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Investigating new classes of sampling sequences: Application to the
stability analysis of decentralized sampled-data systems

L. Etienne*, K.M.D. Motchon*, C. Fiter**

Abstract— In this work, the stability problem of a decentral-
ized control system where different sensors and actuators may
communicate independently in an aperiodic and asynchronous
manner is investigated. In order to conduct the analysis, we
shift the focus from the decentralized system to the sampling
sequence induced by several components communicating inde-
pendently from each other. First it is shown how those sampling
sequences at the level of the local component combine with each
other when considering the overall system. Then the results
obtained on the sampling sequence are applied, along with
Lyapunov stability arguments in order to study the stability of
decentralized sampled-data systems. Some experimental results
obtained on an inverted pendulum benchmark are presented,
to show the usefulness of the approach.

I. INTRODUCTION

In modern control systems where digital technologies are
ubiquitous, the control task consists of the sampling of the
plant outputs, the computation, and the implementation of the
actuator signals. The classic way is to sample in a periodic
fashion, allowing the closed–loop system to be analysed on
the basis of sampled–data systems, see [1].

Complex decentralyzed sampled-data systems (either
Cyber–Physical Systems (CPS) [2] or Networked Control
Systems (NCS) [3]) are becoming more and more perva-
sive in many applications [2]. They use sensor data to
determine actuation actions to physical processes. Usually,
each component (sensors and actuators) is sampled, and
the information is sent wirelessly to other sub-systems.
Te use of the NCS/CPS paradigm enables price reduction,
scalability, and ease of maintenance. In turn those archi-
tectures impose constraints on the information that can be
transmitted among components both in terms of frequency
and in terms of regularity. Furthermore as networks grow in
size centralized/synchronized communication may become
too demanding or even unrealistic. So compared with more
classical control architectures, CPS/NCS can be harder to
predict and require a careful investigation.

The problem of control of classical sampled-data systems
has received a lot of attention in the past decade. In an
environment where a micro-controller has to perform a lot of
computations and where there are a lot of data transmissions,
it is difficult to guarantee the periodicity of the sampling
sequences (because of jitter, packet droppouts, etc.), which
may lead to the system’s instability (see [4] for a recent
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survey on the topic). A possible way to study the stability of
a sampled-data system is to use the impulsive system mod-
elling framework and to study the stability of the resulting
system [5], [6]. Hybrid models can also be very relevant
to model and analyse complex behaviour of sampled-data
systems [7], [8]. However in this context, sampling of the
control input is supposed to be centralized/synchronized by
a scheduler. In this work this assumption will be lifted.

Such a subject has recently been attracting more attention,
since asynchrony in the sensors and/or actuators of sampled-
data control systems may be a source of instability, just
like aperiodicity. For instance, [9] considers the case of one
sensor and one actuator implemented on an unsynchronized
control loop while [10] studies the problem of maximal
allowable clock offset between one sensor and one actua-
tor. The work [11] considers the problem of decentralized
estimation of a multi agent system in an unsynchronized
setting. Using the same hybrid framework as [11], [12] shows
stability of unsynchronized saturated linear systems. In [13]
and [14] small gain arguments are used to establish stability
of decentralized sampled-data systems while [15] use integral
quadratic constraints to achieve the same objective.

The aim of this paper is to study the stability of Lin-
ear Time-Invariant (LTI) systems with several sensors and
actuators that sample their signals in an aperiodic and
asynchronous fashion.

In this work we shift the focus from the decentralized sys-
tem to the sampling sequence induced by several components
communicating independently from each other. Considering
stability for entire classes of sampling sequences is not new
[16] but has proven fruitful. Furthermore it is of interest to
identify ”good” classes of sampling sequences that naturally
emerge when considering interaction of sub-components
with classical sampling requirements (for instance periodic
sampling.)

The paper is organized as follows. In Section II, we
describe the usual main classes of events sequences and
provide some important properties that will be useful in
the context of decentralized control. Then, in Section III,
we propose the main stability results for a general class of
impulsive systems with several aperiodic and asynchronous
sequences of impulses and derive some stability criterion for
decentralized sampled-data control systems. Finally, in Sec-
tion IV, we perform some experimentations on an inverted
pendulum, to show the usefulness of the approach.

