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Abstract:  

In the field of critical and embedded systems in the automotive industry, where human life is at stake, 
manufacturers and suppliers must develop robust and reliable systems while being confronted with 
real time, cost and energy consumption constraints. The increasing complexity of electronic and elec-
tronic control units (ECU) in the context of the automotive industry has positioned dependability in the 
heart of the concerns of manufacturers.  

The ISO 26262 safety standard published in November 2011 in the automotive industry refers to fault 
injection during software integration and testing (part 6, chapter 10, requirement 10.4.3, table 13, 
method 1c). It is recommended for ASIL A and B, and highly recommended for ASIL C and D. The 
meaning is that for ASIL C and D a rational shall be provided if the injection tests are not performed.  

In this paper, we first introduce the context concerning the fault injection technics, the software archi-
tecture in automotive, and the virtualisation technics. A state of the art and a quick discussion con-
cerning each topic is presented to justify the choice we made in our work. In a second part we de-
scribe our proposal to perform fault injection using emulation on an x86 standard platform.  In a third 
part we describe fault injection using virtualization with respect to specific embedded platform charac-
teristics. We conclude on pros and cons of our proposals, by specifying the technical issues that were 
treated in each phase of our experimentations. We then present some prospective views for future 
work. 
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1 Introduction 

Historically, the automotive software architectures were heterogeneous. To counter this situation, two 
new standards have been developed, AUTOSAR software architecture for real-time systems and 
GENIVI a Linux based open source platform for In-Vehicle Infotainment. These new automotive archi-
tectures aims at making as standard as possible the software interfaces between different software 
products. For instance, AUTOSAR defines the different software layers (Basic Software, AUTOSAR 
Runtime Environment, Software Components …) as well as the interaction between these layers. This 
standardization aims essentially at reducing cost of software products, which is a great challenge for 
car manufacturer.  

In addition, these architectures have been deployed in parallel with the emergence of ISO 26262, a 
new safety standard dealing with embedded EE systems in automotive. This standard adds technical 
requirements on software that shall be respected during the whole lifecycle (design, development, 
validation…). In this paper, we are interested in specific ISO 26262 requirements; those dealing with 
fault injection. We assume that fault injection, a traditionally costly validation technique, can be done 
through a “low cost” approach when using virtualization. In next section, we briefly present the fault 
injection techniques, then the virtualization to inject faults.    
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2 Fault injection techniques 

Fault injection is a technique for improving the robustness of the system by introducing faults to test 
error handling mechanisms. Different faults can be triggered according to the failure we are targeting 
to tolerate. As presented in [1], we distinguish between hardware faults and software faults. Each fault 
category can be triggered by different fault injection technique:  

 Hardware Fault Injection is achieved through electrical or physical component deterioration. This 
fault injection type is particularly long and expensive. In fact, it requires the establishment of dedi-
cated infrastructure and does not allow precise control of the location of injected faults. 

 Software Fault Injection is achieved on target software in its environment. The injection can be 
done on the component itself or on its entries by altering the functioning through spatial (essentially 
memory space) or temporal (CPU, resource usage, etc.) unwanted interactions.  This type of injec-
tion is generally presented as cheaper than the hardware injection since it does not require any 
special equipment. Moreover, the injection can be well mastered if the target of test is clearly speci-
fied as discussed later. 

The fault injection common architecture can be summarized in the following points (cf. Figure 1): 

The Library: contains all errors to be injected into the system. Its content is defined during the system 
design and especially when defining safety mechanisms. These mechanisms will be the target of test 
later in the process of fault injection. 

1. The injector: designed to activate faults on the target system with respect to the safety mechanisms 
requirements previously included in the library. 

2. The target is the system under test. 
3. The monitor observes the injections and logs obtained results 
4. The collector saves the data issued from the system. 
5. The analyzer processes the collected data to determine whether the system has properly reacted 

to the injected faults. 
6. The controller coordinates the fault injection with the system response observation process.. 

