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Abstract—We first propose an asymptotic formulation of
Karlin-Rubin’s theorem that relies on the weak convergence of a
sequence of random vectors to design Asymptotically Uniformly
Most Powerful (AUMP) tests dedicated to composite hypotheses.
This general property of optimality is then applied to the problem
of testing whether the energy of a signal projected onto a known
subspace exceeds a specified proportion of its total energy. The
signal is assumed unknown deterministic and it is observed in
independent and additive white Gaussian noise. Such a problem
can arise when the signal to be detected obeys the linear subspace
model and when it is corrupted by unknown interference. It can
also be relevant in machine learning applications where one wants
to check whether an assumed linear model fits the analyzed data.
For this problem, where it is shown that no Uniformly Most
Powerful (UMP) and no UMP invariant tests exist, an AUMP
invariant test is derived.

I. INTRODUCTION

The most desirable way to solve a hypothesis-testing prob-
lem is to find a statistical test that is optimal according to a
certain criterion. Uniformly Most Powerful (UMP) tests are
often looked for as they provide the greatest power among the
class of tests with the same level. Neyman-Pearson’s lemma
provides UMP tests for simple hypotheses and Karlin Rubin’s
theorem extends this lemma to composite hypotheses. The
latter states that the comparison of a scalar statistic to a
threshold leads to a UMP test if this statistic has monotone
nondecreasing likelihood ratio [1]–[3]. However, in many
practical situations, no UMP tests exist due to the lack of
knowledge on the parameters involved in the problem at hand.
In such a situation, attention is often restricted to a specific
class of tests (e.g., invariant tests) and/or tests that show
asymptotic optimality.

In this paper, we first propose an asymptotic formulation of
the Neyman-Pearson and Karlin-Rubin theorems that relies on
the weak convergence of a sequence of random vectors and the
concept of Asymptotically Uniformly Most Powerful (AUMP)
test dedicated to composite hypotheses, such a concept being
inspired by [2, Def. 13.3.2]. These general results are then
applied to the problem of testing whether a signal, observed
in Gaussian noise, belongs to a subspace cone.

Linear subspaces are commonly used to model structured
signals/data [3]–[6]. The detection of such signals observed
in additive noise is classically performed thanks to matched
subspace detectors [7]. However, in many applications there
may be uncertainty about the signal (or subspace) of interest

[8]–[10] and interference may also be present in addition to
noise [7], [11], [12]. In some cases, the interference subspace
is either known or learned from training data [7] and in
others [11], [12], the interference is so poorly known that
no parametric model can be used. Signal uncertainties due
to model mismatch and/or to the presence of poorly known
interference can be modeled by a subspace cone [8], [9], [11],
[12]. In the present work, the cone is defined as a boundary
in the measurement space delimited by the set of all signals
which possess a specified fraction τ of their total energy in
a known linear subspace. On the basis of noisy observations,
we hereafter address the problem of testing whether a signal
belongs to the cone (H1) or not (H0). The signal is assumed
to be unknown deterministic and it is observed in independent
and additive white Gaussian noise. The invariances of the
problem are described and it is shown that no Uniformly
Most Powerful Invariant (UMPI) test exists. A test relying
on a maximal invariant statistics is derived and found to be
asymptotically UMPI thanks to the proposed Karlin-Rubin
theorem.

The concept of AUMP tests is introduced in Sec. II
along with additional definitions and notation. The asymptotic
Karlin-Rubin theorem is stated in Sec. III-B and applied to the
subspace cone detection problem IV-A. Numerical examples
are provided in Sec. V, followed by conclusions in Sec. VI.

II. DEFINITIONS AND NOTATION

Definition 1. A test is an application T : Γ→{0, 1} such that

T(y) =

{
1 if y ∈ RT

0 if y ∈ RT
(1)

with RT∪RT = Γ and RT∩RT = ∅. RT is called the critical
region of the test T.

By definition 1, we hereafter focus on non-randomized tests
only.

Definition 2. Let Y be a random vector. A set B is called a
P-continuity set if P[Y ∈ ∂B] = 0, where ∂B is the border
of B [13, Ch. 1].