The following general notations are adopted throughout
the rest of the paper:
Notation:



• For a vector or a matrix v, v> denotes its transpose.
• We define for a matrix A, He(A) := A+A>.
• R+ denotes the set of non-negative real numbers.
• The Cartesian product of two sets S1 and S1 is written
S1 × S2 and for M sets Sm,m ∈ {1, . . . ,M} we
write

∏M
m=1 Sm for their Cartesian product (i.e. the set

{ω = (ω1, . . . , ωM )|ωm ∈ Sm}).
• For a matrix M , λmin(M) and λmax(M) denote its

smallest and largest eigenvalues, respectively.
• For two positive definite matrices (resp positive

semidefinite) P and Q we write P � Q if P − Q
is positive definite (resp P � Q if P − Q is positive
semidefinite).

• For sets ⊂ describes the (non strict) inclusion, while 6⊂
denotes the absence of non strict inclusion.

• For a set Ω, Conv (Ω) denotes its convex hull.
• Given a function ϕ, if its exists, ϕ (t)

+ denotes the
right-hand limit of ϕ at the point t.

II. CONSIDERED CLASSES OF EVENT SEQUENCES AND
SOME IMPORTANT PROPERTIES

This section recalls the concepts of event sequences with
Min/Max/Ranged dwell time that are widely considered
sampling sequences . It also shows how these classes of
event sequences are connected trough each other and pro-
vides some crucial results on their sorted concatenation.
Before giving formal definitions we want to point out that,
qualitatively a sequence with minimal average dwell time is
a sequence that can not (on average) have to many events
happening on a finite interval. Such type of sequence occurs
naturally when considering switched systems. For maximal
average dwell time the opposite is true in the sense that
events have to happen often enough. This type of sequences
naturally occurs when considering sampled data stabilization
of unstable plants. Ranged dwell time describe sequences
where both minimum and maximum dwell time constraints
have to be simultaneously verified.

A. Min/Max/Ranged dwell time sequences of events

• A sequence of events {tk}k∈N is said to have minimal
dwell time (MinDT) τ if ∀k ∈ N one has tk+1 −
tk ≥ τ . The set of this class of sequences is denoted
by S

(
min, [τ ,∞]

)
. Alternatively a MinDT sequence of

events {tk}k∈N ∈ S
(
min, [τ ,∞]

)
can be defined by

the following inequality: ∀t, s ∈ R with t > s, one

has N(t, s) ≤ 1 +
t− s
τ

, where here and in all that

follows, N(t, s) denotes the number of event between
the instants s and t. For such a sequence, events are not
(too) close to each other. We define

SMinDT =
⋃
τ>0

S
(
min, [τ ,∞]

)
.

• A sequence of events {tk}k∈N is said to have an
Average minimal dwell time (AMinDT) τ and a
chatter bound N if ∀t, s ∈ R, t > s one has:
N(t, s) ≤ N + t−s

τ . We denote this class of sequences

by S
(
min, [τ ,∞], N

)
. One can see that for every

sequences of events {tk}k∈N ∈ S
(
min, [τ ,∞], N

)
,

tk+p − tk ≥ τ(p + 1 − N), for all p, k ∈ N. From
this fact it is clear that on average, (taking a big p)
the sequence is similar to the previous one. Notice that
from the previous definitions one has S

(
min, [τ ,∞]

)
=

S
(
min, [τ ,∞], 1

)
. We define

SAMinDT =
⋃

τ>0,N∈N
S
(
min, [τ ,∞], N

)
.

• A sequence of events {tk}k∈N is said to have max-
imum dwell time (MaxDT) τ if ∀k ∈ N one has
tk+1 − tk ≤ τ . We write in this case {tk}k∈N ∈
S
(
max, [0, τ ]

)
. Alternatively a MaxDT sequence of

events {tk}k∈N ∈ S
(
max, [0, τ ]

)
can be defined by the

following inequality: ∀t, s ∈ R with t > s, one has

N(t, s) ≥ −1 +
t− s
τ

. For such a sequence, events are

not (too) distant to each other. We define

SMaxDT =
⋃
τ>0

S
(
max, [0, τ ]

)
.

