
HAL Id: hal-02272464
https://hal.science/hal-02272464v1

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Introducing Multi-Core at Automotive Engine Systems
D Claraz, F Grimal, T Leydier, R Mader, G Wirrer

To cite this version:
D Claraz, F Grimal, T Leydier, R Mader, G Wirrer. Introducing Multi-Core at Automotive Engine
Systems. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France.
�hal-02272464�

https://hal.science/hal-02272464v1
https://hal.archives-ouvertes.fr

 Page 1/9

 Introducing Multi-Core at Automotive Engine Systems
D. Claraz1, F. Grimal1, T. Leydier2, R. Mader3, G. Wirrer3

1: Continental Automotive France SAS, 1, av. Paul Ourliac, BP 1149, Toulouse - France
2: Virtualised Reeled, 4, rue du romarin - 31650 Saint Orens de Gameville - France

3: Continental Automotive Germany AG, Siemensstr.12, Regensburg - Germany

1. Introduction / Motivation (why Multi-Core)

With the introduction of the new Euro 6, and Euro 7
emission standards for passenger cars, the
combustion process of Engine Management
Systems (EMS) needs to be controlled with an
increased precision.

In addition, new vehicle architectures are introduced
(increased integration of functions inside an Engine
Management System), as well as new SW
architectures concepts like AUTOSAR or the support
of ISO26262.

Fig. 1: Evolution of Emission standards (Source:
European Commission, EPA)

All these evolutions result in an increased need for
computation power.

To face this challenge, the increase of the CPU
frequency (today up to 300 MHz), which has widely
been used in the past, is not anymore an option, due
to power dissipation limitations.
Therefore, the solution emerging on the market now,
and promoted by our microcontroller suppliers, is the
use of Multi-Core technology.

Fig. 2: Evolution of cpu freq vs. Power dissipation

Our objective in this paper is to present the status of
Continental Automotive Engine Systems, concerning
the introduction of Multi-Core technology.

In a first part, we will describe the challenges we
have to face to make a legacy engine systems SW
Multi-Core compatible.
In a second part, we will give some elements of the
solution we have developed.
In a last part, we will give a status on where we are
concretely.

Originally, our plan was to introduce the Multi-Core
approach together with our new AUTOSAR-based
architecture concept EMS3-PowerSAR®. But the
migration of a full project to this new PowerSAR®
architecture is not possible in a short time frame, and
we foresee that our next projects will have to deal
with a mixture of different architectures: AUTOSAR
(different releases, different uses of same release,
...), PowerSAR®, Continental EMS2-MCR,
Continental EMS2, OEM specific, etc..

Then, since December 2011, we focus on a solution
to make our EMS2 “legacy” SW platform Multi-Core
compatible. This is called EMS2-MCR (“Multi-Core
Ready”).

EMS2-MCR is based on a PowerSAR® / AUTOSAR
BSW layer, on which the migrated legacy ASW is
integrated, together with components of the new
ASW PowerSAR® architecture. Our objective was to
distribute a legacy project on a 3-Cores ECU, and
run a demonstrator-engine by end of 2012/beginning
of 2013.

2. Challenges

a. Methodological challenges

The methodological challenges are multiple:

Backward compatibility:

Our SW-development process is highly reuse-
oriented (“reuse by reference”), based on a concept

US 2025:107
EU 2020: 95

Japan 2020: 105
China 2020: 117

90

110

130

150

170

190

210

230

250

270

2000 2005 2010 2015 2020 2025

G
ra

m
s

C
O

2
pe

r k
ilo

m
et

er
, n

or
m

al
iz

ed
 to

 N
E

D
C

US-LDV

California-
LDV
Canada-LDV

EU

Japan

China

S. Korea

Australia

 Page 2/9

of reusable aggregates stored in generic libraries,
and developed by generic teams. Customer projects,
managed by customer-oriented teams, select
solutions from these generic libraries, and configure
them for their own context (configuring being
different than modifying).

Such an approach requires that the generic library is
an “asset” common to all projects, and means that
the functions are developed and maintained once, in
the generic teams.

