
HAL Id: hal-02272448
https://hal.science/hal-02272448

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Databases on Flash Memories: Performance
and Lifetime Issues, the case of SQLite

Jalil Boukhobza, Pierre Olivier, Loic Plassart, Hamza Ouarnoughi, Ladjel
Bellatreche

To cite this version:
Jalil Boukhobza, Pierre Olivier, Loic Plassart, Hamza Ouarnoughi, Ladjel Bellatreche. Embedded
Databases on Flash Memories: Performance and Lifetime Issues, the case of SQLite. Embedded Real
Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. �hal-02272448�

https://hal.science/hal-02272448
https://hal.archives-ouvertes.fr

Embedded Databases on Flash Memories:
Performance and Lifetime Issues, the case of SQLite

Jalil Boukhobza, Pierre Olivier,

Univ. Bretagne Occidentale
UMR 6285, Lab-STICC
F-29200 Brest, France

{boukhobza, pierre.olivier}@univ-brest.fr,

Loic Plassart

TréflévéNet
F-29800 Tréflévénez

loic.plassart@treflevenet.fr

Hamza Ouarnoughi, Ladjel Bellatreche

LIAS/ISAE ENSMA
Futuroscope, France

hamza.ouarnoughi@univ-brest.fr,
bellatreche@ensma.fr

Abstract — Databases are more and more used in

embedded system applications and especially in consumer

electronics. This comes from the need to structure user

and/or system data to be more efficiently managed and

accessed. SQLite is one of the most used database

applications. This paper presents a micro benchmarking

methodology and results for SQLite database requests on

embedded flash specific file systems. Indeed, flash file

systems behavior are very specific to flash memory

intricacies and the objective of this study is to highlight the

interactions between flash memory, flash file systems, and

SQLite based applications.

Keywords Embedded databases, NAND Flash memory, Flash

file systems, SQLite, JFFS, UBIFS, Performance, Lifetime.

I. INTRODUCTION

Embedded systems actors are nowadays experiencing the
golden age of Non Volatile Memories (NVM). Indeed,
according to Market Research [1], the NVM market will have
an annual growth of 69% up to 2015. This tendency concerns
several NVM technologies such as Ferroelectric RAM
(FeRAM), Phase Change RAM (PCRAM), Magneto-resistive
RAM (MRAM). Flash memory is however the most mature
and disseminated NVM as its use is boosted by the ever-
growing demand of smartphones and tablets market. In fact,
mobile memory (including both NOR and NAND flash,
DRAM and embedded multimedia cards) market has
experienced a growth of 14% in 2012 (as compared to 2011)
[2]. Moreover, NAND flash memory revenues have hit a new
record as of $5.6 billion (a growth of 17%) in the fourth
quarter (as compared to the third quarter of 2012). Flash
memory has just celebrated its 25th birthday (1988-2013) after
its creation in Toshiba labs and it is already shipped with
almost 8 times more gigabytes than DRAM (in 2011). It
became the process technology leader for memory fabrication
and miniaturization.

Flash memory success is due to many attractive features
such as good I/O performance, energy efficiency, shock
resistance, small size and weight. These advantages come with
some limitations/constraints the designers must deal with in
order to maximize both lifetime and I/O performance. NAND
flash memory is an EEPROM (Electrically Erasable and
Programmable Read only Memory) on which one can perform
operations at two different granularities. The smallest data unit

used for read and/or write (program) operations is the page,
while the data unit used for the erase operation is the block,
with a block being composed of a given number of pages.

NAND flash memory constraints can be summarized as
follows: (1) Write/erase granularity asymmetry: writes are
performed on pages while erase operations are executed on
blocks. (2) Erase-before-write rule: one of the most important
constraints as one cannot modify data in-place. A costly erase
operation must be achieved before data can be modified in
case one needs to update data on the same location. (3)
Limited number of Write/Erase (W/E) cycles: the average
number is between 5000 and 105 depending on the used flash
memory technology. After the maximum number of erase
cycles is achieved, a given memory cell becomes unusable.
Finally, (4) the I/O performance for read and write (and erase)
operations is asymmetric.