• A sequence of events {tk}k∈N is said to have an
Average maximal dwell time (AMaxDT) τ and a
chatter bound N if ∀t, s ∈ R, t > s, one has N(t, s) ≥
−N +

t− s
τ

. As one can see that for all p, k ∈ N,

tk+p − tk ≤ τ(p + 1 + N), then it is clear that on
average, (taking a big p) the sequence is similar to the
previous one. We denote by S

(
max, [0, τ ], N

)
the set

of a sampling sequences with average maximum dwell
time τ and chatter bound N . Notice that from the pre-
vious definition of MaxDT, one has S

(
max, [0, τ ]

)
=

S
(
max, [0, τ ], 1

)
. We define

SAMaxDT =
⋃

τ>0,N∈N

S
(
max, [0, τ ], N

)
.

• A sequence of events with both maximum and minimum
dwell time denoted ranged constrained dwell time
(RDT) is defined using the following set of sequences
S
(
[τ , τ ]

)
= S

(
min, [τ ,∞]

)
∩ S

(
max, [0, τ ]

)
, that is,

{tk}k∈N ∈ S
(
[τ , τ ]

)
iff τ ≤ tk+1 − tk ≤ τ . We define

SRDT =
⋃

τ≥τ≥0

S
(
[τ , τ ]

)
.

• Similarly, a sequence of events with both average
maximum and average minimum dwell time denoted
Average ranged constrained dwell time (ARDT) is
defined using the following set of sequences:

S
(
[τ , τ ], N,N

)
= S

(
min, [τ ,∞], N

)⋂
S
(
max, [0, τ ], N

)
.

For such a sequence one has:

−N +
t− s
τ
≤ N(t, s) ≤ N +

t− s
τ

.

We define

SARDT =
⋃

τ≥τ≥0,N,N∈N

S
(
[τ , τ ], N,N

)
.



Remark 1: The ARDT is the most general class of event
sequences and all the previously defined classes can be
viewed as special instances of this last class of event se-
quences. in particular:
• A sequence MinDT is also a sequence with AMinDT

which is also a sequence with ARDT:

S
(
min, [τ ,∞]

)
= S

(
min, [τ ,∞], 1

)
= S

(
[τ ,∞], 1, 0

)
.

• A sequence MaxDT is also a sequence with AMaxDT
which is also a sequence with ARDT:

S
(
max, [0, τ ]

)
= S

(
max, [0, τ ], 1

)
= S

(
[0, τ ], 0, 1

)
.

Remark 2: The following inclusions hold:

SMinDT ⊂ SAMinDT ⊂ SARDT ,
SMaxDT ⊂ SAMaxDT ⊂ SARDT ,
SRDT ⊂ SARDT .

B. Sorted concatenation of the Min/Max/Ranged dwell time
sequences of events

When considering sampling sequences resulting from the
integration of several components (with different timing
constraints) into a system, sorted concatenation is a natural
operation as it describes the sampling sequences at the
level of the overall system. Therefore, this operation has
properties that derive from the timing constraints of each
subsystem. In turns those properties will play an important
part when considering problems such as stability or per-
formance. Consider two (non strictly) increasing sequences
of events1 {t1k}k∈N and {t2k}k∈N, we define an operation �
between the two sequences as: {t1k}k∈N�{t2k}k∈N = {tk}k∈N
such that {tk}k∈N is the (non strictly) increasing sequence
whose elements belong to the union of {t1k}k∈N and {t2k}k∈N.
Figure 1 below gives a representation of the concatenated
sequence {tk}k∈N. Note that this operation is exactly a
concatenation followed by a sorting.

t11 t12 t13

t21 t22 t23 t24

t1 t2 t3 t4 t5, t6 t7

Fig. 1: Sorted concatenation of two event sequences

Given a finite number M ∈ N, M ≥ 2 of (non strictly)
increasing event sequences {tmk }k∈N, m ∈ {1, 2, . . . ,M},
their sorted concatenation is then defined by recursion as
follows: ♦Mm=1{tmk } =

(
♦M−1m=1 {tmk }k∈N

)
� {tMk }k∈N.

Proposition 1 shows that the set of ARDT sequences
of events is stable for the sorted concatenation operator
(i.e. sorted concatenation of ARDT sequences is an ARDT
sequence).

Proposition 1: Consider M distinct series of events
{tmk }k∈N, m ∈ {1, 2, . . . ,M}. If for every m ∈

1In different context, an event could be a sampling, an event triggered
sampling or a switch of some discrete variable

{1, 2, . . . ,M}, {tmk }k∈N ∈ S
(
[τm, τm], Nm, Nm

)
with 0 ≤

τm ≤ τm ≤ ∞, NmNm ∈ N, then

♦Mm=1{tmk )k∈N ∈ S
(
[τ ?, τ ?],N

?,N?