Consequently, our first objective is to ensure that a
function migrated to the new EMS2-MCR context
must be still reusable as it is in a classical EMS2
Single-Core context (for instance w/o RTE), as all
projects will not migrate simultaneously on the new
HW platform. Furthermore, the effort to maintain 2
parallel branches of the same function (one Single-
Core branch and one Multi-Core branch) would be
too high: duplication of teams, of competence, …

Independence vs. Core allocation:

The design of the function must not take any
assumption about its own and other’s core
allocation. This is due to the fact that we are not able
to define, once forever, the distribution of the
functions on the Cores. The distribution will change
over the time, due to new incoming constraints, due
to our gain of experience, ISO-26262 considerations,
load balancing, RAM consumption, customer
requests, diversity of projects (Single-Core projects
dual core projects, triple core projects reusing the
same functionality), diversity and evolution of the
HW (1 to 3 cores today, 5, 6 or more in the future?),
…

Automatic protection of code:

The problem of concurrent access to shared
resources, a classical problem in real time systems,
is kept under control, in Single-Core systems, by two
main hypothesis: scheduling strategy (preemptive,
non preemptive), and priority scheme. These Single-
Core hypothesis are just blown-up in a Multi-Core
context, reaching to a special high degree of
complexity.

Firstly, intra-core communication is dependant on
task priorities, and is directionnal: Depending on the
relative priority of 2 tasks, we can know if they
interact with each other, and even better, we can
identify which one interrupts the other one.
With inter-core communication, this is not anymore
true: a low priority (low criticality) task of Core 1 can
“interact with” a high priority (high criticality) task of

Core 2. Furthermore, the interaction is bi-
directionnal, now.

The second aspect is the type of interaction between
the tasks: In intra-core communication, they are of
three types: preemptive, non-preemptive and
cooperative1: depending on the type of interaction,
the risk is mitigated. Finally only in few cases,
preemptive scheduling is used, which requires
special attention for the developers, in term of data
handling: one executable might be executed
concurrently to another one (or to itself), and
therefore concurrently access to a shared resource
(race condition met).
In Multi-Core context, the inter-core communication
is similar to a preemptive behavior, everywhere.

Another point is that the same aggregate might be
integrated differently in different projects with
different architectures, and still needs to be properly
protected. A manual and a priori protection cannot
comply with a big diversity of architectures, and it is
likely that a protection pattern works for a context,
but not for another one. At the end, the correct
handling of such race conditions is in general error
prone, and requires additional effort, increasing
development time & cost.

For all those reasons, we have no other alternative
than an automatic mechanism to protect the SW.

Efficiency of the protection:

Considering the particularity of Engine Systems -
high coupling between the control functions – the
efficiency of the solution gets high importance.

Basically, the resources to protect here are data, and
they must be protected in an efficient way: The air
mass entering the combustion chamber is consumed
more than 6.000 times a second, while the engine
rotation speed (rpm) is used 30.000 times a second,
and in more than 300 different modules. In total an
Engine System Software has to deal with 20.000
variables in around 600.000 of lines of code.

Different concepts are introduced to handle such
situation in an efficient way. For instance, a standard
approach of buffering data at a beginning of a task,
or disabling interrupts at each access point, similar
to what AUTOSAR implicit & explicit
communication[1] proposes is not an option here.

1 Cooperative scheduling could be called also « controlled
preemptive scheduling », as interruption points are fixed
at design time.

 Page 3/9

Improved integration:

The difficulties linked to integration in the Engine
System domain have already been addressed, in a
Single-Core context[2]. The introduction of Multi-
Core inevitably increases the complexity of the
architecture. A project with 30 operating system
tasks in Single-Core will get up to 70 to 80 tasks in
the future, or even more depending on the number of
cores.

New integration constraints and artefacts will raise
up, which will be defined at function level, to be
considered at integration level. Different projects will
follow different criteria for the distribution of the SW
across cores. The total control of integration and
architecture will be necessary for the control of data
protection.

Human factor / applicability:

The solution should be understandable, and usable
by the whole organization in a short time-period. We
cannot make every SW developer (~600 World
Wide) an expert of Multi-Core architecture. In
particular they are used to architectural patterns and
design paradigms on which our current platform is
founded. The tools, method and processes are
based also on this and the transition should be
smooth enough to be easy to use and understand.
Finally, the migration to the new concept should be
fast and supported.

b. Migration

As already mentioned, our purpose is to migrate our
SW library to the new Multi-Core Standard. As this
migration is done while all projects are in
development, we need to ensure that there is no
regression introduced with the migration. A default
Single-Core behaviour shall be ensured.

In order to speed-up the migration of hundred
thousands of lines of code, a tool has been
developed, which analyses the legacy SW, and
introduces the necessary material into the code to
make it Multi-Core compatible.
The basic cases, most frequent, are treated
automatically, while some more complicated cases
need to be treated manually. In all cases, a review of
the migrated code is done by the function experts.

