
HAL Id: hal-02272451
https://hal.science/hal-02272451

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault-Injection using Virtualization for Critical Software
Validation in Automotive

Antoine Blin, Youssef Laarouchi, Philippe Quéré

To cite this version:
Antoine Blin, Youssef Laarouchi, Philippe Quéré. Fault-Injection using Virtualization for Critical
Software Validation in Automotive. Embedded Real Time Software and Systems (ERTS2014), Feb
2014, Toulouse, France. �hal-02272451�

https://hal.science/hal-02272451
https://hal.archives-ouvertes.fr

Fault-Injection using Virtualization for Critical Software Validation

in Automotive

Antoine Blin
(1)

, Youssef Laarouchi
(2)

, Philippe Quéré
(2)

(1)
Contact author, Renault, antoine.blin@renault.com

(2)
Renault

Abstract:

In the field of critical and embedded systems in the automotive industry, where human life is at stake,
manufacturers and suppliers must develop robust and reliable systems while being confronted with
real time, cost and energy consumption constraints. The increasing complexity of electronic and elec-
tronic control units (ECU) in the context of the automotive industry has positioned dependability in the
heart of the concerns of manufacturers.

The ISO 26262 safety standard published in November 2011 in the automotive industry refers to fault
injection during software integration and testing (part 6, chapter 10, requirement 10.4.3, table 13,
method 1c). It is recommended for ASIL A and B, and highly recommended for ASIL C and D. The
meaning is that for ASIL C and D a rational shall be provided if the injection tests are not performed.

In this paper, we first introduce the context concerning the fault injection technics, the software archi-
tecture in automotive, and the virtualisation technics. A state of the art and a quick discussion con-
cerning each topic is presented to justify the choice we made in our work. In a second part we de-
scribe our proposal to perform fault injection using emulation on an x86 standard platform. In a third
part we describe fault injection using virtualization with respect to specific embedded platform charac-
teristics. We conclude on pros and cons of our proposals, by specifying the technical issues that were
treated in each phase of our experimentations. We then present some prospective views for future
work.

Keywords:

Fault injection, dependability, virtualisation, automotive, safety, ISO 26262

1 Introduction

Historically, the automotive software architectures were heterogeneous. To counter this situation, two
new standards have been developed, AUTOSAR software architecture for real-time systems and
GENIVI a Linux based open source platform for In-Vehicle Infotainment. These new automotive archi-
tectures aims at making as standard as possible the software interfaces between different software
products. For instance, AUTOSAR defines the different software layers (Basic Software, AUTOSAR
Runtime Environment, Software Components …) as well as the interaction between these layers. This
standardization aims essentially at reducing cost of software products, which is a great challenge for
car manufacturer.

In addition, these architectures have been deployed in parallel with the emergence of ISO 26262, a
new safety standard dealing with embedded EE systems in automotive. This standard adds technical
requirements on software that shall be respected during the whole lifecycle (design, development,
validation…). In this paper, we are interested in specific ISO 26262 requirements; those dealing with
fault injection. We assume that fault injection, a traditionally costly validation technique, can be done
through a “low cost” approach when using virtualization. In next section, we briefly present the fault
injection techniques, then the virtualization to inject faults.

mailto:antoine.blin@renault.com

2 Fault injection techniques

Fault injection is a technique for improving the robustness of the system by introducing faults to test
error handling mechanisms. Different faults can be triggered according to the failure we are targeting
to tolerate. As presented in [1], we distinguish between hardware faults and software faults. Each fault
category can be triggered by different fault injection technique:

 Hardware Fault Injection is achieved through electrical or physical component deterioration. This
fault injection type is particularly long and expensive. In fact, it requires the establishment of dedi-
cated infrastructure and does not allow precise control of the location of injected faults.

 Software Fault Injection is achieved on target software in its environment. The injection can be
done on the component itself or on its entries by altering the functioning through spatial (essentially
memory space) or temporal (CPU, resource usage, etc.) unwanted interactions. This type of injec-
tion is generally presented as cheaper than the hardware injection since it does not require any
special equipment. Moreover, the injection can be well mastered if the target of test is clearly speci-
fied as discussed later.