Definition 3. Let (Yn)n∈N∗ be a sequence of random vectors
of probability density function fθYn

(y) with θ ∈ Θ. We consider
the following detection problem{

H0 : θ ∈ Θ0

H1 : θ ∈ Θ1, Θ0 ∪Θ1 = Θ , Θ0 ∩Θ1 = ∅ (2)



A test T is called AUMP (Asymptotically Uniformly Most
Powerful) of asymptotic size α if

lim
n

sup
θ∈Θ0

Eθ [T(Y n)] = α, (3)

and if for any other test T′ satisfying

lim
n

sup
θ∈Θ0

Eθ [T′(Y n)] ≤ α,

we have, limn supθ∈Θ1
(Eθ [T′(Y n)]− Eθ [T(Y n)]) ≤ 0.

The asymptotic optimality considered here is inspired by
[2, Def. 13.3.2]. In contrast to this reference, our definition
concerns composite hypotheses and involves limits in n instead
of lim sup’s.
Notation: We note ξY the family of tests whose critical
regions are P-continuity sets of the random vector Y , i.e.,
ξY , {T : P[Y ∈ ∂RT] = 0}. The convergence in distribution
of a sequence of random variables (Yn)n∈N∗ to a random
variable Y is denoted as Yn

L→ Y . The convergence in
probability is denoted as Yn

P→ Y . The superscripts T denotes
matrix transposition and ‖·‖ designates the standard Euclidean
norm. The distribution of a non-central chi-squared distribu-
tion with ν degrees of freedom and noncentrality parameter
` is denoted χ2

ν(`). F(ν1, ν2, `1, `2, ·) denotes the probability
density function (pdf) of a doubly non-central F-distribution
that corresponds to the ratio of two independent noncentral
chi-squared variables, normalized by their degree of freedom
ν1 and ν2, respectively, and of non centrality parameters `1
and `2. The corresponding cumulative distribution is denoted
as F (ν1, ν2, `1, `2, ·).

III. AN ASYMPTOTIC FORMULATION OF KARLIN-RUBIN’S
THEOREM

A. Preliminary material

Proposition 1 (Asymptotic Neyman-Pearson’s lemma). Let
(Yn)n∈N∗ be a sequence of random vectors, where every Yn
has a pdf fθYn

(y), θ ∈ Θ ⊂ R. Let Y be an absolutely
continuous random vector with pdf fθY (y) , θ ∈ Θ. Suppose
the existence of ϕ ∈ ξY such that

ϕ(y) =

{
1 if fθ1Y (y) ≥ ηfθ0Y (y)
0 otherwise,

(4)

where η ≥ 0 and Eθ0{ϕ(Y )} = α.

If Yn
L→ Y , then ϕ is AUMP of asymptotic level α for

testing {
H0 : θ = θ0

H1 : θ = θ1
(5)

among all tests belonging to ξY and ϕ is asymptotically
unbiased, i.e. Eθ1 [ϕ(Y )] ≥ Eθ0 [ϕ(Y )] = α.

Proof. See Appendix A.

B. Asymptotic Karlin-Rubin’s theorem

Proposition 2. Let Y : Ω→ RN be an absolutely continuous
random vector of pdf fθY (y), where θ ∈ Θ ⊂ R, and let Θ1

and Θ0 be two subsets of Θ such that: Θ = Θ0 ∪ Θ1 and
Θ0 ∩Θ1 = ∅. We assume that fθ0Y (y) 6= 0 for all y ∈ RN .
Let:

Λθ0,θ1(y) =
fθ1Y (y)

fθ0Y (y)
(6)

with θ0 ∈ Θ0 and θ1 ∈ Θ1 be the likelihood ratio such that
Λθ0,θ1 = hθ0,θ1◦V , with V : RN 7→ R.

Let (Yn)n∈N∗ be a sequence of random vectors. If, for any
θ0 < θ1, hθ0,θ1 is strictly increasing in V and Yn

L→ Y , then
the test

ϕ′(y) =

{
1 if V (y) ≥ λ
0 otherwise, (7)

with
Eθ0 [ϕ′(Y )] = Pθ0 [V (Y ) ≥ λ] = α, (8)

is AUMP among all tests belonging to ξY for testing{
H′0 : θ ≤ θ0

H′1 : θ > θ0.
(9)

Proof. See Appendix B.