This has required an exhaustive identification of the
use cases, in the code, quite a challenge knowing
that some of the SW modules are more than 10
years old, and taking into account that architecture
rules, coding rules might evolve with time.

Complex code structures and complex design
patterns have been considered, and their
applicability in a Multi-Core context has been
studied. For some of them, new patterns have been
introduced. For instance, the classical « double
buffering » pattern has been replaced by exclusive
areas, as it does not apply in all cases of core
distribution.

Fig. 3: Example of design pattern valid for
preemptive Single-Core, but not applicable on Multi-

Core

A last point to consider in the migration has been the
training of all the function developers to the new
standard. More than 200 developers have been
trained in the last 2 years, not only on the code
migration but on the whole Multi-Core concept,
which means new methods, architecture, and
associated tools. On the project side, Project
Architects have also been trained to these new
concepts.

c. Technical challenges

Which distribution?

The first question to answer when we switch from
Single-Core to Multi-Core (e.g. 3 cores) is the
distribution strategy: Do we have a dynamic, or a
static distribution? What is the rationale to distribute
this or that Aggregate on this or that Core?

As the objective of the migration to Multi-Core is to
gain CPU load, the basic question is to define which
policy is the best to reach a balanced load. Angle vs.
Time computations? Short deadlines vs. long
deadlines? Vehicle functions vs. engine functions?
ASIL modules vs. QM modules?

A first approach would be a functional approach: The
distribution over the cores is defined by the
functional partitioning. For instance, all inlet related
functions on 1st core, all setpoints related functions
on 2nd core, and all exhaust related functions on 3rd
core.
Another topology could be based on the dynamic
architecture of the SW: all engine-angle related

 Page 4/9

aggregates (a clear specificity of combustion
engines) on one core, all pure time dependant
aggregates on another core.
A third approach could be based on the speed /
deadlines of functions: Short deadlines on the first
core, middle deadlines on the 2nd core, and long
deadlines distributed on the 3rd core.

Each of these topologies has advantages and
drawbacks. Due to the strong coupling of the
functions (another clear specificity of combustion
engines), they are not easy to apply, in particular
when computation sequences matter. In effect, a
classical 10ms Task might gather up to 150
Runnables which in many cases need to be
executed in a well defined sequence. Therefore, the
distribution of such task over 3 different cores can be
done, only if the execution order is kept.

At the end, the code distribution is a multi-
dimensional problem2, and the allocation will be a
balance between the buffering effort, the sequence
needs, the customer request, etc... We foresee that
we will need a high flexibility, and we will not be able
to ensure for a long time that this or that function will
always be mapped to Core 1.
Finally, the objective is to distribute the CPU load in
an equilibrated way across the cores.

Therefore, we target a distribution based on
runnables, rather than modules, or even
compositions. At integration time, the project will
have the possibility to move one runnable from one
core to another, taking into account its own policy.

Split of components?

Another question we faced concerns the ability to
split SW-Components on different cores, something
today not authorized by AUTOSAR.

As most of the SW-Components are not monolithic
in terms of dynamic architecture, they need to be
integrated in different Tasks / Integration containers.
If we mix this status with the need to ensure a
correct sequence between runnables, we see that it
shall be possible to locate different runnables of the
same component on different cores, depending on
the integration Task.

Moreover, complex cases like multi-rate data (data
produced at different rates, e.g. top dead centre and
10ms), or even multi-rate executables needs to be
supported. This includes executables called by

2 Will be addressed in a further conference.

different tasks on the same core, or even on different
cores.

Scheduling strategy

A last question concerns the Task scheduling: Is a
dual core architecture a simple duplication of the
simple core architecture? By evidence, no, because
the complexity of the whole system would not be
controllable : A typical Single-Core project contains
up to 30 OS Tasks, plus some 20 containers for
system transitions, which means around 50
integration containers, where individual runnables
need to be plugged. A simple duplication of these
containers on each core would lead to a high
complexity, and probably an unfeasible system, in
term of deadline fulfilment.

So, an adequate architecture is set-up, with new
concepts. For instance, for a given rate, some tasks
might be either parallelized, or chained. Both
techniques have advantages and drawbacks.

d. Starting point : Legacy SW

A classical approach, when introducing a new
technology like Multi-Core would be to start from a
white page, design all functions new, and even take
some assumptions concerning their Core allocation.
But, the corresponding effort and delay would be too
high, and as already mentioned, a fixed allocation
does not fulfil our needs. Therefore, our starting
point is a legacy SW. But what does it mean exactly?