The fault injection common architecture can be summarized in the following points (cf. Figure 1):

The Library: contains all errors to be injected into the system. Its content is defined during the system
design and especially when defining safety mechanisms. These mechanisms will be the target of test
later in the process of fault injection.

1. The injector: designed to activate faults on the target system with respect to the safety mechanisms
requirements previously included in the library.

2. The target is the system under test.
3. The monitor observes the injections and logs obtained results
4. The collector saves the data issued from the system.
5. The analyzer processes the collected data to determine whether the system has properly reacted

to the injected faults.
6. The controller coordinates the fault injection with the system response observation process..

Fig. 1. Fault Injection Common Architecture

According to the test target, the Software Fault Injection can be applied, either on the operating sys-
tem or on the application or on both. The choice of the injection layer (Operating System or Applica-
tion) depends on the aim of the analysis. In our case, the safety analysis deals with an ECU functional
behavior implemented in the applicative layer. We assume that the operating system is trusted and
we focus on software safety mechanisms implemented in the application layer. Consequently, our
targeted test system is the application implementing safety mechanisms and dealing with critical sig-
nals.

Notice that fault injection on application layer requires a strong interaction with the underlying Operat-
ing System. In fact, the injector module presented in Figure 1 can be implemented in different soft-
ware layers:

Library Injector

Controller

Target Monitor

Collector Analyzer

1. The first layer is the application itself. In this case, we need to have access to the source code in
order to insert the necessary mutations for fault injections. Notice that this implementation is too in-
trusive and requires the modification of the application source code, which is not always possible.

2. The second layer is a middleware which consists in altering the tested applications I/Os and tests
its behavior. This implementation is less intrusive but does not affect the internal application behav-
ior (for instance it does not inject fault in critical application functions).

3. The third layer is the Operating System. In this case, we implement an injector module to insert in
the OS. This implies the modification of the OS which is not always possible, especially in industrial
context.

We think that intrusive fault injections are the major inconvenient of classical Software fault injection.
In this paper, we aim at performing non-intrusive faults injections on Software Applications. Layers 1
and 3 previously described are clearly intrusive and do not correspond to our objective. Layer 2 (mid-
dleware) is interesting but does not have sufficient coverage for the tested application.
We propose the use of an additional software layer between Hardware and Operating System. Such a
layer would allow us alter OS I/O without altering the source code of neither the OS nor the applica-
tion. This layer is technically enabled through the use of virtualization, as presented in next section.

3 Virtualization and Emulation

3.1 What is Virtualization?

Virtualization technology allows multiple operating system instances run simultaneously on the same
hardware. Each virtualized OS (Called “guest OS”) is hosted in a logical container called “partition”.
Different partitions may exist and run while being managed by a hypervisor (Called “host”).

The main hypervisor role is to share hardware resources between different hosted OS. Virtualization
technology must guarantees strict isolation between partitions: if one virtualized system fails, the hy-
pervisor ensures that it does not disturb other virtualized OS. The isolation mechanisms are important
since they forbid spatial and temporal interference between hosted OS. Such properties are being
considered closely in current R&D automotive industry. In fact, through virtualization, we would be
able to make AUTOSAR real time system coexist with GENIVI on the same hardware.

3.2 Emulation Technique

An emulator is a program that emulates Operating Systems compiled for architecture (ARM...) on
different machine architecture (X86, PowerPC, etc.). This mechanism is different from the virtualiza-
tion in which the instructions of the host Operating Systems are directly executed on the target.

With emulation, the instructions of the guest Operating Systems are translated by the emulator into
host architecture instructions. To emulate real time characteristics, the emulated clock rate is clocked
with the number of emulated instructions executed. Therefore a real time system emulated cannot
communicate with non-emulated devices plugged to the host.

In our work, we used both emulation and virtualization. Emulation was used when testing our fault
injection approach on a standard x86 machine. During this phase, we explored the technique of injec-
tion from the emulator platform as detailed in section 4. Once the fault injection correctly set up, we
worked on a real embedded target platform by using virtualization, as detailed in section 5.

4 Fault Injection on X86 Platform

Let us remind first our main objective: we aim at injecting faults on automotive application software,
running on a real time automotive OS. In our work, the final hardware target was not easily available
(delivery delay, cost, etc.). We decided to begin our study by using a standard x86 machine by emu-
lating an embedded platform.