)
, (1)

with

τ ? =

(
M∑
m=1

1

τm

)−1
, τ ? =

(
M∑
m=1

1

τm

)−1
, (2)

and

N? =

M∑
m=1

Nm, N? =

M∑
m=1

Nm. (3)

Proof: {tmk }k∈N ∈ S
(
[τm, τm], Nm, Nm

)
is by defi-

nition equivalent to:

−Nm +
t− s
τm

≤ Nm(t, s) ≤ Nm +
t− s
τm

,

where Nm(t, s) is the number of event of sequence {tmk }k∈N
in the time interval [s , t]. By definition of the sorted con-
catenation operator �, the number Ñ(t, s) of events for the
sequence {t̃k}k∈N := ♦Mm=1{tmk }k∈N on [s , t] is Ñ(t, s) =∑M
m=1Nm(t, s). Therefore, one gets

M∑
m=1

(
−Nm +

t− s
τm

)
≤ Ñ(t, s) ≤

M∑
m=1

(
Nm +

t− s
τm

)
,

which, according to notations (2) and (3), can be rewritten
as follows

−N? +
t− s
τ ?
≤ Ñ(t, s) ≤ N? +

t− s
τ ?

,

and this concludes the proof.
Corollaries 1-3 are immediate consequences of Proposi-

tion 1 and Remark 1.
Corollary 1: Let {tmk }k∈N, m ∈ {1, 2, . . . ,M} be distinct

series of events such that {tmk )k∈N ∈ S
(
max, [0, τm]

)
for

every m ∈ {1, 2, . . . ,M}. Then

♦Mm=1{tmk }k∈N ∈ S
(
max, [0, τ ?],M

)
, (4)

where τ ? is defined in (2).
Corollary 2: Let {tmk }k∈N, m ∈ {1, 2, . . . ,M} be distinct

event sequences such that {tmk }k∈N ∈ S
(
[τm, τm]

)
for every

m ∈ {1, 2, . . . ,M}. Then

♦Mm=1{tmk }k∈N ∈ S
(
[τ ?, τ ?],M,M

)
, (5)

where constants τ ? and τ ? are given by (2).
Corollary 3: Consider two distinct series of events

{tmk }k∈N m ∈ {1, 2} such that {t1k}k∈N ∈ S
(
max, [0, τ ]

)
and {t2k}k∈N ∈ S

(
min, [τ ,∞]

)
. Then

{t1k}k∈N � {t2k}k∈N ∈ S
(
[0, τ ], 1, 1

)
. (6)

Remark 3: For two classes of sampling sequence D and
T let us denote the set of concatenated sequences

D�T =
{
{dk}k∈N �{tk}k∈N|{dk}k∈N ∈ D, {tk}k∈N ∈ T

}
.

Making use of remark 1 and proposition 1 it is easy to study
how classes of sampling behave when combined with the



operation �. Among other results we find in a straightforward
manner that:

SMinDT � SMinDT 6⊂ SMinDT ,
SMinDT � SMinDT ⊂ SAMinDT ,
SMaxDT � SMaxDT 6⊂ SMaxDT ,
SMaxDT � SMaxDT ⊂ SAMaxDT ,
SMinDT � SMaxDT ⊂ SARDT ,
SRDT � SRDT ⊂ SARDT .

C. Discussion

Remark 2 gives the generality of the possible sampling
sets (where SARDT is the most general). Furthermore from
remark 3 it appears that SAMinDT ,SAMaxDT ,SARDT are
stable under the operation �. However when considering the
operation � on different classes of sampling sequences only
SARDT is stable. This fact highlights the importance of
studying SAMinDT (which is a well known fact highlighted
in [17],[16]) but also SAMaxDT (which is a less known
fact). A contribution of this work is to highlight the fact
that for systems where each subcomponent has some RDT
constraints, the important class to consider is SARDT .