IV. APPLICATION : TESTING THE PRESENCE OF A SIGNAL
IN A SUBSPACE CONE

A. Problem statement

Let z ∈ RN denote an unknown deterministic signal
observed in white Gaussian noise w ∼ N(0, σ2IN ) with
unknown variance σ2. The observation vector is modeled as

y = z +w. (10)

The signal-to-noise ratio (SNR), defined as γ = ‖z‖2
Nσ2 , is

assumed to be known for now. This assumption will be relaxed
in Sec. IV-D. Let H denote an N × n matrix that spans a
rank-n subspace 〈H〉 with n 6 N and PH its corresponding
projection matrix, i.e., PH = H

(
HTH

)−1
HT .

Given a tolerance 0 ≤ τ ≤ 1, let CH denote the subspace
cone defined as CH =

{
x ∈ RN : ρ = ‖PHx‖2

‖x‖2 > τ
}

. We
address the problem of testing whether z belongs to the cone
CH or not, when we are given y. The hypothesis testing
problem is therefore {

H0 : z /∈ CH

H1 : z ∈ CH.
(11)

Problem (11) amounts to testing whether a sufficient pro-
portion of the signal energy lies in the subspace 〈H〉. Such
a problem formulation can be relevant when the signal to
be detected obeys the linear subspace model and when it is
corrupted by some poorly known interference ζ, i.e., z =
µHψ + ζ, where µ is a random variable valued in {0, 1}
modeling the possible presence or absence of the signal, and
where ψ ∈ Rn is the unknown coordinates of this signal in
the subspace 〈H〉. For instance, in some applications [12],
[14], interference can be so heterogeneous that it cannot be



represented by a single parametric model and that the detector
cannot learn, thanks to a training dataset, the common features
shared by these interfering signals. In such cases, ζ cannot
be assumed to be orthogonal to the signal of interest or to
obey a known subspace model [7]. Given the poor knowledge
available on the interference, ζ can only be loosely defined
as a signal having “not much in common” with the signal of
interest. More formally, ζ may be defined as a vector whose
energy lies mostly outside the subspace in which the signal
of interest resides, i.e., ‖PHζ‖2 ≤ τ‖ζ‖2. Assuming further
that ‖Hψ + PHζ‖2 > τ‖Hψ + ζ‖2, (11) is then equivalent
to the problem of testing whether µ = 0 or µ = 1. A similar
model is used and applied to real data in [12], [14], which
attests of its practical relevance. Note that as opposed to other
subspace cone detectors such as [8], [9], the null hypothesis
in (11) is not restricted to the observation of Gaussian noise
only. Problem (11) can also be relevant in machine learning-
like applications where one wants to check on a given dataset
whether the assumed linear model matches the analyzed data
with a sufficient accuracy τ .

B. Uniformly Most Powerful Invariant Test

Since z is not known perfectly, no UMP test exists. As
Problem (11) is invariant, our attention is restricted to tests
invariant to sets of transformations for which the problem is
itself invariant. This invariance can be formalized through the
group of transforms in RN

G =
{
g : g(x) = κ(UHQUT

H + UH⊥RUT
H⊥)x

}
, (12)

where κ ∈ R, Q and R are n × n and (N − n) × (N −
n) orthogonal matrices, respectively. UH is defined such that
PH = UHUT

H and UH⊥ such that PH = IN −UH⊥U
T
H⊥ .

Given the invariance of our problem, it is desirable to find
a test T such that T(g(x)) = T(x) for all x ∈ RN and all
g ∈ G. It can easily be checked that

x ∈ RN 7→M(x) =
N − n
n

× ‖PHx‖2

‖(IN −PH)x‖2
∈ [0,∞)

(13)
is a maximal invariant of G, that is M(x) = M(g(x)) for
all g ∈ G and M(x1) = M(x2) ⇒ x2 = g(x1) for some g
∈ G. Therefore, it follows from [2, Theorem 6.2.1] that any
G-invariant test is a function of this maximal invariant.