For this, we require the following main components:

Trampoline OS

Emulated Hardware

 QEMU

LINUX

X86

Other Linux

Processes

Fig. 2. Fault Injection Architecture

Task {

 function(10)

}

int x = 2 ;

 An automotive operative system respecting some hard real time requirements. This requirement
aims at making the tested runtime environment as representative as possible of a standard auto-
motive ECU platform. In our work, the chosen Operating System was Trampoline [9], an Open
Source OS respecting AUTOSAR standard and running standard Basic Software.

 An emulator used to inject fault on basic software. In our case, QEMU [16] was the emulator of an
i.MX27 ARM platform.

The fault injection architecture consists of six layers (cf. Figure 2):

1. The X86 Hardware
2. An open source Operative System: Linux
3. An emulator, QEMU, running as a standard Linux user mode process
4. The embedded emulated hardware (Armadeus apf27 board [10])
5. Trampoline: the embedded real time OS
6. The application software targeted by fault injection

As presented in section 2, fault injection can be done on different layers, and we are interested in the
application layer, by injecting fault in the emulated (or virtualized) hardware. Many software injection
fault types exist, depending on the objective and limitations of the tests. As we set as an objective to
leave unmodified the source code of tested applications, the fault injection has to deal with the dy-
namic behaviour of the application. In this paper, we are interested in two software fault injection
types that directly impact the application functioning:

 Fault injection on global variables: we modify application global variables to introduce non-
consistent states.

 Fault injection on function calls: we modify functions parameters to impact program behavior.

For both injection types, we suppose that
we have a least access to the name of
critical variables (generally used) and the
critical functions signature (especially
name and arguments). We strongly think
that this hypothesis is realistic. In fact, from
a car manufacturer perspective, it is always
possible to have this information without
being too intrusive in software implementa-
tion.

Notice that other software fault injection
types can be considered (such as injec-
tions on control structure, local variables,
etc.). However each introduced type needs
to be linked to the application functioning
first and then attached to the emulator
and/or hypervisor structure to ensure cor-
rect fault injection.

4.1 Fault Injection on Global Variables

To fully understand the fault injection pro-
cess we propose to first detail the different memory management strategies used by the different
software layers.

Linux uses virtual memory management technic. Each process uses a virtual address space. Virtual
addresses to physical addresses translation is done by the Memory Management Unit.

Trampoline doesn't use Memory Management Unit. Each address used in basic software is directly
mapped to physical memory.

QEMU allocates physical emulated memory used by Trampoline on virtual memory. Furthermore, it
implements a Software translation mechanism to translate physical emulated addresses to virtual
addresses.

The fault injection process consists in the following steps:

1. Reading the physical emulated address of the targeted global
2. Converting it to the emulator virtual address
3. Updating memory pointed by emulator virtual address in the Linux page table
4. The MMU used by Linux converts virtual to physical addresses and update physical memory.

Fig. 3. Fault injection on Global Variables

The first step requires global variables (corresponding to a critical signal) address reading in the com-
piled binary (called “elf” file). The "elf" operating system format contains a header describing the gen-
eral structure of the file and its sections. One of the sections presents the symbol table in which a
translation between the names of functions and global variables on one hand and memory addresses
on the other hand is made. Accessing and reading this table is a first important step in our fault injec-
tion process.

The next steps are set up on the memory management in Trampoline and QEMU.

For Trampoline, the system code and application is compiled into a binary, with no use of virtual
memory device. The addresses used in the OS thus correspond to physical hardware addresses. This
feature significantly simplifies the fault injection process. In fact, it is not necessary to translate appli-
cation addresses into emulated addresses. Moreover, since no “swap” mechanism is used in Trampo-
line, it is not necessary to consider the case where OS memory pages have been temporarily saved
on the emulated memory space.

For QEMU, the memory management QEMU uses two mechanisms:

 The mechanism of paged virtual memory, provided by Linux. Indeed, QEMU runs as a user pro-
cess, its allocated memory (used for QEMU and emulated OS) uses standard Linux virtual ad-
dresses. At the start of emulation, QEMU allocates as much memory as needed by the emulated
OS.

 A software translation mechanism aiming at translating each physical address required by the emu-
lated OS into virtual address within the memory blocks allocated by QEMU (to the emulated OS).
This mechanism uses an internal QEMU page table.

