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ASP for Construction and Validation of 
Regulatory Biological Networks

In this chapter, we present a declarative approach for analyzing and building
genetic regulatory networks (GRNs). A declarative approach is not restricted to
check properties of a fixed network, but aims at logically specifying networks that
satisfy a given set of constraints. Here, we cover two aspects of this approach.
First, we propose an implementation of a model checker for linear temporal logic
(LTL) and computational tree logic (CTL) formulas in answer set programming
(ASP), a logic programming language based on the stable model semantic. CTL
formulas are well suited for specifying constraints implied by the dynamic behaviors
of GRNs. Second, we present a specification in ASP of Thomas GRNs that are
both a generalization of Boolean networks and an approximation of piecewise linear
differential equations. At the same time, we also show how to express biological data
like interaction characteristics in our framework. Then, we propose a methodology
for analyzing networks with a declarative approach, including consistency repairing
and learning of properties from a set of consistent models. Our aim is not only to
exhibit the importance of logic programming for our purposes, but also to point
up the advantages of ASP, coming from non-monotonicity, minimality of models,
expressiveness and practical performances. Finally, the provided functionalities and
the proposed methodology are evaluated over three real biological applications.

5.1. Introduction

As biological knowledge is expanding very rapidly, computer methods and tools
become essential to organize and take advantage of this knowledge. It is particularly
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the case in systems biology, i.e. the study of interactions between the components of
biological systems. Most of the studied systems are GRNs, which had been mainly
modeled by either Boolean network representation [KAU 69], or its more recent
extension: Thomas’ networks [THO 01].

The study of biological models mainly follows two phases. The first one is
the construction and validation phase. This is done by gathering knowledge on the
biological system and by formulating hypotheses. Traditionally, this leads to a first
(and unique) model. Then, this model is validated with respect to experimental data.
When inconsistencies occur the model is revised (manually). Once a model consistent
with the experimental data has been finally obtained, the second phase may begin:
the analysis and “prediction”. The idea is to either design new experiments that could
refine the model, or use the model to simulate the real system and make predictions.

A precise formalism is needed for expressing experimental data in the model
construction phase. Regarding biological behaviors, temporal logics are considered
as an excellent way to describe them (Chapter 7 and [BER 04]). Among these
logics, LTL [QUE 82] and CTL [CLA 82] appear especially suitable. They have been
proposed originally for specifying computer program behaviors and they gave rise to
model-checking algorithms that verify properties of computer programs expressed as
temporal logical formulas.

In this chapter, we explore the interest of a non-monotonic logic programming
paradigm, namely ASP [BAR 03], both for modeling GNRs and for expressing LTL
and CTL formulas. Our aim is to avoid the iterative generate and test phase during the
model construction described above by adopting a declarative approach. Instead of
instantiating (manually) the successive biological models, all possible knowledge on
the network structure and its dynamics (interactions between species, behaviors like
stationary states or response to environmental perturbations) is expressed in terms of
logical formulas or constraints. In cases where these constraints are satisfied, a set of
models is obtained instead of one model, composed of those models that are solutions
of the constraints. Then, building on these constraints, we can explore the properties
of this set of consistent models, for example in order to exhibit good candidates for
further experimentations.

If biological behaviors are expressed by temporal logical formulas, it is necessary
within this new approach that these formulas should be used to assert behaviors
as opposed to only verify behaviors within a model-checking perspective (like in
Chapter 7). Translating LTL and CTL formulas into ASP formulas satisfy this issue.
We will show that the specificity of ASP as a logic programming language contributes
importantly to this purpose. This specificity comes from the semantics of an ASP
program that is defined in terms of the so-called logical stable models or answer sets
(ASs) that are, by definition, minimal in that sense that removing any component from
such a logical model cannot provide a logical model. The implementation of the CTL
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in particular is new, general and non-monotone based, if we compare with the previous
ASP implementation [HEY 05].

For formalizing and analyzing Thomas networks, the advantages of ASP
that we illustrate include consideration of partial knowledge, non-monotonic
reasoning facilitating knowledge addition and the expression of default rules,
automatic consistency repairing, inference and learning capabilities resulting from
the minimality of the accepted models and computer performances similar to those
of SAT solvers without the restricted linguistic power. We make the most of this last
point by describing Thomas networks in ASP directly, thus providing both a logical
and an executable specification. Note that a good and classical introduction to Thomas
networks is given in this book (Chapter 7).

This work is the merging of two different works [ROC 13, COR 10], and thus will
be divided in two main parts. In section 5.2, we will give some formal preliminaries
about Boolean networks, Thomas networks and ASP. In section 5.3, we will give
a quite general implementation of both LTL and CTL, followed by an example of
Boolean network computation in ASP. In section 5.4.1, we will focus on the definition
of Thomas networks in ASP. Then, in section 5.4.2, we will describe, in the first
part, methods to model efficiently biological data in ASP and temporal logics, and
how to express mutants. In the second part, in section 5.4.3, we will develop how
ASP inference and learning capabilities allows us to construct models. Finally, in
section 5.4.4, three real applications will be described. Sections 5.3 and 5.4 have
their own discussion sections (sections 5.3.4 and 5.4.5), but a general conclusion is
given in section 5.5. An appendix gives a refined and more efficient specification of
Thomas networks that distinguishes well the two minimization ways (logical versus
paralogical), which can be used to select models.

5.2. Preliminaries: ASP and biological logical networks

5.2.1. Answer set programming

ASP [BAR 03] is a computational language which appeared at the end of the
1990s. It is based on a non-monotonic logic defined with stable models. Here is a short
presentation based on [GEB 10], which proposes the gringo language, also presented
and used in Chapter 2.

A logical ASP program is a finite set of rules:

a0 ← a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and ∀i | 0≤i≤n, ai is an atom. For any rule r, head(r) = a0 is
the head of the rule and body(r) = {a1, . . . , am, not am+1, . . . , not an} is the body
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of the rule. If head(r) is empty, r is called integrity constraint. If body(r) is empty, r
is a fact.

Let A be the set of atoms, body+(r) = {a∈A | a ∈ body(r)} and
body−(r) = {a∈A | not a ∈ body(r)}. A set X ⊆ A is an AS or stable
model of a program P if X is the minimal model of the reduct P X =
{head(r)←body+(r)|r∈P, body−(r) ∩ X = ∅}.

Example 1: Let E be the following ASP program where ← is represented
by “:- :”

a :- not b,c.
b :- not a.
c.

LetX = {a,c}. The minimal model of the reductEX = {c, a ← c} is {a,c}.
X is a stable model of E.

Let X � = {a,b,c}. The corresponding reduct is EX = {c} and the minimal
model of the reduct is {c}. X � is not a stable model of E.

Example 2: Let E� be the following program:

a :- not b.
b :- not a.

E� has two stable models {a} and {b}. To this program, if we add the
integrity constraint :- a., we remove the model {a}. If we add the integrity
constraint :- not a., we remove the model {b} because it does not contain a.

The gringo language provides logical variables and functional terms in a limited
way (so that the program can be transformed in an equivalent finite propositional one).
It provides also cardinality constraints on the number of true literals. If we impose the
constraint u{l_1,...,l_n}v, we obtain only models such that the number of true
literals is bigger than u (0 by default) and smaller than v (n by default). Moreover,
this formalism allows the expression of enumeration through the symbol “:”. In the
following program:

dom(0). dom(1).
all_true :- p(X):dom(X).
at_least_one_true :- 1{p(X):dom(X)}.

the second line expresses that if p(0) and p(1) hold, then all_true is deduced.
The second line is, so, equivalent to the rule all_true :- p(0), p(1).: in
the left part od a rule such an enumeration would be a disjunction of theses litterals.

4



Acc
ep

te
d 

M
an

us
cr

ip
t

The third line expresses that at_least_one_true is deduced if a least one
among p(0) and p(1) holds. Finally a pooling facility allows, for example, to write
p(0;1) instead of p(0),p(1).

The gringo language also provides a paralogic operator #maximize (respectively
#minimize) to maximize (respectively minimize) the number of atoms true among
a specified list of atoms. For example, if we impose #maximize{f_1,...,f_n},
we obtain only models with the highest number of f_i true.

The solver [GEB 10] we use proceeds in two steps to compute the ASs of
a program P . First, a “grounder” substitutes the variables of the program by
terms without free variables, and consequently produces a propositional program
P corresponding to P . In the second step, a solver computes the ASs of P. This
motivates the programmer to reduce as far as possible the number of resulting Boolean
variables and rules subject to a big expansion.

5.2.2. Boolean networks and Thomas networks

A Boolean network is a simple discrete representation widely used in
bioinformatics [KAU 69, KLA 06, LAH 03]. Initially introduced to represent gene
regulatory networks [KAU 69], Boolean networks have also been used in many
research fields to represent other Boolean interaction system such as robot design
[ROL 11] or social interaction models [GRE 07]. A Boolean network [KAU 69] is a
pair (N ,F ) with N = {n1, ... , nk} a finite set of nodes (or variables) and F = {f1,
... , fk} a corresponding set of Boolean functions; ni(t) represents the value of ni at
time step t and ni takes either 1 (expressed) or 0 (not expressed). A vector (or state)
s(t) = (n1(t), ... , nk(t)) is the expression of the nodes of N at time step t. There are
2k possible distinct states for each time step. The state of a node ni at the next time
step t + 1 is determined by ni(t + 1)=fi(ni1(t), ... ,nip(t)), with ni1 , ... ,nip the nodes
directly influencing ni, and also called regulation nodes of ni. Boolean networks are
mainly represented in three different ways: the interaction graph (see Figure 5.1,
top left), the state transition graph (see Figure 5.1, bottom), which represents the
transitions between ni(t) and ni(t + 1), and the Boolean functions (see Figure 5.1,
top right). It can also be represented as a truth table, which is simply the transition
graph. In the case of a gene regulatory network, nodes represent genes and Boolean
functions represent their interaction.