III. STABILITY OF DECENTRALIZED SYSTEMS

A. Simple example: case of two MinDT sampling sequences

Let’s consider the impulsive decentralized system de-
scribed by the following equations: ẋ(t) = Ax(t) t ≥ t0 ∈ [0 ,∞),

x(t1k)+ = J1x(t1k), k ∈ N,
x(t2k)+ = J2x(t2k), k ∈ N,

(7)

where x (t) ∈ Rn is the state vector, and {t1k}k∈N and
{t2k}k∈N are two sequences of events such that t10 = t20 = t0;
A, J1 and J2 are matrices of appropriate dimensions. The
trajectory of the system is assumed to be continuous from the
left and the solution can be iteratively defined. Furthermore,
it is also assumed that there exists a matrix P = P ′ � 0 and
two constants α > 0 and 0 < µ such that:

A1 A> P + P A+ αP � 0,
A2 J>m P Jm − µP � 0, m ∈ {1, 2},
A3 {tmk }k∈N ∈ S

(
min, [τm,∞], Nm

)
, m ∈ {1, 2}, with

τm > 0 and Nm ∈ N.

From the previous set of results one has that

(t1k)k∈N � (t2k)k∈N ∈ S
(
min,

[
τ1τ2
τ1 + τ2

,∞
]
, N1 +N2

)
,

(8)

and furthermore, one can prove the following stability result:
Proposition 2: If assumptions A1–A3 are verified and

α > ln(µ)(τ1+τ2)
τ1τ2

then system (7) is exponentially stable.
Proof:

The proof is similar to the one obtained when considering
stability of switched system with average dwell time [18].
In what follows we will apply the proposed methodology for
a more complex class of systems.

B. A general stability result for impulsive decentralized
systems

Consider the impulsive decentralized system described by:{
ẋ (t) = Ax (t) , t ≥ t0 ∈ [0 ,∞),
x (tmk )+ = Jm x (t

m
k ) , ∀k,∈ N∀m ∈ {1, 2, . . . ,M}, (9)

where x (t) ∈ Rn is the state vector, and {tmk }k∈N, m ∈
{1, 2, . . . ,M} are M sequences of events such that tm0 = t0
for all m ∈ {1, 2, . . . ,M} and

∀m ∈ {1, 2, . . . ,M}, {tmk }k∈N ∈ S
(
[τm, τm]

)
(10)

for some constants 0 ≤ τm ≤ τm ≤ ∞; A and Jm,
m ∈ {1, 2, . . . ,M} are matrices of appropriate dimensions.
The state trajectory of the system is also assumed to be
continuous from the left.

An exponential stability result for the impulsive decentral-
ized system (9)–(10) is provided in Theorem 1.

Theorem 1: Consider the impulsive decentralized sys-
tem (9) with sampling sequences (10). If there exist sym-
metric matrices Pm ∈ Rn×n, m ∈ {1, 2, . . . ,M} and two
constants α ∈ R and µ ∈ R+ such that the following state-

ments hold: (i)∀τ =
(
τ1 · · · τM

)> ∈ S :=

M∏
m=1

{0, τm},

P (τ) := P0 +

M∑
m=1

τm Pm � 0, (11)

(ii) ∀τ ∈ S, He(P (τ)A) +

M∑
m=1

Pm + αP (τ) ≺ 0, (12)

(iii) ∀m ∈ {1, 2, . . . ,M}, ∀τ ∈ Sm :=
{
τ ∈ RM : ∀r ∈

{1, 2, . . . ,M}, r 6= m, τr ∈ {0, τ r} and τm ∈ {τm, τm}
}

,(
P (Rmτ) P (Rmτ) Jm
∗ µP (τ)

)
� 0, (13)

where Rm ∈ RM×M is the matrix defined by:

(Rm)i j =

{
0 if i 6= j or i = j = m,
1 if i = j 6= m,

(14)

(iv) α and µ satisfy

α ≥


ln(µ)

τ?
if 0 < µ ≤ 1,

ln(µ)

τ?
if µ > 1,

(15)

with τ ? and τ ? the constants defined in (2). Then sys-
tem (9)–(10) is exponentially stable with a decay rate

β =


1

2

(
α−

ln(µ)

τ?

)
if 0 < µ ≤ 1,

1

2

(
α−

ln(µ)

τ?

)
if µ > 1.

(16)

Proof:
Notice first that, for the sampling sequences {tmk }k∈N,

m ∈ {1, 2, . . . ,M} satisfying (10), according to corollary 2,
their sorted concatenation {tk}k∈N = ♦Mm=1 {tmk }k∈N veri-
fies relation (5). Now, let t ≥ t0 be an arbitrary time instant.



