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Abstract. One of the challenging problems that Web service technology
faces is the ability to effectively discover services based on their capa-
bilities. We present an approach to tackle this problem in the context
of DAML-S ontologies of services. The proposed approach enables to se-
lect the combinations of Web services that best match a given request Q
and effectively computes the extra information with respect to Q (e.g.,
the information required by a service request but not provided by any
existing service). We study the reasoning problem associated with such
a matching process and propose an algorithm derived from hypergraphs
theory.
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1 Introduction

Semantic Web services are emerging as a promising technology for the effective
automation of services discovery, combination, and management [1–3]. Semantic
Web services aim at leveraging two major trends in Web technologies, namely
Web services and Semantic Web:

– Web services build upon XML as vehicle for exchanging messages across ap-
plications. The basic technological infrastructure for Web services is struc-
tured around three major standards: SOAP, WSDL, and UDDI [4, 5]. These
standards provide the building blocks for service description, discovery, and
communication. While Web services technologies have clearly influenced pos-
itively the potential of the Web infrastructure by providing programmatic
access to information and services, they are hindered by lack of rich and
machine-processable abstractions to describe service properties, capabilities,
and behavior. As a result of these limitations, very little automation support
can be provided to facilitate effective discovery, combination, and manage-
ment of services. Automation support is considered as the cornerstone to
provide effective and efficient access to services in large, heterogeneous, and
dynamic environments [6, 4, 3].



– Semantic Web aims at improving the technology to organise, search, inte-
grate, and evolve Web-accessible resources (e.g., Web documents, data) by
using rich and machine-understandable abstractions for the representation of
resources semantics. Efforts in this area include the development of ontology
languages such as RDF, DAML, and DAML+OIL [7].

By leveraging efforts in both Web services and semantic Web, semantic Web
services paradigm promises to take Web technologies a step further by providing
foundations to enable automated discovery, access, combination, and manage-
ment of Web services. Efforts in this area focus on providing rich and machine
understandable representation of services properties, capabilities, and behavior
as well as reasoning mechanisms to support automation activities [1, 8, 2, 3, 9,
10]. Examples of such efforts include the DAML-S [9] initiative and the WSMF-
Web Services Modeling Framework [2]. Work in this area is still in its infancy.
Many of the objectives of the semantic Web services paradigm, such as dynamic
discovery and composition remain largely to be reached. Our work focuses on the
issue of dynamic discovery of Web services. The notion of dynamic discovery (or
simply service discovery) refers to systems in which requesters search through
registries to discover and then invoke services supporting the capabilities they
require.

This paper focuses on the reasoning aspects to automate the discovery of
Web services. Our aim is to ground the discovery of Web services on a semantic
comparison between a requester query and available Web services. We tackle this
problem in the context of DAML-S service ontologies. In DAML-S, service re-
quests as well as service capabilities are characterized, among others, in terms of
their inputs and outputs. We propose a novel matching algorithm for discovering
services. The matching algorithm takes as input a service request (or query) Q
and a DAML-S ontology T , and computes the best combination of Web services
that satisfies as much as possible the outputs of the query Q and that requires
as little as possible of inputs that are not provided in Q.

The main contributions of our approach are:

– We propose to view service discovery as a rewriting process in which a re-
quester query Q is rewritten into the closest description E expressed as a
conjunction of (some) Web services of a given ontology T . Our approach
features a global reasoning mechanism that goes beyond a simple pair-wise
comparison between a service request and service offers.

– We propose a matching process that goes beyond simple subsumption tests
between a service request and service advertisements.
As emphasized in [11], a Web service discovery algorithm should support
flexible matching since it is unrealistic to expect service requests and service
offers to be exactly equivalent. To cope with this requirement, we propose to
use a difference operation on service descriptions. Such an operation enables
to extract from a subset of Web service descriptions the part that is semanti-
cally common with a given service request and the part that is semantically
different from the request. Knowing the former and the latter allows to select
relevant Web services and then to choose the best ones.



We investigate the reasoning problem associated to such a discovery process
and its relationship with the expressiveness of the service description language.
Then we propose a service discovery algorithm derived from hypergraphs theory.
We show that this problem is similar to the so-called best covering problem
investigated in [12, 13]. In this paper we extend our previous results to deal with
DAML-S ontologies of services.