EXAMPLE 5.1.– Figure 5.1 shows the interaction graph and the state transition graph
of a Boolean network N1 composed of the following two variables: {n1,n2}. The
Boolean functions of N1 are fn1 , fn2 , respectively, the Boolean function of n1, n2
and:

fn1 = ¬n2

fn2 = ¬n1
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Let us consider that the Boolean network N1 in Figure 5.1 is a gene regulatory
network so that n1, n2 are genes. According to the interaction graph of N1, n1 is an
inhibitor of n2 and n2 is an inhibitor of n1. According to the Boolean functions of
N1 in example 5.1, the presence of n2 at time step t will prevent the expression of
n1 at t + 1. The absence of n1 is enough to activate the expression of n2 at t + 1.
The complete state transition graph is generated from the rules in Figure 5.1. The
choice between the full lines and the dot lines depends on the updating scheme of the
Boolean network. Regulatory networks are represented by interaction graph; however,
those graphs are not enough to describe the Boolean network without ambiguity.

Figure 5.1. The Boolean network N1(top left), its Boolean function (top right), and its states
transitions graph (bottom)

From the Boolean functions, it is straightforward to generate the state transition
graph (Figure 5.1). In a Boolean network, the value of nodes can be updated
synchronously or asynchronously. In a synchronous Boolean network, all nodes are
updated at the same time. The successive sequence of states during an execution,
called trajectory of a Boolean network, is deterministic in a synchronous Boolean
network. The behavior of the synchronous updating scheme can be seen on the full
line graph in Figure 5.1. In an asynchronous Boolean network, a node may not be
updated at given time (one node is updated at most in the following), so that its
state transitions can be non-deterministic. In Figure 5.1, it corresponds to the dot
line graph. The non-determinism can be seen on the multiple arrows starting from
(00) or (11). In the case of regulatory networks, we will study asynchronous Boolean
networks and the adapted temporal logic, the CTL. However, there exists numerous
other kind of Boolean networks adapted for other models, for example the random
Boolean networks [GER 03].

In [THO 01], Thomas networks are described as an extension of asynchronous
Boolean networks (as well as an approximation of models constructed from
differential equations). Boolean networks are extended in two directions. First, several
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discrete levels of concentration for a gene may be considered, instead of two for
Boolean networks. Second, the definition of the successor of a state is expressed with
the help of the so-called focal equations associated with a gene in a given state. These
equations provide a discrete concentration value called focal values indicating the
tendency of a gene in a given state, thus extending the Boolean functions. We make the
choice of presenting these notions, in section 5.4.1, by using the logical programming
constructions of ASP for two purposes. This illustrates the expression power of the
mathematically well-defined ASP formalism and, by this way, the formal aspect of
our declarative approach is emphasized: data are described as logical variables that
could be instantiated or not. In Chapter 7, we can find a mathematical introduction
to the Thomas networks. Their presentation is complementary to ours in that sense
that we define these networks directly in a logical and executable way by using ASP.
Another introduction to temporal logics can also be found in addition to the following
one.

5.3. Temporal logics

Temporal logics are extension of the propositional logic and describe properties
on the dynamic of a system. There are many temporal logics, but most of them are
extensions of two main temporal logics. That is why we will focus on those two logics:
the LTL and the CTL. The LTL and the CTL allow us to describe two different sets of
properties, and can both be useful for biology. Those properties can be hypothesis or
data we want to verify on a model or real observations from experiments that we will
use as constraint to build or to complete a model.

In the following section, a brief introduction to the LTL and CTL will be given.
Then, we will present in details (section 5.3.2.1) the CTL implementation in ASP,
which allows us to easily describe property on non-deterministic executions. On
deterministic models, it is easy to build an LTL implementation in ASP from the CTL.
In section 5.3.2.2, we will give this LTL implementation. However, this description is
not correct if it is applied on non-deterministic models. After this short description of
the LTL implementation, the CTL will be the main temporal logic to discuss.

5.3.1. Definition of LTL and CTL

We use the Kripke semantics to define the temporal logics. A Kripke model is
an n-uplets M = (S, I, T, L), with S a set of states, I ⊆ S the set of initial states,
T ⊆ S × S the set of the transitions of the system and L: S → P (A) a labeling
function with A the set of atomic properties, and P (A) the power set of A. For each
state s ∈ S, L(s) is the set of atomic properties that are true for s. The behavior ofM
is defined by the execution paths. A path p ofM is a succession of states (s0, s1,...),
with si ∈ S and T (si, si+1) true for all i ≥ 0. The ith state of the path is written as
p(i).
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5.3.1.1. Linear temporal logic

The LTL describes properties on linear execution paths from an initial state s0.
This logic is defined as it follows:

ϕ ::= a∈A|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|Gϕ|ϕ1Uϕ2|Xϕ|Fϕ|ϕ1Rϕ2

The semantic of the LTL for a path p is defined as follow:

p |=a iff a∈ L(p(0))
p |= ϕ1 ∧ ϕ2 iff p |= ϕ1 and p |= ϕ2
p |= Gϕ iff p(i) |= ϕ ∀i ≥0

p |= ¬ϕ iff p � ϕ
p |= ϕ1 ∨ ϕ2 iff p |= ϕ1 or p |= ϕ2
p |= Xϕ iff p(1) |= ϕ

p |= ϕ1Uϕ2 iff ∃i ≥0 | p(i) |= ϕ2 and ∀k, 0 ≤ k < i p(k) |= ϕ1

From those formulas, it is possible to build all the LTL.

p |= ϕ1 ⇒ ϕ2 iff p |= ¬(ϕ1 ∧ ¬ϕ2)
p |=Fϕ iff p |= ,Uϕ
p |= ϕ1Rϕ2 iff p |= ¬ϕ1U¬ϕ2

We note that verifying a property on a path is verifying the property on the initial
state of the path. Because of the linearity, a path has only one initial state. However,
if in the deterministic and synchronous case there is only one path for an initial state,
in the non-deterministic case there is many possible execution for one initial state. In
this last case, the formulas ϕ(init) is verified if all the linear paths starting from init
verify ϕ. Because of this, it is more common to use LTL on deterministic executions
and CTL on non-deterministic executions.

These are some examples of LTL properties applied to the synchronous Boolean
network in Figure 5.1:

EXAMPLE 5.2.– The property: in the future of the state (00), the node n1 will take the
value 1. The LTL formula to express this property is: F(n1=1)(00).

The synchronous model in Figure 5.1 verifies this property because the state (11)
of the path (00)→(11) satisfies this property.

However, the asynchronous model does not verify this property because the path
(00)→(01)→(01)→... will never satisfy the formula.

EXAMPLE 5.3.– The property: in the future of the state (00), n1 = 1 or n2 = 1 will
always be true. The LTL formula to express this property is: FG(n1=1 ∨ n2=1)(00).
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The synchronous model in Figure 5.1 does not satisfy this property because of the
loop between (00) and (11). The property (n1 = 1 ∨ n2 = 1) is false every time the
path reach (00), this does not follow the “always” condition.

However, the asynchronous model verifies this property because for the paths
(00)→(01)→(01)..., and (00)→(10)→(10)... (n1=1 ∨ n2=1) is always true after the
initial state (00).

5.3.1.2. Computational tree logic

The CTL describes properties on a branching execution of a system1. CTL
formulas can be separated in two categories: the global formulas with the prefix A
and the existential formula with the prefix E. The syntax of the CTL is the following:

ϕ ::= a∈A|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 ∨ ϕ2|EGϕ|
Eϕ1Uϕ2|EXϕ|EF ϕ|AGϕ|Aϕ1Uϕ2|AXϕ|AFϕ

(a,¬,∧,∨) operators are the same as in LTL. The semantic of CTL for a state s∈S
and a model M is defined as follow:

(M,s) |= EGϕ iff ∃ a path p | p(0)=s and ∀i, 0≤ i (M,si=p(i)) |= ϕ
(M,s) |= Eϕ1Uϕ2 iff ∃ a path p | p(0)=s and ∃i ≥0 | (M,si = p(i)) |= ϕ2
and ∀k, 0≤ k < i (M,sk = p(k)) |= ϕ1
(M,s) |= EXϕ iff ∃ a path p | p(0)=s and (M,s1 = p(1)) |= ϕ

As for the LTL, the other CTL formulas can be build from the previous definitions.

(M,s) |= EFϕ iff (M,s) |= E,Uϕ
(M,s) |= AGϕ iff (M,s) |= ¬EF¬ϕ
(M,s) |= Aϕ1Uϕ2 iff (M,s) |= ¬(E(¬ϕ1U(¬ϕ1 ∧ ϕ2)) ∧ ¬EG(¬ϕ2))
(M,s) |= AXϕ iff (M,s) |= (M,s) |= ¬EX¬ϕ
(M,s) |= AFϕ iff (M,s) |= (M,s) |= ¬EG¬ϕ

These are some example of CTL formulas applied to the asynchronous Boolean
network in Figure 5.1:

EXAMPLE 5.4.– The property: there exists a future of the state (00) where the node
n1 will take the value 1. The CTL formula to express this property is EF(n1=1)(00).

This model satisfies this property because the path (00)→(10) contains the state
(10) where n1 values 1.

