the requirement on r1 from (A5):

(A5) r2 < r3/2
√
d+ 3 and (n∗ − 1)|B(0, r1)| < (δ − 2r2)d. (4.5)

Let us define M z,α̃
Λ,∆j ,ω

the conditional probability, according to M z,α̃
Λ , of particles

inside ∆j , knowing the the configuration in Λ \∆j is ω.

13



Lemma 4.5. Assume that r1, r2, r3 satisfy assumption (A5), and that assump-
tions (A2) and (A4) is satisfied. Then for z large enough we have

M z,α̃
Λ,∆j ,ω

(N∆j ≥ n∗) ≥
√
p∗

for all Λ finite union of cells, for all ∆j cells included in Λ, and for all config-
urations ω on Λ \∆j.

The proof of this lemma is done in the appendix Section 6. Using this
lemma, and with (4.4) we obtain

M z,α̃
Λ,∆j ,ω

(∆j is good) ≥ p∗.

Furthermore by construction and from (4.4) the probability that two good cells
are connected is at least p∗. Therefore from Holley’s inequality, see Theorem
2.3 in [16] we have∫

N∆↔∞(ω,E)Cz,α̃Λ,wired(dω, dE) ≥ n∗ × θ(p∗) := ε > 0.

5 Proofs of Theorem 1 and Theorem 2

Both theorems rely on the standard construction of an infinite volume Potts
measure, as a limit of a stationarized finite volume Potts measures considered
on a sequence of increasing boxes. We prove that this sequence admits an
accumulation point, for the topology of local convergence using a now stan-
dard tightness tool which is the specific entropy develloped by Georgii [12] and
adapted to the continuum case by Georgii and Zessin [15]. Then we prove that
this accumulation point is a continuum Gibbs measure, proving Theorem 1.
Finally from this construction and the Proposition 4.4, the phase transition is
straightforward. This type of construction is now standard and have been done
in many articles, for the symmetric continuum Potts model [13] or for other
types of interaction [5, 6, 7, 9].

As before we are considering δ = r3/
√
d+ 3 as in Definition 4.2. We consider

the square box

Λn =]− δ(n+ 1/2), δ(n+ 1/2)]d

which is containing exactly (2n+ 1)d disjoints cells ∆j , for j ∈ Ln := δZd ∩Λn.

On Ω̃Λn consider the measure

Pn(dω̃Λn) := Ξz,α̃Λn,1
(dω̃Λn) = 1A1

r4
(ω̃Λn)

exp(−HΛn(ω̃Λn))

Zz,α̃Λn
(1)

π̃z,α̃Λn
(dω̃Λn)

defined in Proposition 4.1. Finally we consider the measure

P̂n :=
1

(2n+ 1)d

∑
j∈Ln

P̄n ◦ τ−1
j ,

14



where
P̄n =

⊗
k∈2nZd

Pn ◦ τ−1
k .

By construction the measures P̂n are invariant by the translation in δZd: P̂n ∈
P̃θδ .

Definition 5.1. A measurable function f : Ω̃ → R is said local and tame if
there exists a bounded Λ ⊆ Rd and a constant κ ≥ 0 such that

f(ω̃) = f(ω̃Λ) and |f(ω̃)| ≤ κ(1 +NΛ(ω̃))

for all configurations ω̃ ∈ Ω̃.
A sequence of measures νn converge to ν in the local convergence topology

if
∫
f dνn →

∫
f dν for all local and tame functions f .

Proposition 5.1. The sequence (P̂n) admits a cluster point P̂ with respect
to the local convergence topology. This cluster point is invariant under the
translation τx, x ∈ δZd, and it is a Potts measure: P̂ ∈ Gpottsθδ

(z, α̃).

Remark 5.1. In the following, to lighten the notation, we will avoid to take a
subsequence and assume that (P̂n) converges to P̂ .

We will first admit this proposition and conclude the proofs of Theorem 1
and Theorem 2.