The remainder of this paper is organized as follows: Section 2 motivates the
role of ontologies to associate formal semantics with service descriptions and
outlines the overall structure of a DAML-S ontology. Section 3 formalizes the
proposed service discovery approach in the context of DAML-S ontologies. An
overview of a service discovery algorithm is given in Section 4 and together with
some preliminary experimental results are presented in Section 5. We review
related work and give concluding remarks in Section 6.

2 Describing Web Services with DAML-S

Ontologies “are formal and consensual specifications of conceptualisations that
provide a shared and common understanding of a domain, an understanding that
can be communicated across people and application systems” [3]. The semantic
Web community propose ontologies as means to address semantic heterogene-
ity among Web-accessible information sources and services. Ontologies are used
to provide meta-data for the effective manipulation of available information in-
cluding discovering information sources and reasoning about their capabilities.
RDF, DAML, and DAML+OIL are examples of ontology languages [7]. In the
area of Web services, ontologies promise to take interoperability a step further
by providing rich description and modeling of services properties, capabilities,
and behavior. DAML-S4 is a DAML-OIL ontology for describing Web services.
In this section, we give a brief overview of DAML-S as our approach relies on
DAML-S to describe service properties and capabilities.

2.1 DAML-S Ontologies: An Overview

DAML-S employs the ontology structuring mechanisms of DAML+OIL to de-
scribe the properties and capabilities of Web services in a computer-interpretable
form, thereby facilitating the automation of Web service discovery, invocation,
composition and execution. As a DAML+OIL ontology, DAML-S has a well-
defined semantics. It supplies a core set of markup language constructs for de-
scribing Web services in terms of classes (concepts) and complex relationships
between them.

A DAML-S ontology of services is structured in three main parts [9]:

– ServiceProfile describes the capabilities and parameters of the service. It is
used for advertising and discovering services.

4 http://www.daml.org/services/



– ServiceModel gives a detailed description of a service’s operation. Service
operation is described in terms of a process model, which details both the
control structure and data flow structure of the service required to execute
a service.

– ServiceGrounding specifies the details of how to access the service, via mes-
sages (e.g., communication protocol, message formats, addressing, etc).

The service profile provides information about a service that can be used by
an agent to determine if the service meets its needs. It consists of three types
of information: a (human readable) description of the service; the functional
behavior of the service which is represented as a transformation from the inputs
required by the service to the outputs produced; and several functional attributes
which specify additional information about a service (e.g., the cost of the service).

In the DAML-S approach, a service profile is intended to be used by providers
to advertise their services as well as by service requesters to specify their needs.
An example5 of a very simple book selling service is given below.

2.2 Example

BookSellingService is a simple service which given a book title returns the price
of that book. The advertisement below shows that the service accepts as input
a string and generates as output instances of the concept Price as defined in a
given ontology dummyOnt.

<profile:Profile rdf:ID="BookSellingService">

<profile:serviceName>BookSellingService</profile:serviceName>

...

<input>

<profile:ParameterDescription rdf:ID="BookTitle">

<profile:parameterName>bookTitle</profile:parameterName>

<profile:restrictedTo rdf:resource="http://../XMLSchema.xsd#string"/>

</profile:ParameterDescription>

</input>

<output>

<profile:ParameterDescription rdf:ID="Price_Output">

<profile:parameterName>Price</profile:parameterName>

<profile:restrictedTo rdf:resource="dummyOnt.daml#Price"/>

</profile:ParameterDescription>

</output>

</profile:Profile>

A request for a service is expressed in the same format. For example, the
previous profile description can also be used to express a request that looks for
a service that accepts as input a string and generates as outputs instances of
Price.
5 This example is inspired from [11].



3 Characterizing Services Discovery Automation

In this section, we describe an approach for matching a service request with
service advertisements. Given a service request (or query) Q and a DAML-S
ontology T of services, we want to compute the best combinations of Web services
that satisfy as much as possible the outputs of the request Q and that require
as little as possible of inputs that are not provided in the description of Q. We
call such combinations of Web services best profile covers of Q using T . This
problem is similar to the best covering problem [12–14]. We describe hereafter
how the best covering problem can be extended to DAML-S ontologies.