1 Although it seems that LTL is a subset of CTL, LTL and CTL are in fact two distinct sets of
properties. The logic allowing to express both LTL and CTL is CTL∗.
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EXAMPLE 5.5.– The property: there exists a future of the state (00) containing a
state p(i) such as p(i) validates: all the paths starting from p(i) will ensure that
the property n1 = 1 is always true. The CTL formula to express this property is
EF(AG(n1=1))(00).

The model verifies this property because the path (00)→(10)→(10)... contains a
loop on (10) that has the property (n1 = 1).

5.3.2. ASP implementation of CTL and LTL

Now that we defined the CTL and LTL formalism, we will develop the
implementation in ASP. In the further sections (5.3.2.1 and 5.4.2.1), we focus on the
CTL formulas, and methods, for analyzing Thomas networks that are an extension of
the Boolean networks. However, LTL is still useful for expressing property on a single
path. For this reason, a LTL implementation in ASP will be given, but as an adaptation
of the CTL implementation on deterministic models. This description can be found in
section 5.3.2.2, after the description of the CTL implementation. On the other hand,
the CTL implementation will be given in details and followed by some examples for
the model checking of Boolean networks. Finally, this model-checking approach, and
its utility, will be discussed, and other approaches will be developed in the following
sections (sections 5.3.4 and 5.4).

5.3.2.1. CTL implementation

While LTL focuses on linear executions, CTL expresses properties of a set of
branching paths. In this implementation, we only need to express the transitions2
of the system (generated for example as in section 5.3.3). This CTL implementation
presentation will be divided in two parts: implementation of the “simple” existential
properties such as EX or EF and the related global properties, and the implementation
of AF that allows us to define AU and EG.

For an easy description of the implementation, we associate to each CTL formulaϕ
a predicate whose name exhibits the subformulas of ϕ. For example, if ϕ = EX(n1=1),
the associated predicate is eXtrue_n1 with true_n1(S) true if n1 = 1 for the
state S.

Also for the sake of simplicity, we represent the states by using the predicate
state(s(n1,...,nk)), where n1,...,nk are the values of the species and k is
the number of species. In the example (Figure. 5.1), state(s(0,0)) true means
that there is a state where n1 =0 and n2 =0.

2 In section 5.3.4, we give a way to verify CTL properties without having to know explicitly
all the transitions.
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EX, EU and the related formulas:

We first define the formulas related to the classical logic:

With phi, phi1 and phi2 some CTL formulas:

phi1_and_phi2(S) :- phi1(S), phi2(S).
phi1_or_phi2(S) :- phi1(S).
phi1_or_phi2(S) :- phi2(S).
not_phi(S) :- not phi(S), state(S).
phi1_Imply_phi2(S) :- not phi1_and_notphi2(S),

state(S).

The predicate transition(S,S’) means there is a transition between the
state S and the state S�. The definitions of EX and EU follow with:

eXphi(S) :- phi(S’), transition(S,S’).
ephi1_U_phi2(S) :- phi2(S).
ephi1_U_phi2(S) :- phi1(S), ephi1_U_phi2(S’),

transition(S,S’).

The first rule defining ephi1_U_phi2(S)means the state S directly verifies ϕ2.

The second rule means that a state S verifies Eϕ1Uϕ2 if it verifies ϕ1 and if it is
linked to a state that verifies Eϕ1Uϕ2. This is the transitivity rule: if no reachable state
verifies ϕ2, neither the first nor the second rule can be true.

The advantage of this implementation is to able to manage complex models with
loops (like in the example given in section 5.3.3) without introducing a specific
test to take them into account. In case of loop, if we are in the situation where
ephi1_U_phi2(S) is true only if ephi1_U_phi2(S) is true, then, because ASP
accepts only minimal models, the property ephi1_U_phi2(S) is false, as it should
be (see also section 5.3.4).

From those first formulas, we can build the following CTL formulas:

aXphi(S) :- not eXnotphi(S).
eFphi(S) :- etrue_U_phi(S).
aGphi(S) :- not eFnotphi(S).

EXAMPLE 5.6.– The property: there exists a future of the state (00) where the node
n1 will take the value 1. The CTL formulas to express this property is EF(n1=1)(00),
with s(0) = (00).
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Definition of the atomic property n1=1:

n1(s(1,_)).3

Then, we can define EF in a more direct way by:

eFn1(S) :- n1(S).
eFn1(S) :- eFn1(S_), transition(S,S_).

The required property of the initial state (00) is expressed by the integrity
constraint:

:- not eFn1(s(0,0)).

EXAMPLE 5.7.– The property: there exists a future of the state (00) containing a
state p(i) such as p(i) validates: all the paths starting from p(i) will ensure that
the property n1 = 1 is always true. The CTL formulas to express this property is
EFAG(n1=1)(00).

Definition of aGn1:

not_n1(S) :- not n1(S).
eFnot_n1(S) :- not_n1(S).
eFnot_n1(S) :- eFnot_n1(S_), transition(S,S_).
aGn1(S) :- not eFnot_n1(S).

Definition of eFAGn1:

eFAGn1(S) :- eGn1(S).
eFAGn1(S) :- eFAG(S_), transition(S,S_).

AF implementation: The AF(ϕ) property means that all the paths will reach a
state verifying ϕ. This is a strong reachability property, very useful for expressing the
inevitability of a state. For example, a state S is an attractor if it respects the property
AX(AF(S))(S): all the paths will lead to itself, see example 5.8.

aFphi(S) :- phi(S)
aFphi(S) :- not phi(S), aFphi(S_) :

transition(S,S_), state(S).

Like for EF, AF(ϕ)(S) is true if S verifies the property ϕ, this is given by the first
rule. The second rule indicates that if ϕ(S) is false, then every states following S must

3 The “_” symbol in the predicate means that any value is possible to satisfy the rule.
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verify AF(ϕ): this is expressed by the ":" operator that enables to enumerate all the
successors of S. Again, because of the minimality of the ASs, loops do not need to be
explicitly checked.

EXAMPLE 5.8.– The property: Given an initial state S0, all the path starting from
S0 must lead to S0, which is the definition of an attractor. This can also be written:
for all the next states S� of S0, all the paths starting from S� will reach S0 in the
future. The CTL formulas to express this property applied to the state S0 = (0,0) is
AX(AF(eqS0))(S0).

Definition of the property: being equal to S0 (eqS0):

eqS0(S(0,0)).

Definition of aF_eqS0:

aF_eqS0(S) :- eqS0(S).
aF_eqS0(S) :- not eqS0(S),

aF_eqS0(S_) : transition(S,S_),state(S).

Definition of eXnotAF_eqS0:

eXnotAF_eqS0(S) :- not aF_eqS0(S_), transition(S,S_).

Definition of aXAF_eqS0:

aXAF_eqS0(S) :- not eXnotAF_eqS0(S), state(S).

The required property is:

:- not aXAF_eqS0(S(0,0)).

The AF implementation also allows us to define two other CTL formulas: EG and
AU. These definitions are not shown here.

5.3.2.2. LTL implementation

The LTL logic allows us to describe properties on linear execution paths, and it
can be very useful to describe the behaviors of deterministic systems. In this last case,
the behavior is constituted by an unique linear path, and a description of LTL can be
done by using our previous CTL implementation.

If the model is deterministic, and if the set of transitions transition(S,S’)
describing a linear path is given, then we can make the following equivalence between
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LTL and CTL: EU is equivalent to U, AG is equivalent to G and EX is equivalent to
X4. For example, given the deterministic model in Figure 5.1, we express in ASP the
property F(n1=1)(00) with the following program.

We define the atomic property n1=1 as in example 5.6.

Then, we can define fn1(S):

fn1(S) :- n1(S).
fn1(S) :- fn1(S_), transition(S,S_).

and finally, the required property on the initial state (00):

:- not fn1(s(0,0)).

5.3.3. Example of model checking of a Boolean network

In this section, we give an example of a Boolean network implementation. Now
that we have seen how to implement CTL properties in ASP, we will check temporal
properties, such as a reachability problem EF and the verification of an attractor. This
Boolean network has been artificially built to possess two attractors of different sizes,
and a cycle which is not an attractor. If this section focuses on the model checking of
a fully known Boolean network, in the next section, we will describe how to analyze
partially known Thomas networks.

The input or initial knowledge is the Boolean functions of the Boolean network
(Figure 5.2):

fn1 = n1 ∨ (n3 ∧ ¬n2)
fn2 = (n2 ∧ ¬n3) ∨ (n3 ∧ ¬n2) ∨ (n2 ∧ n1) ∨ (n1 ∧ ¬n2)
fn3 = (¬n1 ∧ ¬n3) ∨ (n1 ∧ n2 ∧ n3) ∨ (¬n2 ∧ ¬n1)

The goal is to apply some CTL properties, and for this we need the transitions of
the system. The predicate transition(S,S’) is defined by the following ASP
program:

The data of the system are:

node(n1;n2;n3).
bool(0;1).

4 Again, we insist it is true only in this particular case.
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Figure 5.2. State transition graph of a 3 nodes Boolean network

The predicate change(N,S,V) means there is a successor S’ of the state S such
that S’ is equal to S except for the value of N which is V. This give us this first rule:

change(N,s(X,Y,Z),0) :- not change(N,s(X,Y,Z),1),
node(N), bool(X), bool(Y), bool(Z).

And then, we describe the Boolean functions:

change(n1,s(X,0,1),1) :- bool(X).
change(n1,s(1,X,Y),1) :- bool(X), bool(Y).
change(n2,s(X,1,0),1) :- bool(X).
change(n2,s(X,0,1),1) :- bool(X).
change(n2,s(1,0,X),1) :- bool(X).
change(n3, s(1, 1, 1), 1).
change(n3, s(0, X, 0), 1) :- bool(X).
change(n3, s(0, 0, X), 1) :- bool(X).