A typical legacy Engine Systems SW project is built
of around 2.000 SW modules (1.300 for asw), more
than 8.000 executables, and 1.5003 of them to be
integrated in a task. Around 150.000 data access
points need to be considered for data access
protection.

In term of mechanisms, ahead of the multi-rate data
and executables already mentioned, the reality of a
legacy SW is a complex call structure sometimes
reaching in some cases more than 10 nested call
levels, with indirect calls, with complex data types,
etc…

One typical topic is the « consolidation » of the data
and control flow in such « non flat » architecture.

3 Might be divided by a factor 3 by means of adequate
design pattern. See [3]

 Page 5/9

Another difficulty, inherent to legacy-SW is the
mixture of formats: AUTOSAR files mixed up with
legacy files, and/or with object code from our OEMs.

3. Solution : Integration & Protection

In this chapter, we will show the main principles of
the solution developed to integrate runnables and to
protect data in the EMS2-MCR SW, satisfying the
above constraints. As a prerequisite, the legacy code
had to be prepared to be MCR, which means
(roughly) the replacement of all direct accesses to
global variables by GET/SET APIs, to allow their
protection by an adequate process.

a. Concepts

This solution is organized around 2 main axes:
Integration and Protection.

Runnable Integration

Runnable integration gets a higher degree of
complexity in Multi-Core context, compared to a
Single-Core context:
- The total number of tasks and integration
containers is largely increased compared to Single-
Core (even if not multiplied by the number of cores)
- The criteria to choose between one and the other
task on one or the other core might be more complex
(multi-dimensional problem)

In addition, we want to benefit from the “new”
platform to improve our integration process.

So, the solution to this problem has 2 facets:

At Component or Composition level, integration
constraints are specified: System Events (stimulus), ,
Phases[3], Timing properties (periods, deadlines …),
Sequence Needs, Core Affinity Needs are defined,
using a component modelling tool, CoMod.

On project side, these constraints are reused by a
runnable integration tool, RunIn, enabling the
integration of Runnables at the correct position in the
correct Task. Conflicts are shown and can be solved
by the integrator. Runtime of Runnables can be
imported in order to properly balance the
computations across the cores. Additional
constraints can be defined at integration time as
well.

Data access Protection

As explained before, data protection in Multi-Core
context becomes also much more complex,
compared to the “automatically protected” mode of
Single-Core Cooperative context.
We remind here, that cooperative scheduling is
widely used at Continental, as it has the following
benefits: First of all, in most of the cases, it is largely
sufficient to fullfil our timing constraints. Secondly, it
is resource efficient (limited context switches). And
last but not least, it provides us a data protection
“free of charge”: no particular design constraint, no
tool is needed to ensure data protection.
Computations simply do not interrupt each other.

With Multi-Core now, as any task on any Core can
disturb any other task on any other Core, the
situation is quite different.

Two kinds of problems are identified: stability (an
information gets a stable value along a code
sequence , like 2 different Runnables), and
coherency (2 information are coherently acquired at
a certain point in time).

Fig. 4: Stability & Coherency issues

Here again, our solution has 2 facets:

At component development time, protection
constraints are specified, and at project integration
time, the constraints are used to protect the SW.

One cornerstone of the strategy is that only those
artefacts which require protection will be protected.
We made this choice because we estimate the cost
of protecting everything too high, due, once again, to
the high coupling and complexity of Engine Systems.
In addition, an unnecessary buffering may have

 Page 6/9

negative impacts on the SW behaviour, not only on
the resource consumption point of view. Finally, not
all data and data accesses are critical, and we have
to focus on those ones.

So, the component modelling tool, CoMod, supports
the specification of so-called “Consistency Needs”.
To be noted that this concept of Consistency Needs
has been promoted and then introduced in
AUTOSAR (and available in 4.1.1).

At project side, these constraints are taken into
account by the integration tool. RunIn analyses the
project and computes all required protection, taking
into account the complete call and data graph, the
specified ConsistencyNeeds and the project
architecture. It generates all necessary C and
ARXML files for the further SW build.

The strategy chosen to protect the data is based on
a buffering concept:

When a variable is accessed in one executable, if we
identify a race condition, and if a protection is
required for this variable, then it is copied into a
buffer, and the executable works on this local copy.
If the executable modifies the data, the modification
is done on the buffer, and the value of the buffer is
copied in the global variable later on.