Consider the Lyapunov function V defined by:

V (x, s) = x>P (τ (s))x, ∀x ∈ Rn, s ∈ [t0 ,∞), (17)

where the matrix valued function P is given by (11) and

τ (s) =
(
s− t1k?1 (s) s− t2k?2 (s) · · · s− tMk?M (s)

)
(18)

with
tmk?m (s) = max {tmk : tmk < s} ,

the last time before s that sensor m sends the state’s measure
to the process.

For any s ∈ [t0 ,∞), by construction of τ (s) in (18) and
of the time instants tmk?m (s) with m ∈ {1, 2, . . . ,M}, from
the property (10) of the M sampling sequences, one can see
that

τ (s) ∈
M∏
m=1

[0 , τ̄m] = Conv (S) .

Then, from Assumption (11), by convexity, one can see
that P (τ (s)) � 0, and therefore, the function V is clearly
positive definite in its first variable.

Now, consider s ∈ (tk , tk+1], k ∈ N. From the dynamics
equation (9) of the system, we get:

d

ds
V (x (s) , s) = x> (s) [He (P (τ (s)) A) +

d

ds
P (τ (s))]x (s) .

Then, since for any s ∈ (tk , tk+1], k ∈ N, we have τ̇ (s) =(
1 1 · · · 1

)>
, we get

d

ds
P (τ (s)) =

M∑
m=1

Pm,

and thus we obtain:
d

ds
V (x (s) , s) + αV (x (s) , s) = x> (s) Γ (s) x (s) ,

(19)
where

Γ (s) = He (P (τ (s)A)) +

M∑
m=1

Pm + αP (τ (s)) .

Recalling that τ (s) ∈ Conv (S), using Assumption (12) and
convexity arguments we get that Γ (s) ≺ 0, and therefore,
from (19), we have

d

ds
V (x (s) , s) ≤ −αV (x (s) , s) , ∀s ∈ (tk , tk+1].

After integration on (tk , s] with s ∈ (tk , tk+1], we get:

V (x (s) , s) ≤ e−(s−tk)α V (x (tk) , tk)
+
, (20)

where V (x (tk) , tk)
+ is the right-hand limit of V (x (·) , ·)

at tk, that is, V (x (tk) , tk)
+

= lims→tk,s>tk V (x (s) , s). It
follows from (26) and the definition (17) of the Lyapunov
function V that

V (x (tk) , tk)
+ − µV (x (tk) , tk) = x> (tk) Γ̃ (tk)x> (tk)

where the matrix Γ̃ (tk) is given by:

Γ̃ (tk) = J>mo P (τ (tk))
+
Jmo − µP (τ (tk))

with mo ∈ {1, 2, . . . ,M} such that tk = tmoko for some ko ∈
N. Using (18), one can see that

τ (tk) ∈

(
mo−1∏
m=1

[0 , τm]

)
× [τmo , τmo ]×(
M∏

m=mo+1

[0 , τm]

)
= Conv (Smo) ,

and
P (τ (tk))

+
= P (Rmoτ (tk)) .

Thus, by applying the Schur complement to (13), by con-
vexity arguments, we get that Γ̃ (tk) ≺ 0. Consequently, the
inequality

V (x (tk) , tk)
+ ≤ µV (x (tk) , tk)

holds. This inequality and (20) imply that for s ∈ (tk , tk+1],

V (x (s) , s) ≤ µ e−(s−tk)α V (x (tk) , tk) .

In particular, for s = tk+1 we have V (x (tk+1) , tk+1) ≤
µ e−(tk+1−tk)α V (x (tk) , tk), ∀k ∈ N and iterating this
relation for k ∈ {0, 1, . . . N (t, t0)} with N (t, t0) the num-
ber of samplings of the concatenated sequence {tk}k∈N =
♦Mm=1 {tmk }k∈N in the time interval [t0 , t), we get:

V (x (t) , t) ≤ µN(t,t0) e−(t−t0)α V (x (t0) , t0) . (21)

According to relation (5) satisfied by the concatenated se-
quence, we know that

−M +
t− t0
τ ?

≤ N (t, t0) ≤M +
t− t0
τ ?

,

and thus, we can deduce that

µN(t,t0) = eN(t,t0) ln(µ) ≤ µM̃ e
(t−t0)

ln(µ)

τ̃ , (22)

where the constants M̃ and τ̃ are given by

(M̃, τ̃ ) =

{
(−M, τ ?) if 0 < µ ≤ 1,
(M, τ ?) if µ > 1.