Finally, transitions are constructed when a state is subject to a change:

transition(s(X, Y , Z), s(X_, Y , Z)) :- change(n1,
s(X, Y, Z), X_), X_ != X .

transition(s(X, Y , Z), s(X, Y_ , Z)) :- change(n2,
s(X, Y, Z), Y_), Y_ != Y.

transition(s(X, Y , Z), s(X, Y , Z_)) :- change(n3,
s(X, Y, Z), Z_), Z_ != Z.
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transition(s(X, Y , Z), s(X, Y , Z)) :- change(n1,
s(X, Y, Z), X), change(n2, s(X, Y, Z), Y), change(n3,
s(X, Y, Z), Z).

Then, we only need to add the rules defined in examples 5.6 and 5.7 to verify them
on this model. However, we need to use the modified rules for AF defined in 5.3.4, if
we want to apply the property of example 5.8 to this model, because transition
atoms are not known after the grounding phase. This method allows us to verify all the
CTL formulas on Boolean networks where the Boolean functions has been completely
determined. However, as we will see later, the CTL formulas can be used for more than
just verification, for example as constraints on the construction or the completion of a
model, or as properties we can infer from an existing model.

5.3.4. Discussion

We can note again the important point that concerns the implementations of EF
and AF formulas because they may seem straightforward at first sight. However, we
could question on how loops in paths are tackled. For example, looking at example
5.6, one could find the case where eFn1(s1) is only defined by:

eFn1(s1) :- eFn1(s2), transition(s1, s2).
eFn1(s2) :- eFn1(s1), transition(s2, s1).

Thus, it is of crucial importance to recall that the stable models,
those only accepted by ASP, are minimal [GEL 88]. This means that if
transition(s1, s2) and transition(s2, s1) are true, the only accepted
model is the one where eFn1(s1) and eFn1(s2) are false, whereas classical logic
would consider also the model where they are true.

Another point concerns the status, fixed or unknown, of the atoms with predicate
transition. The implementations that we have described suppose that these atoms
are known. This simplifies significantly the grounding phase. In the last example,
we analyze the state transition system of a Boolean network where these atoms are
known after the grounding phase. Moreover, in most biological applications, we lack
of complete models. For example, in the next section, we build the transitions and
do not know them first. This notably affects the rules defining the AF property. For
this property, we can deal with partial transition system, and infer properties because
of the following implementation, where hyp_AFphitrans(S,S’) replaces the
unknown transitions:

hyp_AFphitrans(S,S’) :- aFphi(S’), transition(S,S’),
state(S), state(S’).

hyp_AFphitrans(S,S’) :- not transition(S,S’),
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state(S), state(S’).
aFphi(S) :- phi(S).
aFphi(S) :- not phi(S), state(S),

hyp_AFphitrans(S,S’) : state(S’).

We can also make some remarks about the context of the use of some CTL
properties and about the expression power of the ASP logic compared to CTL. First,
in this work, we translated the whole CTL into ASP; however, in most of the analysis
cases of biological networks, only the EF property is used. In fact, using global
properties is often not relevant when we transcribe a biological experiment in CTL.
Most of the data are in the form of state S reach state S�. If this result is given by
only one, or few experiments, it must be translated as an existential property and not
as a global one. In fact, the global property is too strong and will cut possibly true
paths. However, if we change the context, and do not focus only on the analyzing of
an existing model, but also on a synthetic biological approach, it becomes interesting
to ensure global properties such as AF.

The second remark is that ASP is logically based and as such can express
properties. It is not based on a temporal logic, but nevertheless can be used to represent
temporal properties. In a sense, one can consider that it has a greater expression power
than CTL, mostly because logical variables are available. It allows us, for example, to
express properties such as “the model admits three different steady states”, while this
is not possible in CTL, see also section 5.4.2.1. CTL is a useful and compact way
to express behavior of asynchronous models, but we gain to paired it with properties
expressed directly in first order logic, as we will see in the next section.

5.4. ASP-based analysis of a GRN

As mentioned in section 5.1, this section is devoted successively to the definition
of Thomas GRNs in ASP, biological data modeling, methodology for building models
and finally to the description of three real biological applications.

5.4.1. ASP Thomas networks specification

We explain, in section 5.2.2, how a Thomas GRN is an extension of a Boolean
network and why its specification is given here in terms of ASP logical constructions.
We recall that a nice classical description of these GRNs is given in Chapter 7.
Our notations are similar with a slight difference concerning kinetic parameters (see
section 5.4.1.3). Also the network in Figure 5.3 is very close to the mucus production
of the Pseudomonas network presented in Chapter 7.

First, we present the interaction and transition graphs associated, respectively,
with static and dynamic views of Thomas GRNs. Then, we introduce the notion of
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focal state and path in a transition graph. Paths are well adapted to express observed
behaviors (see section 5.4.2.1) as CTL like formulas of the form EF ϕ. Such formulas
imply the existence of a path with a state having a property ϕ (see section 5.3.4 for
a discussion on the adequacy of AF and EF formulas for representing biological
behaviors).

5.4.1.1. Interaction graph

In the framework of Thomas GRNs, the concentration range of a gene is split into
intervals possibly separated by several thresholds, instead of one for Boolean GRNs.
Then, in interaction graphs, an edge (j, i) is labeled with the rank of the threshold
concentration (in comparison to other outgoing edges from gene j), at which the effect
of the protein produced by gene j on the expression of gene i changes.

This kind of graph is easily specified in ASP by using the predicates node(N) (N
is an identifier representing a gene), edge(N1,N2,Ne) (there is an edge from node
N1 to N2 whose index, introduced for modeling multiple edges with the same source
and target, is Ne) and threshold(N1,N2,Ne,T) (T is the threshold of the edge
(N1,N2,Ne)). The interaction graph of the example shown (Figure 5.3) would be
specified in a program with the following atomic formulas: node(a). node(b).
edge(a,b,1). edge(b,a,1). edge(b,b,1). threshold(a,b,1,1).
threshold(b,a,1,1). threshold(b,b,1,2).

ba

+, 2

−, 1

+, 1

(a)

Xa = Ka ∗ s−(xb, θ1
b ) +

Kb
a ∗ s+(xb, θ1

b )
Xb = Kb ∗ s−(xa, θ1

a) s−(xb, θ2
b ) +

Ka
b ∗ s+(xa, θ1

a) s−(xb, θ2
b ) +

Kb
b ∗ s−(xa, θ1

a) s+(xb, θ2
b ) +

Kab
b ∗ s+(xa, θ1

a) s+(xb, θ2
b )
(b)

Figure 5.3. a) Interaction graph corresponding to a GRN of two genes. The protein product of
gene a stimulates the expression of gene b when above its first threshold θ1

a, while the protein
product of gene b inhibits the expression of gene a when above its first threshold θ1

b . In addition,
b activates its own expression when above its second threshold θ2

b . (b) Focal equations relating a
state characterized by the vector of protein concentrations [xa, xb] and its focal state [Xa, Xb].
If x ≥ θ, then the value of s+(x, θ) is 1 and else 0. Note that s−(x, θ) = 1 − s+(x, θ).
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5.4.1.2. Transition graph

As for Boolean GRNs, the dynamic behavior of a Thomas GRN is represented
in terms of a state transition graph, where each node represents a specific state (a
vector of the expression level values of each gene) and the edges represent transitions
between these states (see Figure 5.4). The gene expression levels take discrete values,
each one representing an interval between two consecutive thresholds. In Figure 5.3,
the gene b can take the values 0, 1 or 2.

The domain of values V of a gene N is specified because of the predicate
val(N,V) and the rule:

val(N,0..D) :- node(N), out_degree(N,D).

where D is the outside degree of N in the interaction graph. Then, for each edge, the
domain of a threshold and its unicity can be specified by the following rule:

1{threshold(N1,N2,Ne,V):val(N1,V):V>0}1 :-
edge(N1,N2,Ne).

The compactness of the thresholds of a gene N is specified by the following
integrity constraint:

:- threshold(N1,N2,Ne,T), T>1,
not threshold(N1,N3,Ne3,T-1):edge(N1,N3,Ne3).

expressing that if T, with T>1, is a threshold value, then a threshold value T-1 exists.

5.4.1.3. Focal state

A focal state is a specific attractor associated with each state, represented by a
vector of the focal values of each genes. A focal value for a gene in a state expresses
the level toward which this gene tends to evolve given the presence, or lack thereof,
of activators and/or inhibitors on that gene in this state. In the example (Figure 5.3),
the focal value of gene a depends on the expression level of gene b, that is whether
the concentration of b is above or below its first threshold. A focal value is given by
a discrete parameter called a kinetic parameter associated with a particular cellular
context. A cellular context is any set of states that are equivalent with respect to the
presence, or lack thereof, of activators and inhibitors acting on a particular gene. In
the example, for the gene b (Figure 5.3), there are four cellular contexts depending on
whether a is above its threshold and whether b is above its second threshold.

We denote the focal value of gene i in a cellular context ci by K
act(ci)
i , where

act(ci) is called the cellular context identifier of ci. The set act(ci), composed of all
the genes influencing i whose value are above their threshold in the cellular context
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ci, is a representation of ci. In the example (Figure 5.3), the focal value of b for all the
states belonging to the cellular context of b where a is above its first threshold and b is
above its second threshold is Kab

b . In Chapter 7, the definition of act(ci) is different
as it is based on the signs of the edges targeting i, which in our approach could be
unknown.