 

 

Fig. 1. Fault Injection Common Architecture 

According to the test target, the Software Fault Injection can be applied, either on the operating sys-
tem or on the application or on both. The choice of the injection layer (Operating System or Applica-
tion) depends on the aim of the analysis. In our case, the safety analysis deals with an ECU functional 
behavior implemented in the applicative layer. We assume that the operating system is trusted and 
we focus on software safety mechanisms implemented in the application layer. Consequently, our 
targeted test system is the application implementing safety mechanisms and dealing with critical sig-
nals. 

Notice that fault injection on application layer requires a strong interaction with the underlying Operat-
ing System. In fact, the injector module presented in Figure 1 can be implemented in different soft-
ware layers: 

Library Injector 

Controller 

Target Monitor 

Collector Analyzer 



1. The first layer is the application itself. In this case, we need to have access to the source code in 
order to insert the necessary mutations for fault injections. Notice that this implementation is too in-
trusive and requires the modification of the application source code, which is not always possible.  

2. The second layer is a middleware which consists in altering the tested applications I/Os and tests 
its behavior. This implementation is less intrusive but does not affect the internal application behav-
ior (for instance it does not inject fault in critical application functions). 

3. The third layer is the Operating System. In this case, we implement an injector module to insert in 
the OS. This implies the modification of the OS which is not always possible, especially in industrial 
context. 

We think that intrusive fault injections are the major inconvenient of classical Software fault injection. 
In this paper, we aim at performing non-intrusive faults injections on Software Applications. Layers 1 
and 3 previously described are clearly intrusive and do not correspond to our objective. Layer 2 (mid-
dleware) is interesting but does not have sufficient coverage for the tested application.  
We propose the use of an additional software layer between Hardware and Operating System. Such a 
layer would allow us alter OS I/O without altering the source code of neither the OS nor the applica-
tion. This layer is technically enabled through the use of virtualization, as presented in next section. 

3 Virtualization and Emulation  

3.1 What is Virtualization? 

Virtualization technology allows multiple operating system instances run simultaneously on the same 
hardware. Each virtualized OS (Called “guest OS”) is hosted in a logical container called “partition”. 
Different partitions may exist and run while being managed by a hypervisor (Called “host”). 

The main hypervisor role is to share hardware resources between different hosted OS. Virtualization 
technology must guarantees strict isolation between partitions: if one virtualized system fails, the hy-
pervisor ensures that it does not disturb other virtualized OS. The isolation mechanisms are important 
since they forbid spatial and temporal interference between hosted OS. Such properties are being 
considered closely in current R&D automotive industry. In fact, through virtualization, we would be 
able to make AUTOSAR real time system coexist with GENIVI on the same hardware. 

3.2 Emulation Technique 

An emulator is a program that emulates Operating Systems compiled for architecture (ARM...) on 
different machine architecture (X86, PowerPC, etc.). This mechanism is different from the virtualiza-
tion in which the instructions of the host Operating Systems are directly executed on the target.   

With emulation, the instructions of the guest Operating Systems are translated by the emulator into 
host architecture instructions. To emulate real time characteristics, the emulated clock rate is clocked 
with the number of emulated instructions executed. Therefore a real time system emulated cannot 
communicate with non-emulated devices plugged to the host. 

In our work, we used both emulation and virtualization. Emulation was used when testing our fault 
injection approach on a standard x86 machine. During this phase, we explored the technique of injec-
tion from the emulator platform as detailed in section 4. Once the fault injection correctly set up, we 
worked on a real embedded target platform by using virtualization, as detailed in section 5. 

4 Fault Injection on X86 Platform 

Let us remind first our main objective: we aim at injecting faults on automotive application software, 
running on a real time automotive OS. In our work, the final hardware target was not easily available 
(delivery delay, cost, etc.). We decided to begin our study by using a standard x86 machine by emu-
lating an embedded platform.  

For this, we require the following main components: 
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Fig. 2. Fault Injection Architecture 

Task { 

  function(10) 

} 

int x = 2 ; 

 

 An automotive operative system respecting some hard real time requirements. This requirement 
aims at making the tested runtime environment as representative as possible of a standard auto-
motive ECU platform. In our work, the chosen Operating System was Trampoline [9], an Open 
Source OS respecting AUTOSAR standard and running standard Basic Software.  