2 5

2 5

0x00000000 0xFFFFFFFF

2 5

Linux Page Table

0x00000000 0xFFFFFFFF 0x00000000 0xFFFFFFFF

Virtual Memory

Emulated Physical Address

QEMU

Trampoline

Virtual Memory

QEMU Page Table

Standard Linux Process

0xFFFFFFFF Physical Memory 0x00000000

X86

1) Reading the physical address of x

3) Modification

2) Conversion

4) Physical Memory Upadate

The fault injection is then done by a QEMU developed module. This module has as input the name of
the variable to alter and the new value to affect and modifies directly the QEMU virtual memory as
explained in Figure 3.

4.2 Fault Injection on Function Calls

Unlike fault injection on global variable in which the memory address of the variable remains un-
changed, the function parameters are temporarily stored in the stack or in registers when the function
is being called. We have to act when the function is executed to inject the faults on its arguments.

Our new fault injection process is updated as described below:

1. Reading the physical emulated address of the targeted function
2. Converting it to emulator virtual address
3. Setting a software breakpoint on this emulator virtual address
4. When breakpoint is triggered
5. The emulated OS is stopped
6. The arguments values is changed on the emulated stack
7. We restart the emulated OS with its new context

To implement this fault injection on function arguments within QEMU, it is necessary to first determine
how the arguments are passed to functions called. These conventions depend on the hardware archi-
tecture for which the code is compiled, the compiler and the call conventions used. Conventions used
by Trampoline are detailed on the official website of ARM Holdings and are quite complex. They can
be summarized as following: the first four arguments are passed in registers; the following are passed
on the stack.

This injection technic suffers from some limitations. For instance, when compiler optimizations
(inlining) are enabled, function calls are integrated to the code and fault injection becomes impossible.

More generally, fault injection on emulated application has several limitations and benefits. One major
benefit of emulation is the entire control of the timing aspects of emulated OS. In fact, the internal
clocks of emulated OS are cadenced by the emulator; the emulator can freeze guest OS without tem-
poral impact on its behavior. This makes fault injection overhead less. Moreover, emulation allows
quick unit testing without deploying the software application on real target which is energy and time
consuming. Limitations can be summarized in the following; emulation cost (all the hardware has to
be entirely emulated), representativeness (when emulating the whole runtime environment).

5 Fault injection on embedded hypervisor

As previously discussed, emulation has several limitations and especially representativeness. In fact,
emulation hides the complexity of runtime environments and makes some assumptions about the
interaction of the application with its environment. The use of hypervisor is more representative of
embedded platform. We propose to first present fault injection architecture and then detail the fault
injection on global variables and functions.

5.1 Architecture

It‘s necessary to have three tools to perform a fault injection campaign on embedded platforms:

 an operating system running applications,

 a hypervisor used to inject fault on basic software

 the targeted platform board.

In our case, we used an open source hypervisor called CodeZero. This choice is justified by the fact
that we need a hypervisor supporting ARM architecture, and CodeZero was one of the rare open
source hypervisors fulfilling this requirement. Using CodeZero raised some restrictions. For instance,
there were no OS running on this hypervisor, but just POSIX applications running in bare metal mode.
Since we are interested in checking safety mechanisms in application, we performed fault injection on

 Partition 1

CODE ZERO HYPERVISOR

ARM

Fault injection partition

Fault injection

thread

Hyper call

Task1 {

 open()

}

int x = 2;

Global update

 Partition 1

CODE ZERO HYPERVISOR

ARM

Partition 2

Task2 {

 open()

}

int x = 2;

Hyper call Injection

Task1 {

}

virtualized POSIX application (Figure 4). The platform used to launch wasPB926-Versatile (This board
wasn't available we used QEMU to emulate it).

The platform used to launch was a PB926-
Versatile. During our experiments, this board
was not available, so we decided to emulate it
with QEMU, as shown in Figure 4.

5.2 Global Variables Fault Injection

CodeZero provides the notion of partitions for
virtualization. Each partition implements an
isolated execution environment with its own set
of resources (threads, address spaces, memory
resources…). Access to virtualized resources is
done through hyper calls from partition to hy-
pervisor. In a first part, we choose to trigger
fault injection on a partition when the partition
itself makes a hyper call as described in Figure
5.