3.1 Best covering profile descriptions

To formally define the notion of best profile cover it is necessary to be able to
characterize the notion of “extra information”, i.e., the information contained in
one service profile description and not contained in the request description. For
that, a difference or subtraction operation on service descriptions is required.
As explained below, this requirement has an impact on the expressiveness of the
ontology description language.

Characterizing the ontology description language. Our approach uses Descrip-
tion Logics (DLs) [15] as a formal framework. DLs are a family of logics that
were developed to model complex hierarchical structures and to provide a spe-
cialized reasoning engine to do inferences on these structures. Recently, DLs have
heavily influenced the development of the semantic Web languages. For example,
DAML+OIL, the ontology language used by DAML-S, is in fact an alternative
syntax for a very expressive Description Logic [16].

A DL allows to represent domain of interest in terms of concepts or descrip-
tions (unary predicates) that characterize subsets of the objects (individuals)
in the domain, and roles (binary predicates) over such domain. Concepts are
denoted by expressions formed by means of special constructors. Examples of
DL constructors are given below:

– the symbol > is a concept description which denotes the top concept while
the symbol ⊥ stands for the inconsistent (bottom) concept,

– concept conjunction (u), e.g., the concept description parentumale denotes
the class of fathers (i.e., male parents),

– the universal role quantification (∀R.C), e.g., the description ∀child.male
denotes the set of individuals whose children are all male.

– the number restriction constructor (≥ n R) e.g., the description (≥ 1 child)
denotes the class of parents (i.e., individuals having at least one children).

Let C,D be two concept descriptions. In the sequel, we use the expression
C ≡ D to denote equivalence between concept descriptions and |C| to denote
the size6 of a concept C (i.e., the number of occurrences of concept and role
names in C).
6 Usually, |C| is computed using a given canonical form of C.



We consider description logics with a difference operator between concept
descriptions. Roughly speaking, the difference of two descriptions C and D,
expressed using C−D, is defined as being a description containing all information
which is a part of the description C but not a part of the description D [17].
However, it is worth noting that, in some description logics, C − D may be a
set of descriptions which are not semantically equivalent. Teege [17] provides
sufficient conditions to characterize the logics where the difference operation is
always semantically unique and can be implemented in a simple syntactical way
by computing the set difference of subterms in a conjunction. According to [17],
structural subsumption is a sufficient condition that allows to identify such logics.
However, it is worth noting that the definition of structural subsumption given
in [17] is different from the one usually used in the literature (e.g., see [15] for
the usual definition). Nevertheless, the result given in [17] is still interesting in
practice since there exist many description logics with this property. Examples
of such logics include the quite expressive language L1 [17] , which contains the
following constructors:

– u,t,>,⊥, (≥ n R), existential role quantification (∃R.C) and existential
feature quantification (∃f.C) for concepts, where C denotes a concept, R a
role and f a feature (i.e., a functional role),

– bottom (⊥), composition (◦), differentiation (|) for roles,
– bottom (⊥) and composition (◦) for features.

Currently, our approach does not consider the full expression power of the
DAML+OIL language. We consider a subset of DAML+OIL for which a struc-
tural subsumption7 algorithm exists. In the sequel, we use the term restricted
DAML-S ontologies to denote DAML-S ontologies which are defined using sub-
languages of DAML+OIL with structural subsumption.

The extension of our approach to consider more expressive description logics
is currently under investigation. Such an extension requires the definition of a re-
stricted difference operator to deal with the cases where the difference operation
is not semantically unique.

Statement of the problem. Now let us introduce some basic definitions that allow
to extend the best covering problem to DAML-S service profiles.

Let T = {Si, i ∈ [1, n]} be a restricted DAML-S ontology and E ≡ Sl u
. . . u Sp, with l, p ∈ [1, n] and l ≤ p, be a conjunction of some services occurring
in T . We denote by I(E) (respectively, O(E)) the concept obtained by the
conjunction of all the inputs (respectively, the outputs) occurring in the profile
section of all the services Si, for all i ∈ [l, p]. In the same way, we write I(Q)
(respectively, O(Q)) to denote the concept obtained by the conjunction of all
the inputs (respectively, the outputs) occurring in the profile section of a given
query Q.