5.1 Proof of Theorem 1

Proposition 5.1 is not enough to conclude directly the proof of Theorem 1, since
the measure P̂ is not invariant under all translation of Rd. But considering the
measure

P̃ :=
1

δd

∫
]−δ/2,δ/2]d

P̂ ◦ τ−1
x dx,

we obtain a measure which is by construction invariant under all translation of
Rd. This measure satisfies 0 < Zz,α̃Λ (.) <∞ P̃ -almost surely for every bounded
Λ, and from the translation invariance of the interaction, we obtain∫ ∫

f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃(dω̃′Λ)P̃ (dω̃)

=

∫
]− δ2 ,

δ
2 ]
d

∫ ∫
f(ω̃′Λτx(ω̃)Λc)

e−HΛ(ω̃′Λτx(ω̃)Λc )

δdZz,α̃Λ (τx(ω̃))
πz,α̃Λ (dω̃′)P̂ (dω̃)dx

=

∫
]− δ2 ,

δ
2 ]
d

∫ ∫
f ◦ τx

(
ω̃′
τ−1
x (Λ)

ω̃τ−1
x (Λ)c

) e−HΛ◦τx
(
ω̃′
τ−1
x (Λ)

ω̃
τ−1
x (Λ)c

)
δdZz,α̃Λ (τx(ω̃))

dπz,α̃dP̂dx

=
1

δd

∫
]− δ2 ,

δ
2 ]
d

∫
f ◦ τx dP̂ dx =

∫
f dP̃
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and therefore P̃ is a Potts measure invariant under all translation of Rd.
Since the set of translation invariant Potts measures is a convex set with

extremal elements being the ergodic Potts measures, see [12], the theorem is
proved.

5.2 Proof of Theorem 2

Let us consider ∆ = ∆0 = Λ0 =] − δ/2, δ/2]d. Let i 6= 1 an other colour with
maximal proportion (i.e. α1 = αi) , we obtain from Proposition 4.3 that∫

(N∆,1 −N∆,i)dP̂n =
1

(2n+ 1)d

∑
j∈Ln

∫
(N∆j ,1 −N∆j ,i)dPn

=
1

(2n+ 1)d

∑
j∈Ln

N∆j↔∞ dCz,α̃Λn,wired
.

Finally we obtain from Proposition 4.4 that for z large enough (but independent
of α̃) that ∫

(N∆,1 −N∆,i)dP̂n ≥ ε > 0.

Since the integrated function is local and tame, the same bound is valid for the
probability measure P̂ .

For the measure P̃ , even if the translated τx(∆), x ∈] − δ/2, δ/2]d is not a
cell as defined before, using the translation invariance of P̂ by vectors j ∈ (δZ)d,
one can translate back τx(∆) into ∆, which proves that∫

(N∆,1 −N∆,i)dP̃ ≥ ε > 0,

see Figure 5.2.

Figure 1: Left: The cell ∆ and its translation τx(δ). Right: how to translate
back piece of τx(∆) to obtain again ∆.

So the probability measure P̃ is a Potts measure with on average more
particles of colour 1 that any other colours. By repeating the same construction
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for every colour i with maximal proportion, we obtain #α̃
max Potts measures

invariant by all translations in Rd and which are different, since one different
colour dominates the others for each measure.

From the ergodic decomposition of translation invariant (by a vector of Rd)
Potts measures, see [12], it is clear that one can find at least #α̃

max different
ergodic Potts measures. The theorem is proved.

5.3 Proof of Proposition 5.1

This type of construction is classical. It was done for instance for the symmetric
Potts model in [13], for the quermass-interaction model in [5], and for many
other cases [6, 7, 9]. The first step is to construct a good candidate. This is
done using the specific entropy as a tightness tool. Then one has to prove that
this good candidate is indeed a Potts measure, which is done by approximation
of the interaction.
• Step 1: Construction of a good candidate

Definition 5.2. For a measure P ∈ P̃θδ with finite first moment, meaning that∫
N∆0dP <∞, we define the specific entropy

I(P ) := lim
n→∞

1

|Λn|
IΛn(P |πz,α̃), (5.1)

with IΛn(P |πz,α̃) =
∫

log

(
dPΛn

dπz,α̃Λn

(ω̃Λn)

)
P (dω̃), or +∞ if PΛn (the restriction

of P in Ω̃Λn) is not absolutely continuous with respect to πz,α̃Λn
.

The convergence in (5.1) is proved in [15]. The next proposition, also proved
in [15], stated the tightness of the level sets of the specific entropy.

Proposition 5.2. On the set of probability measure P ∈ P̃θδ with finite first
moment, the specific entropy is affine and upper semi-continuous. Furthermore
for all κ ≥ 0, the level set I(P ) ≤ κ is compact and sequentially compact with
respect to the local convergence topology.