The principle is similar to the AUTOSAR concept of
implicit communication.

Fig. 5: Buffering concept

To enable this, in the migrated code, special access
APIs have been introduced, which allow an eventual
re-direction.

Fig. 6: Migrated code.

Depending on the conditions, the GET and SET
macros will be redirected to buffers. Fill and flush
routines are added to the Runnable scheduling, in

order to initialize the Buffers, and to copy back the
value in the global memory.

In order to minimize the buffer consumption, the
same Buffer can be reused across different
executables, for different data, in the same task. This
is part of our optimization process.

The code patching strategy, similar to what is done
by a classical RTE, presents several advantages
compared to the object file patching strategy, also
used at automotive engine systems. Some of these
advantages are:
- It can be used early in the process, in particular

before the sw Build. Therefore, the integration
choices can be influenced by the Buffering
results.

- The output can be verified easily
- The process is independent of any compiler

version, or compiler option
- It is an open solution which easily supports

complex use cases, like multi-rate executables

b. Architecture control

One element of the strategy is to identify and control
properly the project architecture. The tasks and
integration containers, their allocation to the cores,
their timing properties, and their priorities have to be
defined, as they are important factors for the
integration, as well as for the protection. For the data
protection, for instance, the interactions between the
tasks have to be identified (direction, type, …). The
resulting buffering and copy routines will depend on
it.

Fig. 7: Task configuration

In order to ensure that the theoretical view on the
architecture, used for integration and protection, is
consistent with the real implementation in the ECU,
different configurations are generated in a seamless
environment: typically RTE and OS configurations,
as well as all the required « glue code ».

 Page 7/9

Fig. 8: Project Architecture: Task allocation to cores

Fig. 9: A SystemEvent specifies timing properties
and Phases of stimuli

One last element of the architecture control,
particularly important in a strong reuse context, is the
introduction of a Reference Architecture, which is
used as well by the Function Developers when the
specify their integration needs, as well as the
projects when they build their project architecture.
The Reference Architecture is managed in a
centralized way, and defines the main choices of the
new Multi-Core platform.

c. Need specification

On the developer’s side, 2 types of Needs can be
specified: Protection Needs and Integration Needs.

Based on an analysis of the data & control flow of its
module, the function developer is able to specify the
coherency or stability needs. Roughly either he
specifies 2 (or more) variables which have to be read
in a coherent way in one Runnable. Or he specifies 2
(or more) Runnables which need to get the same
value for a given variable. This represents a new
kind of activity for the developers, which means not

only a new task, but a new kind of topic, of concept
he has to think of.

Fig. 10: A Coherency Need

Concerning the integration, for each of its
Runnables, the developer specifies the required
timing and integration properties. In order to avoid a
big variety of needs, a set of standard System
Events is provided through a Reference Architecture.
The developer has only to select the one of interest,
as well as the Phase the Runnable corresponds to.
Doing this, he defines a « RunnableEvent », which is
a similar concept than the AUTOSAR concept of
RteEvent (with the notable difference that no
invocation mechanism is specified here, which gives
more flexibility on how to solve this invocation).

Fig. 11: A Runnable Event (Integration Need)

d. Integration & Protection

The integration and protection process takes as
input the previously defined project architecture, the
specified Needs of the individual modules, and the
SW cartography. This last element consists in
resolving for the whole SW all data accesses. All

 Page 8/9

types of accesses have to be identified (arrays,
pointers, structures, …), as well as their multiplicity
and consolidation.

The previously defined RunnableEvents are used by
the integrator to select the right task for each
runnable. The specified Phase and Sequence
constraints are used to define the position in the
task. In case a mistake is done, the integrator is
informed by special warnings.

Fig. 12: Integration of Runnables in a task

In the above picture, we see the Runnables
integrated in a task, and their respective Phases.

When all Runnables are integrated, the protection
process is launched. The tool takes into account all
parameters, and defines which variables need to be
protected, how, and at which point in the task.

Fig. 13: Data protection by Buffering

Ahead of the simple graphical view, all the
necessary files for the build process are generated:
the buffer fill and flush routines; the redirection of the
GET and SET macros in the modules; the task
bodies, etc...

For instance, in the below picture, we see how the fill
routines are inserted at certain points in the tasks.
Like already mentioned, we see that the buffers are
not initialized only at beginning/end of a task.