 An emulator used to inject fault on basic software. In our case, QEMU [16] was the emulator of an 
i.MX27 ARM platform.  

 
The fault injection architecture consists of six layers (cf. Figure 2): 

1. The X86 Hardware 
2. An open source Operative System: Linux 
3. An emulator, QEMU, running as a standard Linux user mode process 
4. The embedded emulated hardware (Armadeus apf27 board [10]) 
5. Trampoline: the embedded real time OS 
6. The application software targeted by fault injection 

As presented in section 2, fault injection can be done on different layers, and we are interested in the 
application layer, by injecting fault in the emulated (or virtualized) hardware. Many software injection 
fault types exist, depending on the objective and limitations of the tests. As we set as an objective to 
leave unmodified the source code of tested applications, the fault injection has to deal with the dy-
namic behaviour of the application. In this paper, we are interested in two software fault injection 
types that directly impact the application functioning:  

 Fault injection on global variables:  we modify application global variables to introduce non-
consistent states. 

 Fault injection on function calls: we modify functions parameters to impact program behavior. 

For both injection types, we suppose that 
we have a least access to the name of 
critical variables (generally used) and the 
critical functions signature (especially 
name and arguments). We strongly think 
that this hypothesis is realistic. In fact, from 
a car manufacturer perspective, it is always 
possible to have this information without 
being too intrusive in software implementa-
tion. 

Notice that other software fault injection 
types can be considered (such as injec-
tions on control structure, local variables, 
etc.). However each introduced type needs 
to be linked to the application functioning 
first and then attached to the emulator 
and/or hypervisor structure to ensure cor-
rect fault injection. 

4.1 Fault Injection on Global Variables 

To fully understand the fault injection pro-
cess we propose to first detail the different memory management strategies used by the different 
software layers.  

Linux uses virtual memory management technic. Each process uses a virtual address space. Virtual 
addresses to physical addresses translation is done by the Memory Management Unit. 

Trampoline doesn't use Memory Management Unit. Each address used in basic software is directly 
mapped to physical memory. 



QEMU allocates physical emulated memory used by Trampoline on virtual memory. Furthermore, it 
implements a Software translation mechanism to translate physical emulated addresses to virtual 
addresses. 

The fault injection process consists in the following steps: 

1. Reading the physical emulated address of the targeted global 
2. Converting it to the emulator virtual address 
3. Updating memory pointed by emulator virtual address in the Linux page table 
4. The MMU used by Linux converts virtual to physical addresses and update physical memory. 

 
Fig. 3. Fault injection on Global Variables 

The first step requires global variables (corresponding to a critical signal) address reading in the com-
piled binary (called “elf” file). The "elf" operating system format contains a header describing the gen-
eral structure of the file and its sections. One of the sections presents the symbol table in which a 
translation between the names of functions and global variables on one hand and memory addresses 
on the other hand is made. Accessing and reading this table is a first important step in our fault injec-
tion process. 

The next steps are set up on the memory management in Trampoline and QEMU. 

For Trampoline, the system code and application is compiled into a binary, with no use of virtual 
memory device. The addresses used in the OS thus correspond to physical hardware addresses. This 
feature significantly simplifies the fault injection process. In fact, it is not necessary to translate appli-
cation addresses into emulated addresses. Moreover, since no “swap” mechanism is used in Trampo-
line, it is not necessary to consider the case where OS memory pages have been temporarily saved 
on the emulated memory space. 

For QEMU, the memory management QEMU uses two mechanisms: 

 The mechanism of paged virtual memory, provided by Linux. Indeed, QEMU runs as a user pro-
cess, its allocated memory (used for QEMU and emulated OS) uses standard Linux virtual ad-
dresses. At the start of emulation, QEMU allocates as much memory as needed by the emulated 
OS. 