7 In this paper we use the term structural subsumption in the sense of [17].



Definition 1. Profile cover (Pcover)
A profile cover, called Pcover, of Q using T is a conjunction E of some services
Si from T such that: O(Q)−O(E) 6≡ O(Q).

Hence, a Pcover of a query Q using T is defined as being any conjunction of
Web services occurring in T that share some outputs with Q.

The following two definitions allow to characterize more precisely the remain-
ing descriptions both in the outputs of the query Q (hereafter called the Prest)
and in the inputs of its cover E (hereafter called the Pmiss).

Definition 2. Profile rest (Prest) and Profile miss (Pmiss)
Let Q be a service request and E be a Pcover of Q using T .

– The profile rest of Q with respect to E, written PrestE(Q), is defined as
follows: PrestE(Q) ≡ O(Q)−O(E).

– The profile missing information of Q with respect to E, written PmissE(Q),
is defined as follows: PmissE(Q) ≡ I(E)− I(Q).

Now we can define the notion of best cover with respect to service profiles as
follows.

Definition 3. best profile cover
A conjunction E of some services of an ontology T is called a best profile

cover of Q using T iff:

– E is a Pcover of Q using T , and
– there doesn’t exist a Pcover E′ of Q using T such that

(|PrestE′(Q)|, |PmissE′(Q)|) < (|PrestE(Q)|, |PmissE(Q)|), where < stands
for the lexicographic order.

The best profile covering problem is then defined as the problem of computing
all the best profile covers of Q using T . From the results already shown for the
best covering problem [13], it follows that the best profile covering problem is
NP-Hard.

3.2 Illustrating Example

This example illustrates how the notion of best profile cover can be used to
match a service request with service advertisements. Let us consider an ontology
of Web services containing the following three services:
- ToTravel allowing to reserve a trip given an itinerary (i.e., the departure point
and the arrival point) and the arrival time and date.
- FromTravel allowing to reserve a trip given an itinerary and the departure
time and date.
- Hotel allowing to reserve a hotel given a destination place, a period of time
expressed in terms of the check-in date and the check-out date.

Due to lack of space, we do not provide the complete profile descriptions of
these services. Table 1 shows the inputs and the outputs concepts of the three



Web services. We assume that, the service profiles refer to concepts that are
defined in the restricted8 DAML-OIL ontology of tourism given in Table 2. For
clarity reasons, we use the usual DL syntax instead of the DAML-OIL syntax to
describe the ontology. In Table 2, the description of the concept Itinerary denotes
the class of individuals whose departure places (respectively arrival places) are
instances of the concept Location. Moreover, the individual belonging to this
class must have at least one departure place (the constraint (≥ 1 departurePlace))
and at least one arrival place (the constraint (≥ 1 arrivalPlace)). The input of
the service ToTravel is obtained by the conjunction of all its inputs as follows:
I(ToTravel) ≡ Itinerary u Arrival. By replacing the concepts Itinerary and
Arrival by their descriptions, we obtain the following equivalent description:

I(ToTravel) ≡ (≥ 1 departurePlace) u ( ∀ departurePlace.Location) u (≥ 1 ar-
rivalPlace) u (∀ arrivalPlace.Location) u (≥ 1 arrivalDate) u (∀
arrivalDate.Date) u (≥ 1 arrivalTime) u (∀ arrivalTime.Time)

The inputs and the outputs of the other Web services can be computed in
the same way.

Service Inputs Outputs

ToTravel Itinerary, Arrival TripReservation
FromTravel Itinerary, Departure TripReservation

Hotel Destination, StayDuration HotelReservation
Table 1. Input and Output service parameters.

Itinerary ≡ (≥ 1 departurePlace) u ( ∀ departurePlace.Location) u (≥ 1 arrivalPlace) u (∀
arrivalPlace.Location)

Arrival ≡ (≥ 1 arrivalDate) u (∀ arrivalDate.Date) u (≥ 1 arrivalTime) u (∀ arrival-
Time.Time)

Departure ≡ (≥ 1 departureDate) u (∀ departureDate.Date) u (≥ 1 departureTime) u (∀
departureTime.Time)

Destination ≡ (≥ 1 destinationPlace) u (∀ destinationPlace.Location)
StayDuration ≡ (≥ 1 checkIn) u (∀ checkIn.Date) u (≥ 1 checkOut) u (∀ checkOut.Date)

TripReservation ≡ . . .
HotelReservation ≡ . . .