Fig. 14: Fill and Flush routines inserted in tasks

Then, the bodies of the copy routines are produced:

Fig. 15: Bodies of Fill and Flush routines

And the accesses to the global data in the code are
redirected to accesses to the buffers:

Fig. 16: Redirection of data access within Executable

In addition to these 3 elements, various
configurations are generated, which ensure a perfect
fit between model and real implementation in the
ECU.

4. Status

Since we started to develop this approach, in
December 2011, most of the 1.300 Sw-modules
have been migrated, in the scope of a first pilot
(gasoline) project. A new (diesel) project is currently
started, which will reuse partly the already migrated
aggregates, and which will require new migrations.

The migrated aggregates are reused in the running
Single-Core projects, w/o noted bad effects: That
demonstrates their backward compatibility.

In the first pilot project, more than 400 consistency
needs and 2700 RunnableEvents are specified.

 Page 9/9

When applied, together with complementary
automatic protection strategies, near to 2.000 buffers
are used to buffer around 8.000 accesses (out of
130.000). The measured overhead is in the range of
6% of CPU load, distributed over the 3 cores, which
is an acceptable value.

The first distribution applied on our pilot shows the
following results, in term of CPU load evolution:

Fig. 17: Core-wise CPU load (as function of engine
rotation speed) after distribution

The different curves correspond to the CPU load of
the different cores. This current distribution is only a
first step, and under permanent evolution. Thanks to
our methodology, we have a high flexibility to re-
organize the distribution. Nearly just a question of
“drag-and-drop” .

Most of our engineers are getting trained to the
concepts of Multi-Core, and are able to specify
Protection and Integration Needs, while the project
Teams are able to cope with the new architectural
artefacts, and integration means.

Concerning real customer projects, a first project
with a premium german OEM started to use this
method by beginning of 2013 (SOP End 2014,
200ku/year). This first project is split over 3 cores,
and uses preemptive scheduling. With the same
OEM, we start another project, which also uses 3
cores, but with a different distribution of the SW.
Another project with another German premium OEM
is also started based on our pilot, also distributed on
the 3 cores. Finally, another project for a US OEM
will use also this technology, but in a limited way, by
using only 2 cores.

5. Conclusion

Ahead of a simple Tool Suite, the EMS2-MCR
solution is a methodology based on a series of new
EMS3--PowerSAR® concepts implemented
coherently across the process: Reference
Architecture, System Events, Synchronized
Transitions, Phases, Runnable Events, Consistency
Needs, Sequence Needs, Core Affinity Need etc ...

These concepts, originally planned to be used within
an AUTOSAR-based platform, have been quickly
tailored and applied on a legacy non-AUTOSAR
Platform. This has been made possible by an
abstraction of our needed concepts vs. AUTOSAR.

These concepts, and the method and tools
supporting them are now at common use at
Continental, and different Customer projects are
already developped following this new standard.

But, this is the beginning of the story, and we need
to improve and enrich the solution. For instance, the
integration process has to be re-considered due to
Multi-Core needs. Schedulability, SW distribution,
ASIL introduction, shared development, validation,
are on our table for the coming year.

Of particular importance will be the integration of
AUTOSAR SW-Components in our framework. The
questions will be about the mixture between legacy
non-AUTOSAR SW and AUTOSAR SW, the
efficiency of the RTE (and therefore, which use?),
the introduction of the new concepts (Consistency
Needs, ...), and improved integration means, the
maturity of AUTOSAR in term of Multi-Core, ...

Finally, the step to Multi-Core suddenly provides us
a duplicated computation power, for the same ECU
price. This opens the door to an increased
integration of PowerTrain domain, at least. The
Multi-Core revolution is to be expected in the full
system architecture, much ahead of the pure SW
area.

6. References

[1] AUTOSAR, AUTOSAR 4.1.1 Specification of RTE -

AUTOSAR_SWS_RTE 3.3.0, 2013.

[2] D. Claraz and M. Niemetz, “Engine management
software dynamic architecture versus integration,” in
ERTS-2008, 2008.

[3] D. Claraz, S. Kuntz, U. Margull, M. Niemetz and G.
Wirrer, “Deterministic Execution Sequence in
Component Based Multi-Contributor Powertrain
Control Systems,” in ERTS2-2012, 2012.

[4] R. Davis and A. Burns, “A Survey of Hard Real-Time
Scheduling for Multiprocessor Systems,” ACM
Computing Surveys, 2011.