To specify the focal value of a gene N in a state (defined as being the Ith step in a
path P, see section 5.4.1.4), we introduce the following predicates:

– param(Ik): Ik = k(N,CC) represents a kinetic parameter K
act(cN )
N

and CC = cc(N1,Ne1,cc(N2,Ne2,...,cc(Np,Nep,nil))) represents
act (cN ). CC characterizes the set of states where the concentrations of all Ni are,
respectively, above the threshold of the edges (N1,N,Ne1),...,(Np,N,Nep)
and where the concentrations of the source genes of all other edges for which N is
a target are under their edge’s threshold. The definition of this predicate, which we
do not detail here, is directly built from the specification of the interaction graph
(see section 5.4.1.1).

– kparam(K,Ik) : K is the value of the parameter Ik. The following definition
ensures that parameters values are unique and in the right range5:

1{kparam(K,k(N,CC)):val(N,K)}1 :- param(k(N,CC)).

– cell_context(N,CC,I,P) : the state at step I of the path P belongs to the
cellular context CC of N. We do not give here the recursive definition of this predicate.

– focal(N,K,I,P), representing the focal equation of N, i.e. K is the focal
value of N of the state at the step I of P:

focal(N,K,I,P) :- kparam(K,k(N,CC)),
cell_context(N,CC,I,P).

5.4.1.4. Paths

In our framework, we are interested in examining the behavior of a network using
a succession of states that comprise a path. A successor of a state in the transition
graph is deduced by comparing the current expression level of each gene with that of
its focal state. The transition of a state to one of its successor states is asynchronous,
in the sense that at most one gene can change expression level between states. This
component value of the state is increased (respectively, decreased) by 1 if its focal
value is greater (respectively, lower) than the gene expression level. If no component
is updated, then the state is equal to its focal state and to its successor: it is said a
steady (or stationary) state.

5 In the annex, we give a more refined definition.
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For specifying the expression level and evolution of a gene as a component of a
state, we introduce the predicate species(N,V,I,P) (V is the expression level of
the gene N at step I of the path P), which is defined using the following predicates:
path(P) (P is a path), length(L,P) (L is the length of P), step(I,P) (I is a
step of P) and rules:

species(N,V+1,I+1,P) :- diff(N,I,P), val(N,V),
focal(N,K,I,P), step(I+1,P),

species(N,V,I,P), K > V.
species(N,V-1,I+1,P) :- diff(N,I,P), val(N,V),

focal(N,K,I,P), step(I+1,P),
species(N,V,I,P), K < V.

species(N,V,I+1,P) :- not diff(N,I,P),
val(N,V), step(I+1,P), species(N,V,I,P).

The predicate diff(N,I,P) (N is the unique component to be updated at step
I of P) ensures the asynchrony of transitions. Its definition implies that at most one
atomic formula diff(N,I,P) is true for a given step I, so at most one component
may change between states:

0{diff(N,I,P): node(N}1 :- step(I; I+1, P).

Finally, an integrity constraint is required to assert equality between a steady state
(a step I of P where no atomic formula diff(N,I,P) is true) and its focal state
(foceg(N,I,P) is true if N is equal to its focal value at step I of P):

:- 1{not foceg(N,I,P):node(N)},
0{diff(N,I,P): node(N)}0, step(I; I+1,P).

5.4.2. Biological data modeling

Biological data are frequently qualitative and incomplete. In its current form,
our implementation in ASP can analyze and model three types of biological data:
behaviors of the network, interactions between genes and mutant networks whereby
genetic engineering has altered the network.

5.4.2.1. Behaviors

Experimental behavioral data can generally be expressed using constraints on
paths. This is the case for modeling observed steady states, cycles or repairing
behaviors due to stress. The declarative approach presents a decisive advantage as
information on these behaviors is usually incomplete; for example, there could exist a
cycle for which only some concentrations of proteins are known throughout the cycle.

21



Acc
ep

te
d 

M
an

us
cr

ip
t

Despite the lack of information, our approach may provide biologically meaningful
properties regarding the kinetic parameters.

Expressing the existence of a steady state requires a predicate statpath(P)
(the two states of the path P of length 2 are equal) defined by:

statpath(P) :- path(P), length(2,P),
succeg1(N,P):node(N).

where succeg1(N,P) is true if at the first two steps of the path P, the concentrations
of the species N are equal. The existence of a steady state ss can then be easily
asserted with the two facts and the integrity constraint that follow:

path(ss). length(2,ss). :- not statpath(ss).

We can note that no concentrations were known or given to assert the existence of
a stationary state.

This expressive power provides significant benefits over well-known temporal
logics such as CTL [CLA 82] (see also section 5.3.4), which have been proposed
to check instantiations of Thomas networks [BER 04, CHA 03]. For example, a query
asking whether a model admits three different steady states, easy to formulate as an
extension of the above rules, cannot be expressed in CTL.

Nevertheless, CTL is useful to express biological observations, typically with EF
formulas like “there exists at least one path with states that have such properties”.
In our declarative framework, we can easily assert such formulas. For example,
asserting the existence of a path for the network shown in Figure 5.3 following the
CTL formula (a = 0 ∧ b = 0) ∧ EF (a = 0 ∧ b = 2) (meaning that there exists a path
beginning with a state where a = 0 and b = 0 and reaching a state where a = 0 and
b = 2) is achieved with the following rules:

path(p). length(5,p).
:- not species(a,0,1,p).
:- not species(b,0,1,p).
exist_path :- species(a,0,I,p),
species(b,2,I,p), step(I,p).
:- not exist_path.

The only models satisfying this formula in Figure 5.4 areG4 andG6. Note that we
set to 5 the length of a path because it is the maximal length of a non-looping path for
this example.

Asserting universal CTL properties, such as “all paths originating from such states
have such properties”, are not so easily handled. But, as mentioned earlier (see
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section 5.3.4), these formulas are not appropriate for analysis purposes. Representing
biological observations by AF or AG formulas could lead to reject some networks
unduly.

5.4.2.2. Interaction signs

An edge of an interaction graph is often labeled with a “+” or “−” sign. Intuitively,
a “+” (respectively “−”) sign means that the protein of the source of the edge activates
(respectively inhibits) production of the targeted gene. However, these signs may
be loosely interpreted in the literature. In this framework, we have to give them a
precise and comprehensible definition in the form of conditions called observability
constraints (they must not be confused with the integrity constraints which are the
ASP constraints). A “+” (respectively “−”) sign on an edge targeting a gene is
understood as implying the existence of a couple of states (s1, s2), with s1 just below
the edge threshold, such that (1) s2 differs from s1 only by a +1 change in the value
of the source gene and (2) s2 has a greater (respectively lower) focal value for the
target gene than s1.

We may see why the transition graph G4 (Figure 5.4) follows the “+” label
associated with the edge a→b (Figure 5.3). A state [0, 1] exists in G4, such that the
value of the source node a is lower than the threshold θ1

a of this edge. This state has
a neighboring state [1, 1], which differs only in the value of a by a change of +1.
Furthermore, this neighbor shows a positive tendency (Ka

b = 2) for b, indicating a
future growth in expression level, while the state [0, 1] shows a negative tendency
(Kb = 0).

By abstracting states by cellular contexts, one can note that the existence of a such
a couple (s1, s2) is equivalent to the existence of a couple (c1, c2) of cellular contexts
of the target node having the following extended properties for a “+” (respectively,
“−”) sign: all states in c1 below the edge threshold and (1) c2 differs from c1 only
by value of the source gene greater or equal than the edge threshold and (2) the focal
value of the target gene in the context c2 has a greater (respectively, lower) value than
in context c1.

In the transition graph G4, considering again the positive interaction a→b, such a
couple of cellular contexts of b could be for c1 the cellular context where a < θ1

a ∧
b < θ2

b and for c2 the one where a ≥ θ1
a ∧ b < θ2

b .

An observability constraint is modeled with the predicate obs(S,N1,N,Ne1)
(in the case of S=p (respectively, S=m) then the edge (N1,N,Ne1) is an activation
(respectively, inhibition)) having the following definition:

sign(p).sign(m).
obs(S,N1,N,Ne1) :- sign(S), ineq_K(S,N,K,K_r),
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neighbors(N1,N,Ne1,K,K_r),
auto_inter(S,N1,N,Ne1,K).

where the predicate neighbors(N1,N,Ne1,K,K_r) is true if there exists
a cellular context identifier of N containing the edge (N1,N,Ne1) with a
“neighbor” (deduced from it by deleting this edge) whose respective parameter
values are K and K_r. The predicate ineq_K(S,N,K,K_r) then ensures
that these parameter values stay in the right order according to S. The literal
auto_inter(S,N1,N,Ne1,K) is devoted to the more informed autointeraction
case that we do not describe here. For example, the observation of an activation in
the interaction a → b (Figure 5.3) can be formalized with the integrity constraint
:- not obs(p,a,b,1). The couples of cellular contexts of b that are involved
are represented in ASP by nil and cc(a, 1, nil), cc(b, 1, nil) and
cc(a, 1, cc(b, 1, nil)). The resulting observability constraints are
expressed in terms of the focals of b by (Kb < Ka

b ) ∨ (Kb
b < Kab

b ).