CarRental ≡ . . .

Table 2. Example of a tourism ontology.

Now, let us consider a service request Q that looks for a vacation package
that combines a trip with a hotel and a car rental, given a departure place, an
8 In this example, we use a description language made of the following constructors:

concept conjunction (u), universal role quantification (∀R.C) and the at least num-
ber restriction constructor (≥ nR).



arrival place, a departure date, a (hotel) destination place and the check-in and
check-out dates. The inputs and outputs of the query Q can be expressed by
the following descriptions which, again, refer to some concepts of the tourism
ontology given in Table 2:

I(Q) ≡ (≥ 1 departurePlace) u (∀ departurePlace.Location) u (≥ 1 arrivalPlace) u
(∀ arrivalPlace.Location) u (≥ 1 departureDate) u (∀ departureDate.Date)
u (≥ 1 destinationPlace) u (∀ destinationPlace.Location) u (≥ 1 checkIn)
u (∀ checkIn.Date) u (≥ 1 checkOut) u (∀ checkOut.Date)

O(Q) ≡ TripReservation u HotelReservation u CarRental

The matching between the service request Q and the three advertised services
given above can be achieved by computing the best profile covers of Q using these
services. The result will be the following:

Best profile cover Prest Pmiss
FromTravel, Hotel CarRental departureTime

In this example, there is only one best profile cover of Q corresponding to the
description E ≡ Hotel u FromTravel. The selected services generate the concepts
TripReservation and HotelReservation which are part of the output required
by the query Q. From the service descriptions we can see that no Web service sup-
plies the concept CarRental. Hence, the best profile covers of Q will have exactly
the following profile rest: PrestE(Q) ≡ carRental. This rest corresponds to the
output of the query that cannot be generated by any advertised service. More-
over, the Pmiss column shows the information (the role departureTime) required
as input of the selected services but not provided in the query inputs. More pre-
cisely, the best profile covers of Q will have exactly the following profile missing
information: PmissE(Q) ≡ (≥ 1departureTime) u (∀departureTime.Time). It is
worth noting that, although the solution E′ ≡ Hotel u ToTravel generates the
same outputs (i.e., the concepts TripReservation and HotelReservation), it
will not be selected because its Pmiss is greater than the one of the first solution
(it contains the roles arrivalTime and arrivalDate).

4 Computing Best Profile Covers Using Hypergraphs

Let us first recall some useful definitions regarding hypergraphs. For more details
about hypergraphs theory, we refer the reader to [18, 19].

Definition 4. hypergraph and transversals [19]
An hypergraph H is a pair (Σ,Γ ) of a finite set Σ = {V1, . . . , Vn} and a set Γ
of subsets of Σ. The elements of Σ are called vertices, and the elements of Γ
are called edges.
A set T ⊆ Σ is a transversal of H if for each ε ∈ Γ , T ∩ ε 6= ∅. A transversal T
is minimal if no proper subset T ′ of T is a transversal. The set of the minimal
transversals of an hypergraph H is noted Tr(H).

In the rest of this section, we briefly sketch how we can compute best profile
covers using hypergraphs theory.



4.1 Reduction of the Best Profile Covering Problem to Hypergraphs

In the context of languages with structural subsumption, [17] shows that:

– each concept description C can be expressed in a given normal form, called
Reduced Clause Form (RCF), as a conjunction of atomic clauses (e.g., c1 u
. . . u cm), and

– the difference C−D between two concepts descriptions C and D can be com-
puted using the simple set difference operation between the sets of atomic
clauses of C and D.

Based on this result, we can show that the best profile covering problem can
be interpreted in the framework of hypergraphs as the problem of finding the
minimal transversals with a minimal cost. Given a query Q and an ontology
of Web services T , the first step is to build an associated hypergraph HT Q as
follows:

– each Web service Si in T becomes a vertex VSi in the hypergraph HT Q.
– each clause A in the normal form description of the output O(Q) of the

query Q becomes an edge in the hypergraph HT Q. The edge is populated by
those services that have in their outputs a clause A′ that is equivalent to A.

– Let X = {VSi
, . . . , VSj

} be a set of vertices of the hypergraphHT Q. We define
the notion of a cost of a set of vertices as: cost(X) = |Pmiss(Siu...uSj)(Q)|.