 A software translation mechanism aiming at translating each physical address required by the emu-
lated OS into virtual address within the memory blocks allocated by QEMU (to the emulated OS). 
This mechanism uses an internal QEMU page table. 
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The fault injection is then done by a QEMU developed module. This module has as input the name of 
the variable to alter and the new value to affect and modifies directly the QEMU virtual memory as 
explained in Figure 3.  

4.2 Fault Injection on Function Calls  

Unlike fault injection on global variable in which the memory address of the variable remains un-
changed, the function parameters are temporarily stored in the stack or in registers when the function 
is being called. We have to act when the function is executed to inject the faults on its arguments. 

Our new fault injection process is updated as described below: 

1. Reading the physical emulated address of the targeted function  
2. Converting it to emulator virtual address 
3. Setting a software breakpoint on  this emulator virtual address  
4. When breakpoint is triggered 
5. The emulated OS is stopped 
6. The arguments values is changed on the emulated stack 
7. We restart the emulated OS with its new context 

To implement this fault injection on function arguments within QEMU, it is necessary to first determine 
how the arguments are passed to functions called. These conventions depend on the hardware archi-
tecture for which the code is compiled, the compiler and the call conventions used. Conventions used 
by Trampoline are detailed on the official website of ARM Holdings and are quite complex. They can 
be summarized as following: the first four arguments are passed in registers; the following are passed 
on the stack. 

This injection technic suffers from some limitations. For instance, when compiler optimizations 
(inlining) are enabled, function calls are integrated to the code and fault injection becomes impossible. 

More generally, fault injection on emulated application has several limitations and benefits. One major 
benefit of emulation is the entire control of the timing aspects of emulated OS. In fact, the internal 
clocks of emulated OS are cadenced by the emulator; the emulator can freeze guest OS without tem-
poral impact on its behavior. This makes fault injection overhead less. Moreover, emulation allows 
quick unit testing without deploying the software application on real target which is energy and time 
consuming. Limitations can be summarized in the following; emulation cost (all the hardware has to 
be entirely emulated), representativeness (when emulating the whole runtime environment). 

5 Fault injection on embedded hypervisor 

As previously discussed, emulation has several limitations and especially representativeness. In fact, 
emulation hides the complexity of runtime environments and makes some assumptions about the 
interaction of the application with its environment. The use of hypervisor is more representative of 
embedded platform. We propose to first present fault injection architecture and then detail the fault 
injection on global variables and functions.  

5.1 Architecture 

It‘s necessary to have three tools to perform a fault injection campaign on embedded platforms: 

 an operating system running applications,  

 a hypervisor used to inject fault on basic software  

 the targeted platform board.  

In our case, we used an open source hypervisor called CodeZero. This choice is justified by the fact 
that we need a hypervisor supporting ARM architecture, and CodeZero was one of the rare open 
source hypervisors fulfilling this requirement. Using CodeZero raised some restrictions. For instance, 
there were no OS running on this hypervisor, but just POSIX applications running in bare metal mode. 
Since we are interested in checking safety mechanisms in application, we performed fault injection on 
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virtualized POSIX application (Figure 4). The platform used to launch wasPB926-Versatile (This board 
wasn't available we used QEMU to emulate it). 

The platform used to launch was a PB926-
Versatile. During our experiments, this board 
was not available, so we decided to emulate it 
with QEMU, as shown in Figure 4. 

5.2 Global Variables Fault Injection 

CodeZero provides the notion of partitions for 
virtualization. Each partition implements an 
isolated execution environment with its own set 
of resources (threads, address spaces, memory 
resources…). Access to virtualized resources is 
done through hyper calls from partition to hy-
pervisor. In a first part, we choose to trigger 
fault injection on a partition when the partition 
itself makes a hyper call as described in Figure 
5.  
 