Additionally, additivity constraints are considered to indicate that generally
no inhibition (respectively, activation) can exist in case of a positive (respectively,
negative) interaction. These additivity constraints are expressed with the help of the
predicate addit(S,N1,N,Ne) defined by the following “default” [BES 89] rule:

addit(S,N1,N,Ne) :- obs(S,N1,N,Ne),
opposite_sign(S,Sp),
not obs(Sp,N1,N,Ne).

and also by considering the predicate -obs(Sp,N1,N,Ne), which is the negation
of obs(S,N1,N,Ne) (see [GEB 10]). For an interaction, consider the positive
interaction a → b in Figure 5.3, an additivity constraint is asserted with an integrity
constraint:

:- addit(p, a, b, 1), not -obs(m, a, b, 1).

This means that in the general case where obs(p, a, b, 1) holds but
where obs(m, a, b, 1) (e.g. (Kb > Ka

b ) ∨ (Kb
b > Kab

b )) does not, then
-obs(m, a, b, 1) (e.g. (Kb ≤ Ka

b ) ∧ (Kb
b ≤ Kab

b )) holds. However, this
does not mean that the exceptional case where both obs(p, a, b, 1) and
obs(m, a, b, 1) hold is eliminated as being inconsistent. In this case, the above
integrity constraint remains satisfied because addit(p, a, b, 1) does not hold.

5.4.2.3. Mutants

In the study of genetic networks, biologists frequently suppress the expression of a
gene or over-express it using genetic engineering. The resulting networks are labeled
mutant, in contrast with the unaltered wild networks. In this section, “model” refers
to both wild and mutant networks. It is important to define a mutant network from its
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comparable wild one and express different properties on each network while ensuring
that they share the same kinetic parameters.

We proceed here with an extension of our previous work: we introduce the
predicates model(M) (M is a model), mutant(N,M,V)(in the model M, the gene
N is mutated and its expression value is V) and mutant(N,M) (in the model M, the
gene N is mutated). Moreover, we extend the predicate path(P) to path(P,M) (P
is a path in the model M) in order to distinguish between paths in different models.
Depending on the model, the value V of gene N in the first step of a path may be fixed
or left ambiguous.
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Figure 5.4. Transition graphs G1, . . . , G6 satisfying all the observability and additivity
constraints associated with the example (Figure 5.3). Arrows represent possible transitions
between states represented by boxes. Each graph corresponds to a specific set of instantiated
kinetic parameters. For example, the graph G4 corresponds to the following instantiation:
Ka = 1, Kb

a = 0, Kb = 0, Kb
b = 2, Ka

b = 2, Kab
b = 2

The non-monotonicity of ASP allows for the same expression of focal equations
for either the wild model or mutant models. To obtain this expression, we add the
literals not mutant(N,M), path(P,M) to the body of the rule defining the
focal equations (see section 5.4.1.3). This prevents that these rules reset the focal
value of a mutant gene. In case N is a mutant gene in the model M, its focal value V is
defined by the rule:
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focal(N,V,I,P) :- mutant(N,M,V),
step(I; I+1,P), path(P,M).

5.4.3. Methodology for building models

The formulation of interesting queries in a methodical way is critical for the
analysis of the network functioning. To deal with this problem, we proposed a simple,
four-step method [COR 09]: (1) construct an initial set of constraints integrating as
many biological observations and hypotheses as possible; (2) check the consistency
of this set and in case of inconsistency remove as few non-mandatory constraints
as possible from the resulting consistent set; (3) predict the meaningful properties
verified by all consistent models by means of dedicated languages expressing
properties about Thomas GRN depending on results and new experiments; (4)
continue by removing or adding hypotheses and returning back to step 2. In the
following, we focus on steps 2 (inconsistency repairing) and 3 (inference of properties)
and also on minimization facilities that are often asked for.

5.4.3.1. Inconsistency repairing

In case the initial set of constraints is inconsistent, the constraints supported
by strong biological observations, which cannot be removed, must be separated
from those which are weakly supported. We then face a well-identified issue in AI:
a maximization problem, which in this case, is finding the maximum number of
acceptable weak biological observations to produce a consistent model. It necessitates
a paralogic process to be tackled. In our framework, this problem can be solved using
the gringo optimization statement #maximize in the following two steps:

– Determining the maximal number of acceptable constraints. Let
cv_1,. . .,cv_n be the literals representing constraints that can be removed.
By applying the statement #maximize{cv_1,. . .,cv_n}, we get the maximum
number Max_cv of these literals that can be true in any one model.

– Inserting the cardinality constraint Max_cv{cv_1,. . .,cv_n}Max_cv. Each
resulting AS then contains the maximum number of literals possible among
cv_1,. . .,cv_n.

Different sets of constraints could possibly be removed a priori, all of them
should be considered, with the exception of those that are not biologically plausible
(see [COR 09] for such a case).

It is important to recall that the non-monotonic framework of ASP makes possible
to escape from such a paralogic process, provided that defaults have been identified.
As discussed earlier in section 5.4.2.2, a default rule allows us to infer consequences
that could be deleted without provoking inconsistency if the default is not respected.
In the example (Figure 5.3), the additivity hypothesis implies that Kb ≤ Ka

b because
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there is a positive interaction associated with a → b. Considering this hypothesis as
biologically strongly supported would lead to a inconsistency in the case where the
contrary Kb > Ka

b holds. Because of the default expression of this hypothesis, this
apparent contradiction would be admitted in this case. The consequence Kb ≤ Ka

b

would no longer hold and different models than those shown in Figure 5.4 would be
proposed.6

5.4.3.2. Inference of properties

Then, from a coherent set of constraints, we are naturally conduced to search for
predictions. Within our approach, predictions can be seen as properties that hold in
all models consistent with these constraints. To be worthwhile, this kind of automatic
learning should be non-supervised, i.e. not predicting a priori fixed properties but,
instead, non-fixed properties but belonging to a language. The design of languages
expressing properties is a problem per se, which has to be discussed with biologists.
Ideally, for predictions to be a guide for further experiments, biologically relevant
properties should be experimentally verifiable. So we do not address this issue and
will just give an insight into this question.

Such a language could be composed with logical clauses [BOS 85]. Inferring
properties consequently consists of inferring clauses. It is then critical to pay
attention to the choice of the set of atomic formulas. In [COR 09], the authors
exhibit two languages where these atomic formulas are inequalities between kinetic
parameters belonging to the same focal equation. For example (Figure 5.4), the
formulaKb < Ka

b ∨ ¬(Kb < Kab
b ) belongs to such a language and is actually true

in all models.

Automatic deduction of common characteristics across all models is simple
with the --cautious option of the solver [GEB 10]. This option provides all
atomic formulas true across all models. By specifying the property languages using
appropriate predicates, one can easily obtain all the properties consistent across all
models.

ASP is specifically interesting when used in the inference of properties: as
models are minimal, the number of deduced properties is at least as high as the
number of properties deduced using classical logic. For example, a :- not b.

6 Another issue, connected to the above and important for property inference (see section
5.4.3.2), have to be discussed: it is the definition of the models that are desirable to retain
regarding additivity constraints. A first and radical solution consists of retaining only the
networks presenting the maximal number of additivity constraints, i.e. with the maximal number
of addit literals. Within this modeling, it is appropriate to rely on the operator #maximize
for that purpose. In the appendix (section 5.7), where we present a refined modeling, we discuss
this notion of desirable models and the relative roles of the two possible “minimizing” ways:
the (non-monotonic) logical way and the paralogical way.
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b :- not a. has only two minimal models: {a} and {b}, while the model {a, b}
is not minimal. We can, thus, infer the exclusion of a∧b, which would not be possible
using classical logic.

5.4.3.3. Minimization

It can happen that the set of constraints accepts a very large number of consistent
models, typically if the knowledge about the biological network is not very large. In
these cases, a frequent request concerns the existence of specific models. For defining
such a specificity, optimization criteria are commonly proposed. For example, it may
be interesting from a biological point of view to focus on models for which the total
number of thresholds is minimal. Of course, nothing prevents a priori that a gene has
as many different thresholds as its output degree in the interaction graph. It may even
be possible that a Boolean model (with only one threshold for each gene) should be
consistent.
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Figure 5.5. Interaction graph of the regulation of the carbon starvation response in Escherichia
coli

A search for the minimum number of required thresholds in the network is
possible using the #minimize operator, dual of #maximize (see section 5.4.3.1).
By defining the predicate threshold_max(N,T) (T is the number of threshold of
N), we ask for this minimum with the rule:

#minimize [threshold_max(N,T):val(N,T):node(N)=T].

Every atom threshold_max(N,T) that is true is associated with a weight T,
and the rule automatically minimizes the sum of the weights.

5.4.4. Applications

The three applications that are presented below illustrate the advantage of the
approach and the methodology discussed above.
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5.4.4.1. Carbon starvation response in Escherichia coli

Our declarative approach has been applied to the re-examination of a piecewise-
linear (PL) differential equation model of the regulation network of the carbon
starvation in E. coli [ROP 06]. This PL model was developed with the generate-and-
test approach classically used for constructing GNR models. This led to a unique,
instantiated and inconsistent model. A declarative approach can address at least the
question of the existence of alternative models7.

As long as environmental conditions are favorable, a population of E. coli
bacteria grows quickly. The bacteria are in a state called exponential phase. Upon
a nutritional stress due to carbon starvation, the bacteria are no longer able to maintain
a fast growth rate. They enter in a state called stationary state. Their response can
be reversed as soon as the environmental conditions become favorable again. The
network (Figure 5.4.3.3) and several biological observations on interactions, paths
(stationary states and paths leading from the exponential phase to the stationary phase
and vice versa) and even constraints on the shape of the DNA (supercoiling) are given
in [ROP 06]. A declarative analysis of this network has been presented in [COR 09]
(based on a constraint logical program cooperating with a SAT solver). We resumed
this analysis with our ASP implementation and we illustrate here the repairing of
inconsistency.