Furthermore, one can see that

V (x (t0) , t0) = x> (t0)P0 x (t0) ≤ λmax (P0) |x (t0)|2 (23)

and
V (x (t) , t) ≥ σmin |x (t)|2 (24)

with σmin = min
τ∈Conv(S)

λmin (P (τ)) > 0. Notice that the

compactness of Conv (S) in RM , the continuity of the eigen-
value function and the Weierstrass extreme value theorem
ensure the existence of σmin that is strictly positive according
to Assumption (11). Finally, using inequalities (21)–(24) and
the definition (16) of the constant β, we get

|x (t)| ≤
√
σ−1min λmax (P0) µM̃ e−β (t−t0) |x (t0)| .

Therefore, if Assumption (15) is satisfied, the system (9)–
(10) is exponentially stable with a decay rate β.



C. Stability analysis for decentralized linear sampled-data
control systems

Consider the decentralized linear sampled-data control
system described by

ẋ(t) = Ãx(t) +

M∑
m=1

B̃mum(t), t ≥ t0 ∈ [0 ,∞),

um(t) = Km x(tmk ), t ∈ (tmk , t
m
k+1],

m ∈ {1, 2, . . . ,M}, k ∈ N,
x(0) = x0 ∈ Rn,

(25)

where x (t) ∈ Rn is the state vector, um (t) ∈ Rpm , m ∈
{1, 2, . . . ,M} is the control input sent by the mth controller
to the process with sampling sequence {tmk }k∈N such that
tm0 = t0 for all m ∈ {1, 2, . . . ,M}; Ã, B̃m and Km,
m = 1, 2, . . . ,M are matrices of appropriate dimensions.
The state of the system is assumed to be continuous from
the left and the sampling sequences are such that (10) holds
for some constants 0 ≤ τm ≤ τm ≤ ∞, m ∈ {1, 2, . . . ,M}.
Introducing the extended state variable X defined by

X (t) =
(
x> (t) u>1 (t) · · · u>M (t)

)> ∈ Rn+p1+···+pM ,

system (25) can be rewritten and analysed as the following
impulsive decentralised system:{
Ẋ (t) = AX (t) , t ≥ t0 ∈ [0 ,∞),
X (tmk )+ = JmX (tmk ) , ∀k ∈ N, ∀m ∈ {1, 2, . . . ,M}, (26)

with A and Jm the matrices defined by:

A =

(
Ã B̃1 ... B̃M
0 0 ... 0
0 ... ... 0

)
, Jm =

(
I 0 ... ... 0

K1δ1m I1δ̄1m 0 ... 0
... 0 ... ... 0

KM δMm 0 ... 0 IM δ̄Mm

)
, (27)

where δij =

{
1 if i = j,
0 otherwise, and δ̄ij = 1− δij .

Based on this impulsive decentralized form and Theo-
rem 1, stability of system (25) can be investigated using the
following result.

Corollary 4: Consider the decentralized linear sampled-
data control system (25) with event sequences {tmk }, m ∈
{1, 2, . . . ,M} satisfying the RDT condition (10). If there
exist symmetric matrices Pm ∈ R(n+p1+···pM )×(n+p1+···pM ),
m ∈ {1, 2, . . . ,M} and two constants α ∈ R and µ ∈ R+

such that statements (i)–(iv) in Theorem 1 hold with A
and Jm, m ∈ {1, 2, . . . ,M} the matrices given by (27),
respectively, then system (25) with sampling sequences (10)
is exponentially stable with a decay rate β given by (16).

IV. NUMERICAL EXAMPLE

In this section, we show experimentations performed on
an inverted pendulum benchmark, using the result from the
previous section. The system is nonlinear, so we will use
for analysis a linearisation of the model around its unstable
equilibrium point.

Fig. 2: Device at CRIStAL

Parameters Values
mc 3.9249 Kg
mp 0.2047 Kg
l 0.2302 m
g 9.81 N/kg
η 25.3 N/V

TABLE I: Parameters

A. System description

The inverted pendulum (see Figure ??), consists of a cart
which is driven by a motor and a pendulum. The pendulum
is fixed and left free on the cart. The system has two sensors:
the first one measures the linear position of the cart where the
second one measures the angular position of the pendulum.
Each sensor can work at a sampling periods can be as short
as 1ms. An estimation of the linear and angular velocities is
calculated using a filtered derivative. The closed-loop control
has been designed on SIMULINK, and the communication
between the system and the calculator (computer) is assured
by a dSPACE board, using a ControlDesk software interface.