The steps used for this fault injection are:

 Compilation of targeted applications

 Reading the virtual address of the targeted global

 Starting the hypervisor

 On application hyper call: fault injections are done from the hypervisor on the application targeted
global variable

In this solution, we notice that the injector is integrated within the hypervisor. Such a solution induces
some modifications in hypervisor code, which is not always possible. Consequently, we tried to im-
plement the injection monitor within a second partition (cf. Figure 6). This specific partition is in charge
of injecting faults on other partition using hyper calls. The algorithm used is summarized in the follow-
ing steps:

 Compilation of targeted applications

 Reading the virtual address of the targeted global

 Starting the hypervisor

 The injection partition makes an “injection fault hyper call“ with virtual addresses of targeted global
variables as argument

 The hypervisor handles the hyper call, maps the address space of the targeted partition, updates
the global variable value and re-maps the address space of the “fault injection partition”.

Notice that this solution adds an overhead since the address space swaps are costly.

Fig. 5. Inter Partition Fault Injection with Hypervisor Fig. 6. Intra fault injection using hypervisor

Partition

CODE ZERO HYPERVISOR

QEMU ARM

X86

Task {

 function(10)

}

Partition

Task {

}

int x = 2;

Fig.4. Fault Injection Architecture using Hypervisor

5.3 Function Argument Fault Injection

This fault injection technique is similar to that used in section 4.2. Hardware breakpoints on targeted
functions are used to inject faults. When a breakpoint is triggered, the fault is injected in the stack and
in specific registers before normal execution resumes.

The main difference between “Function argument injection” technics on “QEMU” and “Function argu-
ment injection” technic on “CodeZero” is the following: with QEMU we can use the software debug-
ging layer implemented on the emulator while in “CodeZero” we had to use the hardware debugging
layer.

We propose to detail, by an illustrated example, the operation of hardware debugging layer on arm
platform. The first argument of a function “fi”, executed on an ARM platform, is targeted by a fault in-
jection. First we save the first instruction of “fi” function (Figure 6, Step 1) and replace it by a break-
point instruction (Figure 6, Step 2).

When the function is called, the processor executes the breakpoint instruction (Step 1, Figure 7) and
raise a Prefetch Abort interrupt (Step 2, Figure 7) handled by the Prefetch Abort ISR (Interrupt Service
Routine, see Step 3, Figure 7).

The Prefetch Abort ISR perform the fault injection by updating the processors register that contains
the first argument of the “fi” function (Step 1, Figure 8) and replace the breakpoint instruction by the
old instruction(Step 2, Figure 8).

[...]

void fi(int a){

 bkpt 0

 [...]

}

push {fp, lr}

Old instruction

Reset

// Undefined

SWI

Prefetch_Abort

Data Abort

// Reserved

IRQ

FIQ

Prefetch_Abort :

Interrupt vector

2

Interrupt

1

Program

Counter

3

Interrupt Service Routine

Fig. 7. Interrupt

[...]

void fi(int a) {

 push {fp, lr}

 [...]

}

Program loaded on memory

[...]

void fi(int a) {

 push {fp, lr}

 [...]

}

push {fp, lr} push {fp, lr}

Old instruction Old instruction

1

[...]

void fi(int a) {

 bkpt 0

 [...]

}

2

Fig. 6. Placing a breakpoint

Reset

// Undefined

SWI

Prefetch_Abort

Data Abort

// Reserved

IRQ

FIQ

Prefetch_Abort :

Fault injection

 Replacement of bkpt 0

Interrupt vector Interrupt Service Routine

Program

Counter

[...]

void fi(int a){

 push {fp, lr}

 [...]

}

Resuming execution

The fault injection handler returns the control to the “fi” function that continues its execution (Fig. 9).

The difference between software debugging layer implemented by QEMU and hardware debugging
layer implemented is linked to timing issues. On one hand, CodeZero adds a significant CPU time
overhead, with no control on the guest OS clock. This can lead to uncontrolled time drift. On the other
hand QEMU freezes the guest virtual machine until the injection is done. The virtual machine does not
realize that it is frozen.

6 Conclusion

We briefly presented fault injection techniques and described how virtualization can be used to inject
mutants in memory without altering the source code of the applications.