So from this proposition it is enough to prove that the specific entropy of
the sequence (P̂n) is uniformly bounded. It is clear that each P̂n has finite first
moment (but it is not clear yet that one can find an uniform bound). From the
fact that the specific entropy is affine, we obtain that

I(P̂n) =
1

|Λn|
IΛn

(
Pn|πz,α̃Λn

)
=
− log(Zz,α̃Λn

(1))−
∫

Ω̃
HΛn(ω̃Λn)Pn(dω̃Λn)

|Λn|

For the assumptions (A1) and (A3) we have

HΛn(ω̃Λn) ≥ HΨ
Λn(ωΛn) ≥

∑
j∈Ln

aN∆j (ω)2 − bN∆j (ω) ≥ −(2n+ 1)dκ, (5.2)

where κ = B2/4A. Furthermore from standard computation we obtain

Zz,α̃Λn
(1) ≥ e−z|Λn|.
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Therefore we obtain

I(P̂n) ≤ c1

for a positive finite constant c1 independent of n. Hence we have the existence
of a cluster point P with respect to the local convergence topology. In the
following we omit to take a subsequence to lighten the notation.

Remark 5.2. To obtain (5.2) we used the superstability and regularity from
assumption (A3). In the case when the potention ψ is non-negative, the Hamil-
tonian is non-negative and we obtain again the existence of a constance c1.

• Step 2: the partition function Zz,α̃Λ is P̂ -a.s non degenerate.

To prove this, let us first prove that P̂ has finite second moment.

Lemma 5.1. Under assumptions (A1) and (A3), we have for all n∫
N2

∆0
dP̂ <∞ and

∫
N2

∆0
dP̂n <∞.

Proof. Let us now consider the second moment of P̂n:∫
Ω̃
N∆0(ω̃)2P̂n(dω̃) =

1

(2n+ 1)d

∫
Ω̃

∑
j∈Ln

N∆j (ω)2Pn(dω̃)

≤ 2

a(2n+ 1)d

∫
Ω̃
HΛn(ω̃Λn)Pn(dω̃)

+
1

(2n+ 1)d

∫
Ω̃

∑
j∈Ln

(
2b

a
N∆j (ω)−N∆j (ω)2

)
Pn(dω̃),

where the last inequality is a consequence of assumptions (A1) and (A3), used
as in (5.2). From the non-negativity of the local entropy, we have that∫

Ω̃
HΛn(ω̃Λn)Pn(dω̃) ≤ − log((Zz,α̃Λn

(1)) ≤ z|Λn|.

Furthermore there exists a constant κ ≥ 0 such that∫
Ω̃

∑
j∈Ln

(
2b

a
N∆j (ω)−N∆j (ω)2

)
Pn(dω̃) ≤ κ(2n+ 1)d.

Putting everything together we obtain∫
Ω̃
N∆0(ω)2P̂n(dω̃) ≤ κ̃,

where κ̃ <∞ is independent of n.
Now the function N2

∆0
is local but not tame. However this is the monotone

limit of local and tame functions, which is enough to conclude that∫
Ω̃
N∆0(ω)2P̂ (dω̃) ≤ κ̃.

In the case where ψ ≥ 0, one can prove immediately from the stochastic
domination result of Georgii and Küneth [14] that the measure Pn is stochasti-
cally dominated by πz,α̃Λn

and therefore the uniform bound is straightforward.
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Now let us define on Ω̃ the space of tempered configuration

T =

ω̃ ∈ Ω̃, sup
n≥1

1

nd

∑
|i|≤n

N2
∆j

(ω̃) <∞

 (5.3)

Lemma 5.2. Under assumptions (A1) and (A3), and for all ω̃ ∈ T , the parti-
tion function is non-degenerate:

0 < Zz,α̃Λ (ω̃) <∞.

Furthermore we have P̂ (T ) = 1.

This lemma is proved in the appendix Section 6.
• Step 3: the measure P̂ satisfies the DLR equations.