If it exists, the UMPI test statistic can be obtained by
computing the likelihood ratio of the maximal invariant M(y).
Since M(y) can be expressed as the ratio of two (scaled) non-
central chi-square random variables, it is distributed according
to a doubly non-central F-distribution [15, Ch. 30] so that the
likelihood ratio is expressed as

LM (y) =
F(n,N − n,Nγρ1, Nγ(1− ρ1),M(y))

F(n,N − n,Nγρ0, Nγ(1− ρ0),M(y))
(14)

where ρ0 ≤ τ (resp. ρ1 > τ ) denotes the actual percentage
of the energy of z in the subspace 〈H〉 under hypothesis H0

(resp. H1). Since the hypotheses of Problem (11) are compos-
ite, ρ0 and ρ1 are not provided in the problem statement so
that the UMPI test cannot be implemented using LM (y). For

composite hypothesis testing, the UMPI test can sometimes
be derived by invoking Karlin Rubin’s theorem. Unfortunately,
LM (y) is not a nondecreasing function of M(y) for every pair
(ρ1 > ρ0, ρ0) and any set of parameters (n,N, γ). Therefore,
the UMPI test does not always exist. However, for large N ,
we next show that an asymptotically UMPI test always exists.

C. Asymptotically Uniformly Most Powerful Invariant Test

Given α ∈ (0, 1), let the test Tα be defined, for any x ∈ RN ,
as

Tα(x) =

{
1 if M(x) ≥ λ
0 otherwise, (15)

with λ such that

F (n,N − n,Nγτ,Nγ(1− τ), λ) = 1− α. (16)

The power function of this test satisfies P
[
Tα(z + w) =

1
]

= 1 − F (n,N − n,Nγρ,Nγ(1 − ρ), λ) where ρ =
‖PHz‖2/‖z‖2.

Proposition 3. Tα is AUMP with size α among G-invariant
tests for Problem (11).

Proof. M(y) = (N − n)Z1/(nZ2), where Z1 ∼ χ2
n(Nγρ)

and Z2 ∼ χ2
(N−n)(Nγ(1− ρ)). For n fixed and as N → ∞,

by the law of large numbers we have : Z2/(N − n)
P→ 1.

Applying Slutsky’s theorem, for N → ∞, we get M(y)
L→

Z1/n. Since the non-central chi-squared distribution is known
to have a monotone increasing likelihood ratio [16, pp. 469],
Prop. 2 applies with Θ0 = [0, τ ] and Θ1 = (τ, 1]. Thence the
result.

Interestingly, the maximal invariant statistic M(y) is the
same as the one used in other detection problems such as [7,
Ch. 4.12] and [11, App. A]. However, note that the test itself
is different since the power function as well as the optimality
properties are problem-dependent.

D. Unknown SNR

Knowledge of the SNR γ is required in (16) to compute the
detection threshold λ so as to satisfy the constraint on the size
α. In practice, γ is rarely known perfectly so that Tα cannot be
strictly applied. However, Tα can provide guidelines to design
relevant ad-hoc tests when no optimal test exists. For instance,
a robust test T′α can be used where M(y) is compared to a
new threshold λ′ such that

sup
γ∈S

F (n,N − n,Nγτ,Nγ(1− τ), λ′) = 1− α, (17)

where, (i) S = R when nothing is known about γ, (ii)
S = [γmin, γmax] when it is easy to specify SNR bounds
within which the observation lies with a high probability, or
(iii) S = {γ0} when (asymptotically) optimal properties are
required for a specific SNR γ0 and not necessarily for other
values. Other approaches, such as marginalization, are possible
when prior information are available on the SNR distribution.



Fig. 1. Probability of detection versus SNR γ, n = 5, N = 50, τ = 0.25,
ρ0 = τ , ρ1 = 0.75, S = [γ − 3, γ + 3] dB.

V. NUMERICAL RESULTS

Simulation examples illustrating the analytic results found
in Sec. IV are provided. Three tests are compared : the AUMPI
test Tα, the test T′α with bounded SNR where S = [γmin, γmax],
and the UMPI test that compares the likelihood ratio (14) to
a threshold such that the size α is satisfied. This UMPI test
does not exist when ρ0 and ρ1 are not provided and is therefore
used as a performance bound. For all the simulations, n = 5
and the tolerance is set to τ = 0.25. The percentage of the
energy of z in the subspace 〈H〉 under hypothesis H1 is set
to ρ1 = 0.75. For the UMPI bound, ρ0 is set to ρ0 = τ .