Then, one can prove that computing the best profile covers of Q using T can
be reduced to the computation of the minimal transversals with the minimal
cost of the associated hypergraph HT Q. More details about the reduction of the
best covering problem to hypergraphs can be found in [13].

4.2 The Service Discovery Algorithm

Based on hypergraph theory, we propose an algorithm called computeBProfile-
Cov that solves the best profile covering problem. computeBProfileCov is an
adaptation of the computeBCov algorithm proposed in [13] to solve the general
best covering problem.

A naive approach to compute the minimal transversals with the minimal
cost of a hypergraph would be: (i) to compute all the minimal transversals using
existing algorithms for computing the minimal transversals of an hypergraph
(e.g., see [18, 19]), and then (ii) to choose those transversals which have the
minimal cost. A simple algorithm to compute the minimal transversals of an
hypergraph H is proposed in [20]. The algorithm is incremental and works in
n steps where n is the number of edges of the hypergraph H. Starting from an
empty set of transversals, the basic idea is to explore each edge of the hypergraph,
one edge at each step, and generate a set of candidate transversals by computing
all the possible unions between the candidates generated in the previous step and
each vertex in the considered edge. At each step, the non-minimal candidate



transversals (i.e., the candidates in which at least one other candidate is strictly
included) are removed.

The algorithm computeBProfileCov makes an improvement over the naive
approach in two ways:

1. it reduces the number of candidates in the intermediary steps of the algo-
rithm by generating only the minimal transversals, and

2. it uses a combinatorial optimization technique (Branch-and-Bound) in or-
der to prune, at the intermediary steps of the algorithm, those candidate
transversals which will not generate transversals with a minimal cost.

Algorithm 1 computeBProfileCov (sketch)

Require: An ontology T and a query Q.
Ensure: The set of the best profile covers of Q using T .
1: Build the associated hypergraph HTQ = (Σ, Γ ).
2: Tr(HTQ)← ∅ – Initialization of the set of the minimal transversals.
3:

CostEval←
∑
e∈Γ ′

min
VSi

∈e
(|PmissSi(Q)|). – Initialization of CostEval

4: for all edge E ∈ Γ do
5: Tr(HTQ)← the new generated set of the minimal transversals.
6: Remove from Tr(HTQ) the transversals whose costs are greater than CostEval.
7: Compute a more precise evaluation of CostEval.
8: end for
9: for all X = {VSi , . . . , VSn} ∈ Tr(HTQ) such that |PmissSiu...uSn(Q)| = CostEval

do
10: return the concept Si u . . . u Sn as a best profile cover of Q using T .
11: end for

The first improvement, that allows to generate only good candidates (only
minimal transversals) at each iteration (line 5 of the algorithm), uses a necessary
and sufficient condition provided by Theorem 1 below. This condition charac-
terizes a pair (Xi, sj) that will generate a non minimal transversal at iteration i,
where Xi is a minimal transversal generated at iteration i− 1 and sj is a vertex
of the ith edge.

Theorem 1.
Let Tr(H) = {Xi, i = 1..m} the set of minimal transversals for the hypergraph
H, and E = {sj , j = 1..n} an extra edge of H. Assume H′ = H ∪ E. Then,
we have : Xi ∪ {sj} is a non-minimal transversal of H′ ⇔ it exists a minimal
transversal Xk of H such that Xk ∩ E = {sj} and Xk \ {sj} ⊂ Xi

Details and proof of Theorem 1 are given in [21].
The second improvement consists in a Branch-and-Bound like enumeration

of transversals. First, a simple heuristic is used to efficiently compute a cost of a



good transversal (i.e., a transversal expected to have a small cost). This can be
carried out by adding, for each edge of the hypergraph, the cost of the vertex
that has the minimal cost. The resulting cost is stored in the variable CostEval
(line 3 of the algorithm). As we have, for any set of vertices X = {VSi , . . . , VSn}:

cost(X) = |PmissSiu...uSn(Q)| ≤
∑

j∈[i,n]

|PmissSj (Q)| =
∑

VSj
∈X

cost(VSj )

Hence, the evaluation CostEval is an upper bound of the cost of an ex-
isting transversal. Then as we consider candidates in intermediate steps of the
algorithm, we can eliminate from Tr(HT Q) any candidate transversal that has
a greater cost than CostEval, since that candidate cannot possibly lead to a
transversal that is better than what we already know (line 6). Then, from each
candidate transversal that remains in Tr(HT Q), we compute a new evaluation
for CostEval by considering only remaining edges (line 7).