It is enough to proves the DLR equations only for the Λn, and starting now
we fix Λ = Λn0 for a fixed n0 ∈ N. Let us consider f a measurable function
bounded by one, which we can assume without loss of generality that is is local,
i.e f(ω̃) = f(ω̃Λn1

) for a fixed n1. we are interested in proving that the following
quantity

κ :=

∣∣∣∣ ∫ fdP̂ −
∫ ∫

f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃(dω̃′Λ)P̂ (dω̃)

∣∣∣∣
is small. The first issue is that the probability measures P̂n do not satisfy the
DLR equations, except in the particular case of Λ ⊆ ∆0. We are introducing
the new sequence of measures

P̂Λ
n :=

1

(2n+ 1)d

∑
j∈LN

1Λ⊆τj(Λn)Pn ◦ τ−1
j .

Those are not probability measure, but from the following lemma they satisfy
the DLR(Λ) equation and are converging to P̂ .

Lemma 5.3. Each P̂Λ
n satisfies the DLR(Λ) equation. Furthermore if (A1)

and (A3) are satisfied, for all local and tame functions f , we have∣∣∣∣∫ fdP̂Λ
n −

∫
fdP̂n

∣∣∣∣ −→n→∞ 0.

Proof. The first point is a consequence of the compatibility of the Gibbs kernels
and the translation invariance of the interaction. The second point has been
treated in [5] for the quermass interaction model or in [7] for the Continuum
Random Cluster model, and we are omitting the proof here.

Lemma 5.4. Under assumptions (A1), (A2) and (A3) we have for all N large
enough and for all n∣∣∣∣ ∫ ∫ f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃(dω̃′Λ)P̂ (dω̃)−

∫ ∫
f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃ΛN

(dω̃′Λ)P̂ (dω̃)

∣∣∣∣ ≤ ε
and∣∣∣∣ ∫ ∫ f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃(dω̃′Λ)P̂Λ

n (dω̃)−
∫ ∫

f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃ΛN

(dω̃′Λ)P̂Λ
n (dω̃)

∣∣∣∣ ≤ ε
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The proof is classical and is done in the appendix Section 6. Let us now
conclude the proof of Proposition 5.1. Let us fix ε > 0. From Lemma 5.4 there
is N large enough such that

κ ≤ ε+

∣∣∣∣ ∫ fdP̂ −
∫ ∫

f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃ΛN

(dω̃′Λ)P̂ (dω̃)

∣∣∣∣.
Now from the second point of Lemme 5.3 we obtain for n large enough

κ ≤ 2ε+

∣∣∣∣ ∫ fdP̂Λ
n −

∫ ∫
f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃ΛN

(dω̃′Λ)P̂Λ
n (dω̃)

∣∣∣∣,
and applying again Lemma 5.4 and the first point of Lemma 5.3,

κ ≤ 3ε+

∣∣∣∣ ∫ fdP̂Λ
n −

∫ ∫
f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃(dω̃′Λ)P̂Λ

n (dω̃)

∣∣∣∣ = 3ε,

and the proof is concluded.
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6 Appendix: proof of the intermediary lemmas

6.1 Proof of Lemma 4.2

The mixed site-bound Bernoulli percolation model is clearly monotone in the
parameter p, which gives the existence of pc. It remains to prove that pc is
in ]0, 1[. It is clear that pc > 0, since the absence of percolation in the site
Bernoulli percolation model of parameter p implies the same for the mixed
site-bond model of parameter p.

The second inequality comes from the observation that for any graph G, the
site percolation threshold is not greater than the bond percolation threshold
(both for the Bernoulli model). Hence pc is smaller than the square root of the
site Bernoulli percolation model.

6.2 Proof of Lemma 4.3

Let us denote x1, . . . , xn the n points of the graph. By considering the event
that x1 is connected to every other points by a path of length exactly 2, we
obtain

γ(n, p) ≥ 1− (n− 1)(1− p2)n−2,

which proves the result.

6.3 Proof of Lemma 4.5

It is easy to see that

M z,α̃
Λ,∆j ,ω

(dω′) =
hΛ(ω′ω)

ZΛ,∆j ,ω
exp

(
−Hψ

∆j
(ω′ω)

)
πz∆j

(dω′),

where ZΛ,∆j ,ω is the corresponding partition function. Therefore we obtain for
n ≥ 0 that

M z,α̃
Λ,∆j ,ω

(N∆j = n+ 1)

