Frank Vega Triangle

Frank Vega
email: vega.frank@gmail.com

Triangle Finding

Keywords: 2012 ACM Subject Classification Theory of computation algorithm, undirected graphs, lower bound, matrix 1 Problem

4

The Algorithm

Given an undirected graph of n vertices represented by a Boolean adjacency matrix, then this should be a valid adjacency matrix for an undirected graph: for the symmetry(equals to its transpose) and the main diagonal is filled only with zeroes. These are the steps that we implicitly follow in the Algorithm 1: 1. First, fill the main diagonal with ones. 2. Next, set to zero all the one values in the entries of the matrix which are above of the main diagonal.

3.

If we find a rectangle whose corners are 1's in the final modified matrix such that the upper right corner is an entry of the main diagonal, then there must be a triangle in the undirected graph input. 4. Otherwise, there is no possible triangle in the undirected graph input.

Theorem 1. After these previous steps there is a triangle in the undirected graph if and only if we find a rectangle whose corners are 1's in the final modified matrix such that the upper right corner is an entry of the main diagonal.

Proof. Since the matrix is symmetric, then we have matrix [c][a] = matrix [a][c] for every pair of nodes a and c. In addition, since we fill the main diagonal with ones, then matrix [a][a] has the value of 1 for every node a (1 is equivalent to the value of true into the Boolean adjacency matrix). Consequently, we have three nodes b < a < c that is a triangle if and only if the entries matrix [a][b], matrix [a][a], matrix [c][b] and matrix [c][a] represent the corners of a rectangle. This rectangle should have all the corners as 1's and the upper right corner must be on the main diagonal. There could be rectangles with corners 1's where the upper right corner is not on the main diagonal, but the algorithm ignores these cases.

Runtime

This takes the running time O(n 2) assuming the Binary AND operation could be done in constant time.

Code

This work is implemented into a GitHub Project programmed in Java [3]. We show the Algorithm 1 in pseudo coding.

Programming Techniques

We use the Binary AND Operation between two integers for finding the rectangle whose corners are 1's such that the upper right corner is an entry of the main diagonal.

Highlights

We make the number numbers [j] shorter with the Binary AND Operation (numbers[j] & all) just forcing to have the final result with at most i + 1 binary digits. Hence, the another Binary AND Operation with the number numbers[i] could have the complexity running time as hard as the next comparison lhs > rhs in the following line of coding since the number numbers[i] has exactly i + 1 binary digits. Indeed, we can deduce the comparison operation and the the Binary AND Operation have the same order in their worst cases inside of our Algorithm 1 since they have to check or operate within at most i + 1 binary digits. return "no" 36: end procedure