These two optimizations9 have been implemented as separate options of the
algorithm, namely option Pers for the first optimization and option BnB for the
second one.

Hence, the algorithm computeBProfileCov can be used to allow dynamic
discovery of DAML-S services based on their capabilities. According to the def-
initions 1 and 2 of Section 3, the algorithm selects the combinations of services
that best match a given query and effectively computes the outputs of the query
that cannot be satisfied by the available services (i.e., Prest) as well as the inputs
that are required by the selected services and are not provided in the query (i.e.,
Pmiss).

5 Implementation and Experiments

To conduct experiments, we have developed a testbed prototype that allows to
evaluate the performance of the computeBProfileCov algorithm. This prototype
is implemented using the Java programing language. The prototype implements
up to 6 versions of the computeBProfileCov algorithm corresponding to different
combinations of optimization options. Moreover, it includes a tool that enables to
generate random XML-based services ontologies and associated service requests
that can be used to evaluate the computeBProfileCov algorithm. All experiments
have been performed on a PC with a Pentium III 500 MHz and 384 Mo of RAM.

To test computeBProfileCov, we first have run computeBProfileCov on worst
cases and then on a set of ontologies and queries randomly generated by our
prototype. computeBProfileCov worst cases were built according to a theoretical
study of the complexity of all versions of computeBProfileCov : two ontologies
(and their associated query) have been built in order to maximize the number
of minimal transversals of the corresponding hypergraph as well as the number
of elementary operations of the algorithm (i.e., inclusion tests and intersection
operations). In each case, there exists at least one version of computeBProfileCov
9 Other less significant optimization options have also been implemented.



that complete the execution in less than 20 seconds. We point out the fact that if
these cases are very bad for computeBProfileCov, they are also totally unrealistic
with respect to practical situations. Due to space limitation, we will not detail
here the many parameters used in the generation of random ontologies. We just
point out that we tried to generate larger but still realistic random ontologies.
The modeling and random generating question is an hard issue that is far out
from the scope of this paper. We focus here on three study cases which special
feature is the varying size of the application domain ontology, of the Web service
ontology and of the query. Their characteristics are given below:

Configurations Case 1 Case 2 Case 3
Number of concept descriptions in the appli-
cation domain ontology

365 1334 3405

Number of Web services 366 660 570
Number of (atomic) clauses in the query 6 33 12

It is worth noting that the internal structures of these ontologies correspond to
bad cases for the computeBProfileCov algorithm. We have run the 6 versions of
the computeBProfileCov algorithm on each of these cases. The overall execution
time results are given in Figure 110. The Figure 1 shows that for the cases 1

4 1
46

40
50

16
 91

4 7
63

16
 93

0 6
05

10
0 9

95

10
0 5

54

19
1

14
 48

8 9
24

33
2 2

68

10
 36

7 7
28

18
0

31
 96

6

15
 33

2

1 9
13

31
 50

5

1

10

100

1000

10000

100000

1000000

10000000

100000000

Case 1  Case 2  Case 3

m
ill

is
ec

o
n

d
s

1 32 4 5 6 7 8
> 43 200 000 
(> 12 hours)

> 43 200 000 
(> 12 hours)

1 : BnB: false,
Pers: false,
BnB1

2 : BnB: false,
Pers: false,
BnB2

3 : BnB: false,
Pers: true,
BnB1

4 : BnB: false,
Pers: true,
BnB2

5 : BnB: true,
Pers: false,
BnB1

6 : BnB: true,
Pers: false,
BnB2

7 : BnB: true,
Pers: true,
BnB1

8 : BnB: true,
Pers: true,
BnB2

(1s)

(10s)

(1mn40s)

(16mn40s)

(2h46mn40s)

(27h46mn40s)
(~4h43mn)

(~1mn40s)

(~ 4h)

(~2h53mn)

(~5mn30s)

5 6 7 8 5 6 7 8

Fig. 1. Execution time.