M z,α̃
Λ,∆j ,ω

(N∆j = n)
=

z

n+ 1

∫
gi(ω

′ω)M z,α̃
Λ,∆j ,ω

(dω′|N∆j = n)

with

gi(ω
′ω) =

∫
∆j

exp

− ∑
y∈ω′ω

ψ(x− y)

 hΛ(ω′ω ∪ x)

hΛ(ω′ω)
dx

≥ l
∫

∆i

exp

− ∑
y∈ω′ω

ψ(x− y)

 dx,

with the last inequality coming from Lemma 4.4. Consider now the reduce cell
∆0
j obtain from ∆j by removing a boundary layer of width r2. By assumption
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(A5), ∆0
j has positive volume. Then

gi(ω
′ω) ≥ l

∫
∆0
j

exp

− ∑
y∈ω′ω

ψ(x− y)

 dx

≥ l
∫

∆0
j

exp

−∑
y∈ω′

ψ(x− y)

 dx,

where the last inequality comes from assumption (A4). This last bound is
independent of the boundary condition ω. The next estimates is directly taken
from [13], and goes back originally to Dobrushin and Minlos. Let

∆ω′ = {x ∈ ∆0
j , |x− y| ≥ r1 for all y ∈ ω′}.

Assume by contradiction that N∆j (ω
′) < n∗. Then

|∆ω′ | ≥ |∆0
j | − (n∗ − 1)|B(0, r1)| := v∗,

and v∗ is positive thanks to assumption (A5), see equation (4.5). Furthermore,
applying Markov’s inequality to the Lebesgue measure, we obtain for all κ > 0

|{x ∈ ∆ω′ ,
∑
y∈ω′

ψ(x− y) ≥ κ}| ≤ 1

κ

∑
y∈ω′

∫
∆ω′

ψ+(x− y)dx

≤ n∗ − 1

κ

∫
|x|≥r1

ψ+(x)dx :=
b(n∗, r1)

κ
,

with b(n∗, r1) <∞ thanks to assumption (A4). Adding everything together we
obtain when N∆j (ω

′) < n∗ that

gi(ω
′ω) ≥ le−κ

(
v∗ − b(n∗, r1)

κ

)
.

By choosing κ large enough, there exists a constant l̃ such that gi(ω
′ω) ≥ l̃n∗.

Hence

M z,α̃
Λ,∆j ,ω

(N∆j < n∗) =
n∗−1∑
n=0

M z,α̃
Λ,∆j ,ω

(N∆j = n)

=

n∗−1∑
n=0

M z,α̃
Λ,∆j ,ω

(N∆j = n∗)
n∗−1∏
k=n

M z,α̃
Λ,∆j ,ω

(N∆j = k)

M z,α̃
Λ,∆j ,ω

(N∆j = k + 1)

≤
n∗−1∑
n=0

(
1

l̃z

)n∗−n
≤ 1

l̃z − 1
,

and this quantity goes to 0 when z goes to infinity. Therefore the result is
proved.
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6.4 Proof of Lemma 5.2

For the first point, let us consider Λ ⊂ Rd bounded, ω̃ ∈ T and ω̃′ ∈ ω̃. From
standard computation we obtain Zz,α̃Λ (ω̃) ≥ exp(−z|Λ|) > 0. Using assumption
(A1) we have

HΛ(ω̃′Λω̃Λc) ≥ Hψ
Λ (ω̃′Λω̃Λc).

Now let us consider assumption (A3). In the case ψ ≥ 0 we immediately obtain
than the Hamiltonian is non negative, and hence Zz,α̃Λ (ω̃) ≤ 1 < ∞. In the
other case we obtain from assumption (A3) that

HΛ(ω̃′Λω̃Λc) ≥
∑
j′

aN∆j′ (ω̃
′)2 −

b+
∑
j

ψδ−1|j−j′|N∆j (ω̃)

N∆j′ (ω̃
′)

+ error,

where the sum is over j′ such that ∆j′ ∩Λ 6= 0 and j such that ∆j ∩Λ = 0. The
error term comes from the fact that we did not take into consideration points
x ∈ ω̃′Λ and y ∈ ω̃cΛ which are in the same cell ∆j . But since the superstability
and regularity does not depend on the choice of the discretization, we can
assume without loss of generality that this error term is null, which is to say
that Λ is exactly the union of a finite number of cells ∆j . Now from the fact
that ω̃ is tempered, we have the existence of a constant κ ≥ 0 such that∑
k

ψδ−1|j−k|N∆k
(ω̃) ≤

∑
n∈N

ψn
∑

k,δ−1|j−k|=n

N∆k
(ω̃) ≤ κ

∑
n∈N

nd−1ψn := B′ <∞

and therefore HΛ(ω̃′Λω̃Λc) is bounded from below uniformly in ω̃′, and so

Zz,α̃Λ (ω̃) <∞.