Fig. 1 shows the probability of detection versus SNR γ for
three different values of level α, with N = 50, S = [γ−3, γ+
3] dB. It can be seen that the performance gap between the
AUMPI test Tα and the UMPI bound is insignificant for this
example. The loss due to unknown SNR is mostly visible for
low SNR signals and for a high value of α. Such a loss is
explained by the conservative behavior of the test T′α.

Fig. 2 illustrates the performance loss induced by a lack of
knowledge on the true SNR value. The probability of detection
is shown as a function of the SNR gap ∆γ , defined in dB as
∆γ = γ − γmin = γmax − γ. As expected, the performance
deteriorates with increasing uncertainty on the SNR. This is
mostly detrimental for high sizes α. It can be noticed that for
a gap ∆γ greater than 6 dB, there is no additional loss due
to additional SNR uncertainty. Such a figure can be relevant
for engineers to know how much effort is needed to design an
efficient SNR estimator, possibly used before detection.

VI. CONCLUSIONS

The proposed asymptotic formulation of Karlin Rubin’s
theorem states that, for composite hypothesis testing, the
comparison of a scalar statistic to a threshold leads to an
AUMP test if this statistic converge in distribution to a random
variable having a monotone increasing likelihood ratio. This
result has then been applied to derive an AUMP invariant
test to a subspace cone detection problem where the UMP
(invariant) test does not exist. If we are given SNR, the
numerical results indicate that the AUMPI test approaches the
UMPI performance bound. For unknown SNR, a robust test

Fig. 2. Probability of detection versus the SNR gap, n = 5, N = 50,
τ = 0.25, ρ0 = τ , ρ1 = 0.75, γ = 0 dB.

derived from the AUMPI test is proposed and shown to offer
a limited performance loss compared to the UMPI bound.

APPENDIX A
PROOF OF PROP. 1

The specificity of this asymptotic version of Neyman-
Pearson’s lemma is handled thanks to the Portmanteau theorem
[13, Th. 2.1]. More specifically, according to this theorem we
have

∀ T ∈ ξY lim
n

Eθ[T(Yn)] = Eθ[T(Y )]. (18)

Define ϕ̃ ∈ ξY such that Eθ0 [ϕ̃(Y )] ≤ α. By using the
definitions of ϕ and ϕ̃, we have the following inequality for
all y in RN

(ϕ̃(y)− ϕ(y))
(
fθ1Y (y)− ηfθ0Y (y)

)
≤ 0, (19)

yielding

Eθ1 [ϕ̃(Y )]− Eθ1 [ϕ(Y )] ≤ η (Eθ0 [ϕ̃(Y )]− Eθ0 [ϕ(Y )]) .
(20)

As the right term of the previous inequality is negative and by
applying the Portmanteau theorem, we can deduce that

Eθ1 [ϕ̃(Y )]− Eθ1 [ϕ(Y )]

= lim
n
{Eθ1 [ϕ̃(Yn)]− Eθ1 [ϕ(Yn)]} ≤ 0.

Therefore the test ϕ is AUMP among all tests in ξY .
To show that ϕ is unbiased, we note that ∀y ∈ RN and
∀ γ ∈ [0, 1]

(γ − ϕ(y))(fθ1Y (y)− ηfθ0Y (y)) ≤ 0
⇒ γ − Eθ1 [ϕ(Y )] ≤ η(γ − α).

(21)

If we set γ = α, we then get Eθ1 [ϕ(Y )] ≥ α.

APPENDIX B
PROOF OF PROP. 2

The proof can be broken up into three major steps. The
first step is to demonstrate that the test ϕ′ is AUMP for the
detection problem (5) of Prop. 1. The second is to prove
that ϕ′ is also AUMP when the alternative hypothesis H1 is
composite, and the last step is to obtain the same result when



the null hypothesis H0 is composite as well. Once Prop. 1 is
established, the first two steps are similar to the proof of the
non-asymptotic Karlin-Rubin theorem. Step 3 is more specific.

Lemma 1. For the detection problem (5), if the likelihood
ratio Λθ0,θ1(y) is a strictly increasing function of V (y), then
the test ϕ′ is AUMP among all the tests belonging to ξY .