The steps used for this fault injection are: 

 Compilation of targeted applications 

 Reading the virtual address of the targeted global 

 Starting the hypervisor 

 On application hyper call: fault injections are done from the hypervisor on the application targeted 
global variable 

In this solution, we notice that the injector is integrated within the hypervisor. Such a solution induces 
some modifications in hypervisor code, which is not always possible. Consequently, we tried to im-
plement the injection monitor within a second partition (cf. Figure 6). This specific partition is in charge 
of injecting faults on other partition using hyper calls. The algorithm used is summarized in the follow-
ing steps: 

 Compilation of targeted applications 

 Reading the virtual address of the targeted global 

 Starting the hypervisor 

 The injection partition makes an “injection fault hyper call“ with virtual addresses of targeted global 
variables as argument 

 The hypervisor handles the hyper call, maps the address space of the targeted partition, updates 
the global variable value and re-maps the address space of the “fault injection partition”. 

Notice that this solution adds an overhead since the address space swaps are costly. 

 

 

Fig. 5. Inter Partition Fault Injection with Hypervisor Fig. 6. Intra fault injection using hypervisor 
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5.3 Function Argument Fault Injection 

This fault injection technique is similar to that used in section 4.2. Hardware breakpoints on targeted 
functions are used to inject faults. When a breakpoint is triggered, the fault is injected in the stack and 
in specific registers before normal execution resumes.  

The main difference between “Function argument injection” technics on “QEMU” and “Function argu-
ment injection” technic on “CodeZero” is the following: with QEMU we can use the software debug-
ging layer implemented on the emulator while in “CodeZero” we had to use the hardware debugging 
layer. 

We propose to detail, by an illustrated example, the operation of hardware debugging layer on arm 
platform. The first argument of a function “fi”, executed on an ARM platform, is targeted by a fault in-
jection. First we save the first instruction of “fi” function (Figure 6, Step 1) and replace it by a break-
point instruction (Figure 6, Step 2). 

 

When the function is called, the processor executes the breakpoint instruction (Step 1, Figure 7) and 
raise a Prefetch Abort interrupt (Step 2, Figure 7) handled by the Prefetch Abort ISR (Interrupt Service 
Routine, see Step 3, Figure 7). 

 

The Prefetch Abort ISR perform the fault injection by updating the processors register that contains 
the first argument of the “fi” function (Step 1, Figure 8) and replace the breakpoint instruction by the 
old instruction(Step 2, Figure 8). 
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void fi(int a){ 

    push {fp, lr} 

    [...] 

} 

Resuming execution 

The fault injection handler returns the control to the “fi” function that continues its execution (Fig. 9). 

 

The difference between software debugging layer implemented by QEMU and hardware debugging 
layer implemented is linked to timing issues. On one hand, CodeZero adds a significant CPU time 
overhead, with no control on the guest OS clock. This can lead to uncontrolled time drift. On the other 
hand QEMU freezes the guest virtual machine until the injection is done. The virtual machine does not 
realize that it is frozen.  

6 Conclusion 

We briefly presented fault injection techniques and described how virtualization can be used to inject 
mutants in memory without altering the source code of the applications. 

Let us remind that fault injection cannot be done without a previous knowledge of the application be-
havior, which is an important hypothesis of this technique. However, fault injection supposes that we 
entirely know the software functional and dysfunctional specifications. This is necessary to observe 
any abnormal behavior when injecting faults.  

We also focused on two main application fault injections types: the global variables and the functions 
parameters. During our experiments, we noticed that this injection technique has some limitations. 
First, it is sensitive to optimizations that are applied to the code. For instance, when options like 
"inlining" are enabled, function calls are included in the code and fault injection on their arguments 
becomes impossible. In addition, this technique is non deterministic.  In fact, the state of the program 
when the breakpoint is set affects the result of the injection. For example, if a function is called twice 
in a code we cannot determine on which call the injection will be performed. We identified several 
solutions to figure out this issue. It generally consists in synchronizing fault injection with the running 
application. The purpose is to trigger the injection according to the inputs and the internal state of the 
program. 

The described techniques have been tested on a proof on concept applications with safety require-
ments (ASIL C for instance). It could be possible to extend our work to additional fault injection types 
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and to implement a framework to assess real-time properties of the applications especially the over-
head introduced by fault injection techniques. 
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