Embedded and critical systems typically use flash
memories as storage support. In addition, the implementation
of databases is becoming increasingly popular for that kind of
systems to replace simple files for data management and thus
meet the growing use and complexity of information
management.

The purpose of the encompassing project from which this
study is a part is threefold: (1) to study the impact of unitary
database requests on embedded flash memory storage systems
from a performance and lifetime points of view (for instance:
how many read, write, and erase operations are performed).
(2) To model the behavior of all the software stack impacted
by such requests for different flash file systems (achieving
comparative studies). Finally, (3) to optimize embedded
database systems according to the results obtained in (1) and
(2). The system optimizations can be declined in, at least,
three different solutions: (a) optimize the existing file systems
to better manage database requests. (b) If the first solution is
unfeasible, one might think of developing a "database aware"
flash file system. Indeed, current flash file systems are
primarily designed to support simple file data management. (c)
Another solution one can think about is the design of
optimization techniques (such as buffers) that can be
implemented at different levels such as the database
management system or at lower operating system layers. This
paper focuses on the first part of the study that is the impact of
database requests on I/O performance and lifetime of
embedded flash memory based storage systems.

II. BACKGROUND ON FLASH MEMORIES

A. Some Basics on Flash Memory

Flash memories are based on floating gate transistors and
can be divided mainly into two types according to the logical
gate used as the basic component: (1) NOR flash memories
support random data access, are more reliable, have a lower
density, and a higher cost (as compared to NAND flash
memory). NOR flash memory is mainly used for storing
executed code as a replacement of DRAM (e.g. in mid to low
range mobile phones). (2) NAND flash memories are block
addressed, offer a high storage density for a lower cost and are
used as secondary storage. This paper only concerns NAND
flash memory.

Three different NAND flash memory technologies exist:
(1) Single Level Cell (SLC), (2) Multi Level Cell (MLC) and
(3) Triple Level Cell (TLC). In SLC, one bit is stored in each
memory cell, while in MLC, two bits can be stored, and 3 bits
for TLC (highest number of voltage states). From a bit density
and cost per bit points of view, TLC is better than MLC that
outperforms SLC. From a performance and reliability points
of view, SLC performs better than MLC that is better than
TLC. From the application point of view, TLC is used for low
end media players, mobile GPS, and more generally non
critical data applications that do not require frequent data
updates. MLC and SLC are used for more data intensive
appliances such as SSDs, mobile phones, and memory cards.

B. Flash Memory Management

To cope with the above-mentioned NAND flash memory
constraints, some specific management mechanisms are
implemented. (1) In order to avoid costly in-place updates
(block erase and data write operations), a logical-to-physical
address mapping mechanism is used, allowing to perform out-
of-place data modifications (update data in another location
and invalidate the first copy). (2) As the number of write/erase
(w/e) cycles is limited and because of spatial and temporal
data locality, some specific data blocks containing "hot" data
can wear out quickly. To avoid this problem, some wear
leveling mechanisms are implemented all with the mapping
system in order to evenly distribute the erase operations over
the whole memory surface. (3) Performing many update
operations results in many invalidated pages/blocks that must
be erased in order to be used. A garbage collector is generally
used to perform this task.

Mapping mechanism, wear leveling and garbage collection
services can be implemented either in hardware or in software.

In hardware, a Flash Translation Layer (FTL) is implemented
to perform the aforementioned services [3]. This is the case of
some devices such as USB sticks, compact flash, and SSDs.
Bare flash chips that can be found in most embedded systems
such as smartphones, tablets, personal navigation devices, and
video camcorders are generally managed by the operating
system through some specific Flash File Systems (FFS). In
addition to flash specific management services, FFS should
achieve all traditional file system tasks: file and directory
hierarchy organization, user access rights, etc.