From construction and from Lemma 5.1, the measure P̂ is invariant un-
der the translation of (δZ)d and satisfies

∫
N2

∆0
dP̂ < ∞. Therefore, from the

ergodic theorem, see [21], the sequence of random variables

n 7→ 1

nd

∑
|i|≤n

N∆0(ω̃)2

converges P̂ almost surely towards a finite random variable. The result is
proved.
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6.5 Proof of Lemma 5.4

Consider ω̃ ∈ T . Then

c(ω̃) :=

∣∣∣∣ ∫ f(ω̃′Λω̃Λc)Ξ
z,α̃
Λ,ω̃(dω̃′Λ)−

∫
f(ω̃′Λω̃Λc)Ξ

z,α̃
Λ,ω̃ΛN

(dω̃′Λ)

∣∣∣∣
≤
∫ ∣∣∣∣e−HΛ(ω̃′Λω̃Λc )

Zz,α̃Λ (ω̃)
− e−HΛ(ω̃′Λω̃ΛN\Λ)

Zz,α̃Λ (ω̃ΛN )

∣∣∣∣πz,α̃Λ (dω̃′)

≤
∫ ∣∣∣∣e−HΛ(ω̃′Λω̃Λc ) − e−HΛ(ω̃′Λω̃ΛN\Λ)

Zz,α̃Λ (ω̃)

∣∣∣∣πz,α̃Λ (dω̃′) +

∣∣∣∣Zz,α̃Λ (ω̃ΛN )

Zz,α̃Λ (ω̃)
− 1

∣∣∣∣
≤ 2

∫ ∣∣∣∣e−HΛ(ω̃′Λω̃Λc ) − e−HΛ(ω̃′Λω̃ΛN\Λ)

Zz,α̃Λ (ω̃)

∣∣∣∣πz,α̃Λ (dω̃′).

Now using the mean value theorem and by considering N large enough we
obtain from assumptions (A2), (A3) and (A4)

c(ω̃) ≤ 2
∑

j,∆j 6⊆ΛN

N∆j (ω̃)
∑

j′,∆j′⊆Λ

ψ|j−j′|

∫
N∆j′ (ω̃

′
Λ)Pz,α̃

Λ,ω̃(dω̃′).

Remark 6.1. In the last bound, we used from (A4) that the potential ψ(x) is
non-positive when |x| is large. One can do without this assumption and would
get an extra factor 2.

In the following, when not specified, j, k are indexes such that ∆j ,∆k 6⊆ Λ
and j′, k′ are such that ∆j′ ,∆k′ ⊆ Λ.

Now let Bω̃ := sup{b+
∑

j,∆j 6⊆Λ ψ|j−k′|N∆j (ω̃) | ∆k′ ⊆ Λ} with a, b coming

from assumption (A3). Then we have∫
N∆j′ (ω̃

′
Λ)Pz,α̃

Λ,ω̃(dω̃′) ≤ 2Bω̃
a

+

∫
N∆j′ (ω̃

′
Λ)1{N∆k′

(ω̃′)>
2Bω̃
a
,∀k′}P

z,α̃
Λ,ω̃(dω̃′)︸ ︷︷ ︸

∗

.

But from assumption (A1) and (A3)

∗ ≤ez|Λ|
∫
N∆j′ (ω̃

′
Λ)1{N∆k′

(ω̃′)>
2Bω̃
a
,∀k′}

exp

(∑
k′

−aN∆k′ (ω̃
′)2 +Bω̃N∆k′ (ω̃

′)

)
πz,α̃Λ (dω̃)

≤ ez|Λ|
∫
N∆j′ (ω̃

′
Λ) exp

(
−a

2

∑
k′

N∆k′ (ω̃
′)2

)
πz,α̃Λ (dω̃)

≤ κ <∞

and we finally obtain

c(ω̃) ≤

(
κ′ + κ′′ sup{

∑
k

ψ|k−k′|N∆k
(ω̃) | ∆k′ ⊆ Λ}

) ∑
j,∆j 6⊆ΛN

∑
j′

ψ|j−j′|N∆j (ω̃),
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and from the Cauchy-Schwarz inequality and the Lemma 5.1 we obtain the
wanted result.
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