Let us remind that fault injection cannot be done without a previous knowledge of the application be-
havior, which is an important hypothesis of this technique. However, fault injection supposes that we
entirely know the software functional and dysfunctional specifications. This is necessary to observe
any abnormal behavior when injecting faults.

We also focused on two main application fault injections types: the global variables and the functions
parameters. During our experiments, we noticed that this injection technique has some limitations.
First, it is sensitive to optimizations that are applied to the code. For instance, when options like
"inlining" are enabled, function calls are included in the code and fault injection on their arguments
becomes impossible. In addition, this technique is non deterministic. In fact, the state of the program
when the breakpoint is set affects the result of the injection. For example, if a function is called twice
in a code we cannot determine on which call the injection will be performed. We identified several
solutions to figure out this issue. It generally consists in synchronizing fault injection with the running
application. The purpose is to trigger the injection according to the inputs and the internal state of the
program.

The described techniques have been tested on a proof on concept applications with safety require-
ments (ASIL C for instance). It could be possible to extend our work to additional fault injection types

Reset

// Undefined

SWI

Prefetch_Abort

Data Abort

// Reserved

IRQ

FIQ

Prefetch_Abort :

Interrupt vector Interrupt Service Routine

Program

Counter

[...]

void fi(int a){

 bkpt 0

[...]

}

push {fp, lr}

Old instruction

Fault injection

Replacement of bkpt 0

2 Replacement

1

Fig. 8. Fault Injection

Fig. 9. Resuming Execution

and to implement a framework to assess real-time properties of the applications especially the over-
head introduced by fault injection techniques.

Bibliography

[1] Jean-Claude LAPRIE. Guide de la Sûreté de fonctionnement. France : Cépaduès, 1996
[2] ISO/FDIS 26262. « Véhicules routiers - Sécurité fonctionnelle des systèmes électriques et

électroniques » Final Draft International Standard ISO/FDIS 26262 : 2010
[3] IEC 61508. « Functional safety of electrical/electronic/ programmable electronic safety-related

systems » IEC 61508 Parts 1-7, First edition 12/1998.
[4] Karim HADJIAT. Evaluation prédictive de la sûreté de fonctionnement d’un circuit intégré nu-

mérique. Thèse Micro et Nano Electronique. Grenoble : Institut national polytechnique de
Grenoble, 2005, 142 p.

[5] Mei-Chen HSUEH, Timothy K. TSAI, Ravishankar K. IYER. « Fault Injection Techniques and
Tools », IEEE Computer, 1997, vol.30, n°4, p.75-82.

[6] AUTomotive Open System Architecture. AUTOSAR [en ligne]. http://www.autosar.org/.
[7] GENIVI Alliance. GENIVI Alliance. Available on : http://www.genivi.org/.
[8] ARINC. « ARINC 653 Avionics Application Software Interface », ARINC : 2010
[9] IRCCyN. Trampoline - OpenSource RTOS project Available on : http://trampoline.rts-

software.org/ .
[10] ARMadeus systems. APF27 [en ligne]. Available on :

http://www.armadeus.com/english/products-processor_boards-apf27.html .
[11] B-Labs. Codezero. Available on http://l4dev.org/ .
[12] Brendan Cully, Geoffrey Lefebvre, Dutch Meyer, Mike Feeley, Norm Hutchinson, Andrew

Warfield. « Remus: High Availability via Asynchronous Virtual Machine Replication », USENIX
symposium, 2008

[13] Yoshiaki Tamura, Koji Sato, Seiji Kihara, Satoshi Moriai. « Virtual Machine Synchronization
for Fault Tolerance », 2008

[14] Yvan ROCH. « QEMU : Visite au cœur de l’émulateur », Linux Magazine, Mars 2012, n°147,
p.6-27.

[15] Yvan ROCH. « QEMU : Comment émuler une nouvelle machine? Cas de l’apf27 », Linux
Magazine, Avril 2012, n°148, p.48-70.

[16] QEMU– Open Source processor emulator. Available on :http://wiki.qemu.org/

http://www.autosar.org/
http://www.genivi.org/
http://trampoline.rts-software.org/
http://trampoline.rts-software.org/
http://www.armadeus.com/english/products-processor_boards-apf27.html
http://l4dev.org/