C. Dedicated Flash File Systems

In embedded systems equipped with raw flash chips,
NAND flash storage is mainly managed using dedicated Flash
File Systems (FFS). Such hardware platforms only embed a
simple NAND controller used to perform basic flash
operations. The flash management is achieved at the FFS level,
which is a software layer included in the operating system.
Then, FFS can be viewed as a purely software flash
management method. The Linux OS implements today's most
popular FFS: JFFS2 [4], YAFFS2 [5] and UBIFS [6].

Figure 1 illustrates the FFS layer location inside the Linux
NAND storage software stack. User space application access
files using system calls. System calls are received by the
Virtual File System (VFS), which role is to abstract the
specifications of all the actual file systems supported by
Linux. Moreover, at the VFS level, Linux maintains several
caches in RAM in order to speed up files access. In particular,
the Linux page cache (formerly buffer cache) is dedicated to
file data buffering. VFS maps system calls to FFS functions.
The FFS determines the NAND operations to perform,
according to its state and algorithms. To access the flash chip,
the FFS uses a NAND driver called the Memory Technology
Device (MTD) layer. It is a generic driver for all kinds of
NAND chips supported with Linux.

The above-mentioned FFSs present common features in
their implementation. Files are divided into data nodes. When
files are updated, old nodes are invalidated and new nodes are
created. Invalid nodes are recycled through garbage collection
which is generally performed asynchronously through the
execution of a background kernel thread. As FFS implements
out-of-place updates, nodes can be at a variable location on the
flash media. To keep track of the nodes locations, FFS use
indexing mechanisms which related metadata are also stored
on flash.

In this study we chose to perform our tests on two FFS:
JFFS2 and UBIFS. JFFS2 is a very mature and widely spread
FFS, used for more than a decade (mainlined since Linux
2.4.10 in 2001). UBIFS, for its part, is a relatively recent FFS
with a growing usage. UBIFS was created to address several
of JFFS2 design issues strongly impacting file system
performance [7].

III. EMBEDDED DATABASES

Today, the database functionality is needed to provide
support for storage and manipulation of data in embedded
systems [8]. Many different database management systems
(DBMS) can be used to better meet the requirements of
current embedded systems. In most cases, the implementation
of embedded databases must rely on limited resources.
Embedded DBMS must also exhibit robustness towards
sudden power cuts. Among the existing solutions, three should
particularly be considered: Berkeley DB, Firebird and SQLite.

Figure 1: I/O request software stack and Flashmon location in the
Linux NAND storage hierarchy

Berkeley DB [9] is a database engine
compatible with several operating systems. Since
version 2.0, Berkeley DB is available under both
a free OSI-certified license and a commercial
license. It comes in the form of a C-written
library providing an API. Connectors exist for
many programming languages such as C (native
interface), C++ and Java. A Berkeley DB
database is only composed of records whose
format is freely determined by the calling
program. There is no table concept, and the
database cannot be used with a data manipulation
language such as SQL. Berkeley DB is
considered simple to use and supports concurrent
accesses by multiple users.

Firebird project [10] originally started as the
Borland InterBase database. Firebird is an open
source SQL relational database management
system that runs on MS Windows, Linux and
various UNIX flavors. Firebird is written in C++.
A native API is provided to connect applications to Firebird
databases. A Firebird database is operated using SQL
language.

SQLite [11] is an open source C library providing a
relational database engine that can be operated by the SQL
query language. SQLite is a lightweight relational database
engine that can be integrated directly into an application. It is
supposed to improve data storage and management potentials
of embedded applications [12][13]. SQLite stores each
database in one file, and each file consists of a given number
of SQLite pages (the default value for the page size is 1KB).
SQLite is widely applied for data management of embedded
environment, such as smartphones, industrial control, etc.
[14]. Today, SQLite is probably the most widely used DBMS
for embedded applications and systems.