Applying step 2 of the proposed method (section 5.4.3.1) led to an inconsistency
that rigorously showed the non-existence of alternative models, i.e. with a
reasoning not based on the inconsistency of only one particular instantiated
model. Then, for repairing inconsistency, we choose the additivity constraints
as non-mandatory to the extent that were not supported experimentally. The
repairing process proposed two solutions, that is to remove one constraint among
{Kfis

gyrAB ≤ KgyrAB , KtopA ≤ Kfis
topA}. After biological investigations, it appeared

that the first one should not be removed, but that the second could be removed, as it
can be considered as not biologically plausible.

Computer performances stay very acceptable for solving such requests that
require numerous recombination computations. For example, it is for determining
the removable constraints that [COR 09] reports the highest computer time (around
25�), with CLP and SAT solvers cooperating. It was in the case where all additivity
constraints were removed in advance. This result was understandable because of the
size of the solution space in this case. The same issue takes 4�� when solved by our
ASP implementation (with a Core 2 Duo 3 GHz processor with 4 GB of RAM).

5.4.4.2. Drosophila embryo gap genes network

This approach has been applied in [COR 12] to the regulatory network controlling
the earliest steps of Drosophila embryo segmentation, i.e. the gap genes and their

7 There is no difficulty to translate a PL model into a Thomas model.
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cross-regulations, under the additional control of maternal gene products [SÁN 01,
JAE 04, ALV 06]. Three kinds of data were considered:

– Published molecular genetic studies enable the identification of the main actors
(seven genes), as well as the establishment or the suggestion of cross-regulatory
interactions.

– Qualitative information on the spatiotemporal expression profiles of the main
genes involved in the process, giving seven regions with different stable states.

– Data available on the gap gene expression profiles for seven loss-of-function
mutations, affecting maternal or gap genes.

On the basis of this combination of interaction and expression constraints, the
challenge was to identify the minimal complying model(s), i.e. the model(s) involving
all established regulatory edges, along with a minimal set of potential ones, while
minimizing the number of distinct thresholds. In a first step, the consistency of the
data (i.e. the existence of at least one consistent model) was proved in 3,338��, using
a Linux PC with an Intel Core 2 Duo 2.4 GHz of processor and 2.9 GB of memory.
Then, a unique minimal regulatory network was obtained in 1,016��, which included
only two potential interactions (on 11). Surprisingly, from this network, there was
a unique instantiation of the thresholds minimizing the number of threshold values
per component (obtained in 368��). Finally, some properties concerning the kinetic
parameters were deduced: 52 parameters fixed (over 72), 12 inequalities connecting a
threshold and a parameter and 36 connecting two parameters.

5.4.4.3. In vivo benchmarking of reverse engineering and modeling approaches
interaction network

The in vivo benchmarking of Reverse engineering and Modeling Approaches
(IRMA) network [CAN 09] comprises five genes: Swi5, Ash1, Cbf1, Gal4 and Gal80,
as well as one input (gal) and eight interactions (see Figure 5.6). These genes were
chosen for the synthesis of the network so that different types of interactions were
included, including transcription regulation and protein–protein interaction, thereby
capturing the behavior of eukaryotic GRNs. Cantone et al. [CAN 09] explored the
dynamics of the IRMA network by measuring each gene’s expression level in response
to two different perturbations using qRT-PCR. In the first set of experiments, they
shifted yeast cells from a glucose to galactose medium (“switch-on” experiments)
and in the second set of experiments, they shifted the cells from a galactose to
glucose medium (“switch-off” experiments). The presence of galactose allows for
increased transcription of Swi5 and is thus “switch-on”, while the opposite is true
for the “switch-off” experiments. From these data, two temporal series, composed of
averaged gene expressions over five “switch-on” and four “switch-off” independent
experiments, have been extracted.
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Finding possible models of the IRMA network respecting these time series is a
challenge proposed in [BAT 10]. The network is given in such terms that the order
between the kinetic parameters is known. So the issue is to find a consistent order
between thresholds and these parameters and between the thresholds themselves. Time
series are formalized by CTL formulas of the formEF (prop1∧EF (...EF (propn)...)
where n = 12 for the switch-off experiment and n = 10 for the switch-on experiment.
A condition propi relates to the values of the components of a state and also to the
derivative signs of these components. Batt et al. [BAT 10] propose a new modeling
leading to more states and that takes into account singular states (states admitting
for a component a threshold value), together with the use of the model checking tool
NuSMV. They claim, when comparing their work, that they provide more precise
results and efficient coding.

Figure 5.6. Interaction graph of the IRMA network

When applying the ASP declarative approach to this problem (not yet published
work with Samuel Chorlton, Hamilton U.), we designed the appropriate constraints
for expressing that a path satisfies a time series, while remaining in the Thomas
framework, i.e. without additional states and without singular states. The same number
of parametrizations (64) were exhibited8 in 139�� (compared to 885�� on the same
computer).

5.4.5. Discussion

Three topics will be discussed about the new way for modeling GRNs that is
presented above: declarative versus functional approach, logic programming versus
model checking tools and ASP assets.

8 Parameterizations were found identical, except for two of them that were erroneous in
[BAT 10].
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The application described in section 5.4.4.1 shows effectively the advantage of
the declarative approach for building models. Instead of verifying conditions on
an instantiated model and detecting the inconsistency of this specific model, these
conditions are enforced on any models and this leads to demonstrate the absence
of any consistent model. From that, an automatic consistency repairing is applied
that allows a pertinent biological analysis. Also, we should note that the biologically
oriented challenge mentioned in section 5.4.4.2 simply could not be defined outside
of a declarative approach.

Model checking is based, for expressing conditions, on logic such as CTL. Logic
programming also rely on some logics. So they could be compared from this point
of view. Clearly, the example in section 5.4.2.1 (enforcing the existence of three
different, a priori unknown, steady states) shows the weakness of the expression power
of CTL, due to its lack of logical variables. But the difference between model checking
tools and logic programming is best explained by their origins. The first ones were
designed toward the verification of state transition systems (such as merged parallel
programs), and the second ones toward (logic-based) programming. So if models
checking tools are appropriate to verify properties (expressed typically in CTL) of
a state-transition system, they are not to enforce properties. In a seminal paper on
the topic [BER 04], exhibiting Thomas GRN consistent parametrizations requires an
external process that enumerates all possible instantiated parametrizations. Along this
line, the work reported in [BAT 10] needs an external process for exploiting counter
examples provided by the used model checking tool. Also, biological properties
such as activation\inhibition (see section 5.4.2.2) or supercoiling (section 5.4.4.1)
are difficult to express with such software. Finally, implementing functionalities such
as consistency repairing (see section 5.4.3.1) or inference of properties (see section
5.4.3.2) would require as well external processes. Concerning computer performance
comparison, the result mentioned in section 5.4.4.3 is encouraging for the ASP
software gringo-clasp [GEB 10], but more tests are necessary to get a significant
opinion. Anyway, one should note that the solvers at the heart of both types of software
have the same basis (SAT solver).

A first advantage of ASP concerns the non-monotonicity of the logic on which it is
based, which distinguishes ASP from other logic programming technology. Benefits of
this characteristic appears especially for expressing additivity constraints (see section
5.4.2.2), mutants (see section 5.4.2.3) and for avoiding inconsistency (see section
5.4.3.1) when adding knowledge that could provoke it with monotonic classical
logics (see the annex for a clarification between the use of defaults and the paralogic
maximization operators). Another advantage is the expressive power of the gringo
language that is illustrated by the specification of Thomas GRNs (see section 5.4.1) in
this language. We should point out also the efficiency of the gringo-clasp software
when solving the ambitious challenge mentioned in section 5.4.4.2. It remains to
discuss the delicate aspect of fixing the length of a path when representing a biological
behavior. Ideally, it should be the maximal diameter of the possible transition graph,
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which could be costly to compute. Practically, we fixed it empirically (for example
30 states in the application reported in section 5.4.4.3). A reasonable approach to
this issue is certainly to use iclingo, an extension of gringo-clasp, that allows us to
augment incrementally such a length until getting a solution.

5.5. Conclusions

We exhibit a new operational specification of CTL formulas and a new declarative
way to model GRNs by using the logical paradigm ASP. We show the usefulness of
this paradigm, particularly for the translation of CTL formulas such asEF andAF by
relying on minimal stable models (see section 5.3.4) and for the formalization of some
“generally true” specifications of GRNs by using defaults (see section 5.4.5). Also,
we illustrate the expressive power, the inference capabilities and the efficiency of the
gringo-clasp ASP software [GEB 10]. Among the improvements that we consider,
one is related to CTL formulas of the form AF , interesting in view of synthesizing
network (see section 5.3.4). But in the case where the number of possible transitions is
huge and consequently the predicate transition not possibly fixed by advance,
the described implementation of Thomas GRNs could be very costly for ensuring AF
formulas. This implementation is appropriate for ensuring EF formulas provided an
adequate limit L for the length for a path is given (see section 5.4.5): the number
of states is then limited to L. Such a limit L is not any more suitable for ensuring
AF formulas because the number of states would augment exponentially with L. To
address this issue, we design actually an implementation admitting a limit but this
time based on the number of states. Also, we are considering to improve the efficiency
of the described implementation by using a constraint answer set solver, based on
the cooperation of an AS solver and a constraint solver (see cligcon in [GEB 10]).
This would allow us, for example, to extend the range of values for a variable without
multiplying the corresponding Boolean variables produced at the grounding phase: it
could be beneficial for the application described in section 5.4.4.3, where the range
of values of the kinetic parameters and the thresholds has to be extended to the total
of these entities. The declarative approach has been already been applied to other
kind of biological model, such as Hopfield networks [BEN 13]. In the long term,
with this perspective, we are considering exploring several other kind of networks,
including Thomas networks integrating time (with delays) and networks composed
of homogeneous networks or heterogeneous other networks (for better efficiency and
better understanding of resulting properties).
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5.7. Appendix on an advanced modeling for taking into additive constraints

The aim of this appendix is to present a more efficient modeling for additivity
constraints. The following two issues arise: (1) escaping from a possible inconsistency
that would result if these constraints would be imposed and (2) getting only the
“most general” networks that is, intuitively, those which accept as many as possible
additivity constraints compatible with the biological data. These issues are overcome
in sections 5.4.2.2 and 5.4.3.1 by considering all possible networks, reflected by
the rule enumerating the kparam literals (see section 5.4.1.3) and by using the
paralogical maximization operator for obtaining only ASs with the maximum number
of addit literals. One can note that, because of the exhaustive enumeration of the
networks, this solution does not take full advantage of the default definition of addit.