Proof. From definition (4), the AUMP test for problem (5)
can be restated as

ϕ(y) =

{
1 if Λθ0,θ1(y) ≥ η
0 otherwise. (22)

If we set Λθ0,θ1(y) = hθ0,θ1(V (y)), then

ϕ(y) =

{
1 if hθ0,θ1(V (y)) ≥ η
0 otherwise. (23)

Therefore, if hθ0,θ1(V (y)) is strictly increasing in V (y) then
ϕ′ is AUMP because hθ0,θ1 admits an inverse function so that

ϕ(y) = ϕ′(y) =

{
1 if V (y) ≥ λ
0 otherwise,

where λ is defined according to (8) and satisfies λ = h−1
θ0,θ1

(η).

Lemma 2. The test ϕ′ is AUMP among all the tests belonging
to ξY for testing {

H′′0 : θ = θ0

H′′1 : θ > θ0.
(24)

Proof. From (7) and (8), it can be noticed that as opposed to ϕ,
the test ϕ′ does not depend on θ1. It only depends on the two
parameters θ0 and α. Moreover hθ0,θ1 is strictly increasing in
V for any θ0 < θ1. Consequently, the test is AUMP among the
tests belonging to ξY for any θ1 and θ0 satisfying θ0 < θ1.

For the third and last step of the proof, we must show that
ϕ′ is also AUMP when H0 is composite. Consequently, we
must prove that

lim
n

sup
θ≤θ0

Eθ[ϕ′(Yn)] ≤ Eθ0 [ϕ′(Y )] = α. (25)

We proceed in two stages.

Lemma 3. The test ϕ′ satisfies

lim
n

sup
θ≤θ0

Eθ[ϕ′(Yn)] = sup
θ≤θ0

Eθ[ϕ′(Y )]. (26)

Proof. According to the Portmanteau theorem, we have:
limn Eθ[ϕ′(Yn)] = Eθ[ϕ′(Y )]. Therefore, ∀y ∈ RN ,∀ε >
0,∃Nε,y ∈ N, ∀n ≥ Nε,y

−ε ≤
∫
RN

ϕ′(y)fθYn
(y)dy −

∫
RN

ϕ′(y)fθY (y)dy ≤ ε, (27)

yielding,

Eθ[ϕ′(Y )]− ε ≤ Eθ[ϕ′(Yn)] ≤ Eθ[ϕ′(Y )] + ε. (28)

Consequently, ∀ θ ≤ θ0,{
Eθ[ϕ′(Yn)] ≤ supθ≤θ0 Eθ[ϕ

′(Y )] + ε
Eθ[ϕ′(Y )] ≤ supθ≤θ0 Eθ[ϕ

′(Yn)] + ε
(29)

⇒
{

supθ≤θ0 Eθ[ϕ
′(Yn)] ≤ supθ≤θ0 Eθ[ϕ

′(Y )] + ε
supθ≤θ0 Eθ[ϕ

′(Y )] ≤ supθ≤θ0 Eθ[ϕ
′(Yn)] + ε

(30)
From the previous equation, we deduce that ∀ θ ≤ θ0∣∣∣∣ sup

θ≤θ0
Eθ[ϕ′(Yn)]− sup

θ≤θ0
Eθ0 [ϕ′(Y )]

∣∣∣∣ ≤ ε, (31)

which concludes the proof.

Lemma 4. The test ϕ′ satisfies supθ≤θ0 Eθ[ϕ
′(Y )] =

Eθ0 [ϕ′(Y )].

Proof. We consider the test ϕ′ used for testing{
H′′0 : θ = θ2

H′′1 : θ > θ2
, with θ2 < θ0. Since ϕ′ = ϕ

and the test ϕ is unbiased, we can deduce that
Eθ2 [ϕ′(Y )] ≤ Eθ0 [ϕ′(Y )], ∀ θ2 < θ0. Hence
supθ≤θ0 Eθ[ϕ

′(Y )] = Eθ0 [ϕ′(Y )].

From Lemma (3) and (4), we can conclude that (25)
is satisfied. The proof of Theorem 2 is then obtained by
combining Lemma 1, 2 and the inequality (25).
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