10 Note that versions 1 and 2 of the algorithm (respectively, 3 and 4) are similar as both
run computeBProfileCov without BnB, and what distinguishes 1 from 2 (respectively,
3 from 4) is the way the option BnB is implemented (BnB1 or BnB2).



and 3, there is at least a version of the algorithm that runs in less than two
seconds, and in less than 30 seconds for the case 2. So, although the Figure 1
shows that there is a great difference in performance of the different versions
of the algorithm, there is in each case one version of computeBProfileCov that
allows us to be optimistic concerning the real-time execution of services discovery
with quite large domain ontologies. All details concerning the implementation
of computeBProfileCov, the theoretical study of worst cases, the parameterized
ontology generation process and experimental results can be found in [21].

6 Related Work and Concluding Remarks

There are some proposals of Web service discovery mechanisms that employ se-
mantic Web technology for service description. For example, Bernstein et al. [10]
proposes to use process ontologies to describe the behaviour of services and then
to query such ontologies using a Process Query Language (PQL). Chakraborty
et al. [8] defines an ontology based on DAML [22] to describe mobile devices and
proposes a matching process, based on an advanced Prolog reasoning engine, to
locate devices on the basis of their features. González-Castillo et al. [23] reports
on an experience in building matchmaking prototype based on a description logic
reasoning engine and operating on service descriptions in DAML+OIL. The pro-
posed matching algorithm is based on simple subsumption and consistency tests.
Paolucci et al. [11] proposes a matching algorithm between services and requests
described in DAML-S. In this approach, a match between a service request and
an advertised service is determined by comparing all the outputs of the query
with the outputs of the advertisement and all the inputs of the advertisement
with the inputs of the query. The proposed algorithm recognizes various degrees
of matching that are determined by the minimal distance between concepts in
the concept taxonomy. Based on a similar approach, the ATLAS matchmaker
[24] operates on DAML-S ontologies and utilizes two separate sets of filters: 1)
Matching functional attributes to determine the applicability of advertisements
(i.e., do they deliver sufficient quality of service, etc). 2) Matching service func-
tionalities to determine if the advertised service matches the requested service.
A DAML-based subsumption inferential engine is used to compare input and
output sets of requests and advertisements.

Finally, it should be noted that the problem of capabilities based matching
has also been addressed by several other research communities, e.g., information
retrieval, software reuse systems or multi-agent communities. More details about
these approaches and their applicability in the context of the semantic Web
service area can be found in [10, 11].

Our work focuses on automatic discovery of Web services based on a semantic
matching between declarative descriptions of services and requests. We adopt an
approach similar to [11] for comparing requests with advertised services based
on their inputs and outputs. However, we propose a rather different matching
algorithm. Indeed, since we view the Web service discovery as a rewriting process,
our algorithm is able to discover combinations of services that best match (cover)



a given request. Furthermore, the difference between the query and its rewriting
(i.e., Prest and Pmiss) is effectively computed and can be used to improve the
Web service interoperability.

From the technical point of view, the best profile covering problem belongs
to the general framework for rewriting using terminologies provided in [25]. This
framework is defined as follows: given a terminology T (i.e., a set of concept de-
scriptions), a concept description Q that does not contain concept names defined
in T and a binary relation ρ between concept descriptions, can Q be rewritten
into a description E, built using (some) of the names defined in T , such that
QρE ?
Additionally, some optimality criterion is defined in order to select the rele-
vant rewritings. Already investigated instances of this problem are the minimal
rewriting problem [25] and rewriting queries using views (e.g., [26, 27]). In the
former, ρ is instantiated by equivalence modulo T and the size of the rewriting
is used as the optimality criterion. In the latter, the relation ρ is instanciated by
subsumption and the optimality criterion is the inverse subsumption [25].

The best profile covering problem can be viewed as a new instance of the
problem of rewriting concepts using terminologies where the goal is to rewrite a
description Q into the closest description expressed as a conjunction of (some)
concept names in T (hence, ρ is neither equivalence nor subsumption).

Our future work will be devoted to the extension of the proposed framework
to hold the definition of the best profile covering problem for description logics
where the difference operation is not semantically unique. After the very first
results we got in this context, we argue that a restricted difference operator can
be defined, and then the proposed framework can be extended to more expressive
languages.
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