However, both enumerating too many literals and using paralogic operators are
costly. The following refined modeling reduces these costs as far as possible by
taking advantage of the non-monotonicity of ASP. Also, it improves the previous
modeling by associating additivity constraints even to edges that would not be labeled
by any sign in the interaction graph but that would support, nonetheless, observability
constraints as a result of the given behaviors.

5.7.1. Lowering the enumeration of literals

The kparam literals could come from three origins, which must be revisited:
observability constraints due to the interaction graph, additivity constraints and
biological behaviors.

Observability constraints coming from the interaction graph are now modeled by
the following:

kparam(K, Ik) :- couple_kpr(K, Ik, _, _).
kparam(K_r, Ik_r) :- couple_kpr(_, _, K_r, Ik_r).

with

1{couple_kpr(K, Ik, K_r, Ik_r)
: obs_cond(S, N1, N, Ne1, K, K_r, Ik, Ik_r)}1
:- sign(S, N1, N, Ne1).

where sign(S, N1, N, Ne1), provided by the modeler,
means that S is the sign of the edge N1, N, Ne1 and
obs_cond(S, N1, N, Ne1, K, K_r, Ik, Ik_r) that this edge separates
two cellular contexts of N identified by Ik and Ik_r such that their possible values K
and K_r stay in the right order according to S (see below). Note that only one literal
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couple_kpr(K, Ik, K_r, Ik_r) is necessary (makes the disjunction true in
the left part) for ensuring the observability via the literals kparam(K, Ik) and
kparam(K_r, Ik_r) that it implies. The curly brackets could even be suppressed,
but we will not discuss this point here. The proper definition of obs_cond is:

obs_cond(S, N1, N, Ne1, K, K_r, Ik, Ik_r) :-
neighboring_cell_cont(N1, N, Ne1, Ik, Ik_r),
param_obs(S, N1, N, Ne1, K, K_r).

where neighboring_cell_cont(N1, N, Ne1, Ik, Ik_r) ensures
the existence of the two cellular contexts separated by the edge and
param_obs(S, N1, N, Ne1, K, K_r) the right order of the parameters
regarding the sign.

For modeling additivity constraints, the definition of obs(S, N1, N, Ne1)
is slightly modified to take into account the new way of introducing the kparam
literals and to accept edges with observability constraints non-necessarily coming
from the interaction graph:

obs(S, N1, N, Ne1) :-
obs_cond(S, N1, N, Ne1, K, K_r, Ik, Ik_r),
kparam(K, Ik), kparam(K_r, Ik_r).

The couple_kpr literals due to additivity constraints are introduced by the rule:

1{couple_kpr(K, Ik, K_r, Ik_r)
: -param_obs(Sp, N1, N, Ne1, K, K_r)}1
:- neighboring_cell_cont(N1, N, Ne1, Ik, Ik_r),
obs(S, N1, N, Ne1),
opposite_sign(S, Sp),
not obs(Sp, N1, N, Ne1)

where -param_obs(Sp, N1, N, Ne1, K, K_r) is the negation of
param_obs(Sp, N1, N, Ne1, K, K_r) and where one finds in the
body the definition of addit(S, N1, N, Ne1) given in section 5.4.2.2. Note
that this time, expressing the logical conjunction representing an additivity constraint
requires every couple_kpr literal associated with a couple of cellular contexts
separated by the edge N1, N, Ne1.

What remains is to remodel the rules defining the successor of a state. For the case
where the species N changes its value at step I + 1, we get:

species(N, V, I, P) :- couple_ks(N, V, I, P, _, _).
kparam(K, k(N, CC)) :- couple_ks(N, _, _, _, K, CC).

35



Acc
ep

te
d 

M
an

us
cr

ip
t

with:

1{couple_ks(N, V_s, I+1, P, K, CC) :
ineq_K(S, N, K, V) : inc1(S, N, V, V_s)}1

:- diff(N, I, P), species(N, V, I, P),
step(I ; I+1, P), val(N, V), cell_context(N, CC, I, P).

where ineq_K(S, N, K, V) ensures that K and V are values of N ordered
according to S and inc1(S, N, V, V_s) that V_s is V+1 (respectively, V-1)
if S = p (respectively, m). The parameter value K of the cellular context CC of N is
fixed according to the transition between the two states.

For the case where the species N does not change its value at step I + 1, only a
species literal has to be implied:

species(N, V, I+1 , P)
:- not diff(N, I, P), species(N, V, I, P),
step(I ; I+1, P).

and for the case where no species at all change, only kparam literal has to be implied:

kparam(V, k(N, CC))
:- not_any_diff(I, P), species(N, V, I, P),
step(I ; I+1, P),
cell_context(N, CC, I, P).

where not_any_diff(I, P) means that no species change.

5.7.2. Conjunction of defaults and appropriate use of the paralogical maximization
operator

First, it is necessary to specify what is intended by the “most general” networks
regarding additivity constraints. For this, we may raise two different questions. The
first question is “for a set of parameters satisfying observability constraints and
behaviors (e.g. paths), what are the ASs to be retained?”, and the second question
is “among the ASs that are answers to the first question, what are the desired ones?”
As we will see below, the answer to the first question can be given in terms of (non-
monotonic) logic, but the answer to the second question requires paralogical means.

For a set of a parameters satisfying observability constraints and behaviors, it
appears natural to ask for keeping only ASs having additivity constraints for all edges
of all species, if such an AS exists. If not, we would like to keep only the ASs having
additivity constraints for all edges of the species for which it is possible.
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For example, for the network (Figure 5.3) with a behavior implying onlyKab
b = 2,

there are eight ASs (actually represented by the graphs G1, ..., G6) with additivity
constraints for all edges of all species. But there are also other possible networks, for
example with one edge of b with no additivity constraints. Unfortunately, the above
modeling provides such undesirable networks due to possible additivity constraints for
one edge that implies the non-additivity for some other edges. This is the case when
insuring additivity constraints for the edge a→b with the additional parameter values
Kb = 1, Ka

b = 1 and Kb
b = 0. These parameter values forbid additivity constraints

for the edge b→b.

A simple program would help in illustrating this last point and exhibiting a
methodology to solve it. Let us consider the two following default rules that mimic
the influences between the edges:

p2 | u :- not p1.
p1 | v :- not p2.

where | is the disjunction operator. They have the three ASs {u, v}, {p2} and
{p1}. The challenge is to transform these rules so that we only get {u, v} when
p1 and p2 are both unknown or false and {p1} if p1 is true. First, the methodology
consists of introducing the rules c :- p1. c :- p2. so that not c represents
the case where both p1 and p2 are unknown or false, and second in completing the
body of each of the original rules with a tautological term provided with a default
impact power:

p2 | u :- not p1, 1{c, not c}1.
p1 | v :- not p2, 1{c, not c}1.

It has to be realized that when not c is true, then it is impossible to imply p1 or
p2 and that only the AS {u, v} is obtained. If the rule p1. is added, we get the AS
{p1, c}.

Applied to our case, this methodology simply asks for introducing in the body of
the rule producing the additivity constraints the following terms:

1{not one_no_addit(N), one_no_addit(N)}1,
1{not one_no_addit, one_no_addit}1

where one_no_addit(N) means that one edge leading to the species N is not
additive and one_no_addit means that one species does not have all its edges
being additive. From a theoretical point of view, it should be noted that, by definition,
from a network given by an interaction graph with labeled edges and without any
additional behavior, this new modeling provides only ASs with additivity constraints
for all edges of all species.
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Meanwhile, there remain cases that need to be addressed. For example, for the
network (Figure 5.3) with at least two stationary states, this new modeling provides,
nonetheless, three ASs: one with the two edges of b being additive (graph G6) and
providing the stationary states (0, 1) and (0, 2), and the two others, respectively, with
one and not any of these edges being additive and providing the stationary states (0, 1)
and (1, 0). The parameters values of these last ASs come from the stationary states
(Kb = 1 and Ka

b = 0) and the observability constraints (Kab
b = 2, Kb

b = 0 or
Kb

b = 1). So, they are acceptable from the “logical” point of view developed above,
and these ASs are minimal. Consequently, discriminating some ASs among these three
ASs requires definitively paralogic standards like the one presented in section 5.4.3.1,
i.e. the winners are those having in the whole the greatest number of additive edges.

In summary, three points deserve to be retained: the minimal definition of
the disjunction representing observability constraints, the methodology for building
conjunctions of defaults and the distinctness regarding usage between the two ways to
minimize the number of the resulting ASs.
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