Using the linearisation of system dynamic around the
upper position, one has :(

ẋp
ẍp

θ̇
θ̈

)
=

 0 1 0 0

0 0
−mpg
mc

0

0 0 0 1

0 0
(mc+mp)g

mcl
0

( xp
ẋp
θ
θ̇

)
+

( 0
η
mc
0

−η
mcl

)
U. (28)

The control is designed as decentralized sampled-data linear
state-feedback

U(t) = K
(
xp(t

1
k) ẋp(t

1
k) θ(t2l ) θ̇(t2l )

)>
,

∀t ∈ [t1k, t
1
k+1) ∩ [t2l , t

2
l+1), k ∈ N, l ∈ N,

with a gain K =
(
5.825 5.883 24.94 5.140

)
, which

was obtained using a placement of the poles {−100, − 2 +
2i, − 2− 2i, − 2}.

This system can be written in the form (25) with x =(
x>p ẋ>p θ> θ̇>

)>
, M = 2,

Ã =

 0 1 0 0

0 0
−mpg
mc

0

0 0 0 1

0 0
(mc+mp)g

mcl
0

, B̃1 = B̃2 =

( 0
η
mc
0

−η
mcl

)
,

and K1 = ( 5.825 5.883 0 0 ),K2 = ( 0 0 24.94 5.140 ), with
sampling sequences {t1k}k∈N and {t2k}k∈N satisfying (10).
The evolution of the position xp and angular position θ is
presented in Figure 4, where a large perturbation has been
introduced at t = 1.6s, by acting on the pendulum manually.
One can see that the pendulum stabilizes even in the presence
of sampling intervals variations and asynchronicity of both
sensors. The hectic stabilization of the pendulum can be
explained by the presence of dry friction in the cart (which
can be considered as a perturbation).

B. Theoretical and experimental results

Here, we have applied the results obtained in Corollary
4, with µ = 0.999 < 1 and α = −0.2. From the
proposed stability conditions, and setting lower-bounds on
the sampling intervals to τ1 = 1ms and τ2 = 1ms
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Fig. 3: Profile (zoomed) of the sampling of xp and ẋp (on
top between 0 and 1 sec), and of θ and θ̇ (at the bottom
between 0 and 0.1 sec)
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Fig. 4: Evolution of the position xp (top) and the angular
position θ (bottom) of the inverted pendulum suject to
perturbations for τ̄1 = 7ms and τ̄2 = 5ms

(the smallest sampling period sustained by the dSPACE
board), we were able to find admissible upper-bounds on the
sampling intervals for each sensor. For instance, we have
shown that the system is stable with upper-bounds on the
sampling intervals τ̄1 = 25ms and τ̄2 = 4ms. Therefore,
from these observations, we have been able to perform some
experimentations on the inverted pendulum benchmark. The
results have been obtained using randomly varying sampling
intervals with upper-bounds τ̄1 = 25ms and τ̄2 = 4ms, and
lower-bounds τ1 = 1ms and τ2 = 1ms (see Figure 3 to see
the profile of the sampling intervals), satisfying the stability
conditions from Corollary 4. The particular aspect of the
sampling intervals for the second sensor (bottom of Figure 3),
which measures θ and θ̇, comes from the sampling precision
of the dSPACE board: since the minimal sampling interval
is τ2 = 1ms, the maximal sampling interval is τ̄2 = 4ms,
and the precision of the board’s sampling is of 1ms, the
only possible values for the sampling interval of the second
sensor are 1ms, 2ms, 3ms, and 4ms.

V. CONCLUSION

In the first part of this paper we have investigated new
classes of sampling sequences emerging from the sorted
concatenation of well known classic sampling sequences. We
have shown that maximal average dwell time and ranged

average dwell time are sampling sequences worthy of more
attention. This study is justified by the problem of stability of
sampled-data systems where several components communi-
cate in an asynchronous way. In the second part of this work
we have used our results on sampling sequences to establish
novel stability conditions of system subject to asynchronous
sampled-data control.
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