For the sake of this study we chose to concentrate on
SQLite DBMS. This choice is motivated by the large adoption
of SQLite. Moreover, the fact that SQLite is open source, in
addition to the large available documentation are criteria that
can help in explaining tests results. The developed
methodology can however be applied to whatever DBMS on
embedded system that supports the SQL language.

IV. BENCHMARKING METHODOLOGY AND TOOLS

A. Global Benchmarking Methodology

As discussed above, the objective of this study is threefold:
(1) to evaluate (measure) the impact of unitary database
requests on flash memory storage system from a performance
and lifetime points of view. (2) to achieve comparative studies
on different FFS and model the behavior of each of them for
the tested SQL requests, and finally, (3) to optimize embedded
database systems according to the obtained results.

For the sake of this paper, we focused on the first step of
the study that is the performance evaluation and interpretation
of the impact of SQL requests for embedded databases on
flash memories based storage systems with a focus on two
specific FFSs: JFFS2 and UBIFS.

Figure 2 describes the global methodology followed in our
work. One can observe on the left hand side the tested
platform. As discussed earlier, we relied on SQLite database
engine for creating our databases and issuing SQL requests.
SQLite has been installed on an embedded Linux platform

executing a FFS on top of an embedded flash memory chip. A
benchmarking tool relying on the SQLite API has been
developed to automatically create the database, generate
unitary SQL requests and measure the completion time of each
request. In parallel to that, a tool, Flashmon [15][15], that
monitors all flash memory accesses (read, write, and erase
operations), is executed in order to profile and trace SQL
queries. Flashmon (described farther) gives a precise idea on
the number of generated flash memory I/O accesses for a
given workload. The novelty of our approach resides in using
both quantitative and qualitative information in order to
understand the system performance. By quantitative measures,
we mean SQL request response times, while by qualitative
measures; we mean the type and number of flash memory
operations generated for our tests (number of reads, writes,
and erasures). The use of both type of information gives more
hints for understanding the interactions between the SQLite
engine and the FFS (and more generally the embedded
operating system, and the flash memory).

The results of our experimentations can allow to: (1)
provide the developer with guidelines on how to better use the
SQL database engine, which file system to use and how to
tune it in order to get better performance. (2) Secondly to
model performance of SQL requests with the objective to
extract cost models in order to predict performance for a given
workload. (3) Finally, to design optimization techniques based
on the understanding of the performance behavior and the
modeling step (cost models) [16]. The optimization can be
applied on different levels: applicative layer (database engine
itself) or the operating system layer (the flash management
layer, FFS).

B. Metrics and Tools

In order to understand the performance of embedded
databases, we mainly relied on two metrics: the response times
(and throughput) of SQL requests, describing the system
performance, and the number of generated flash memory
operations: reads, writes, and erasures. This allows a better
understanding of the performance in addition to a precise idea
on the flash memory wear out through the metrics of number
of erasures and number of writes.

1) Embedded Database Benchmarking Tool: The tests

consist in issueing SQL requests on a given table, and

measuring the unitary response time of each request. The

Figure 2: Embedded database performance evaluation methodology on flash based
storage systems

tested SQL requests are: the insertion, selection, join, and

update of records. We first begin by generating a simple table

that has two fields: a short integer that is the primary key and a

character string. This string contained random data to avoid

disturbance caused by the data compression performed at the

FFS layer. Two parameters were varied for each SQL request:

the number of records and their size (the table size). Each test

was repeated many times to be sure of getting stable results.

Response time was obtained with the gettimeofday system call

(microsecond granularity). The database is located on a

dedicated test partition of 50MB initially configured in JFFS2

format and then in UBIFS format to compare results. The

partition is fully erased then formatted before each test to

ensure a homogeneous initial state. Each set of

experimentations for a given SQL request was preceeded by a

BEGIN TRANSACTION instruction and ended by an END

TRANSACTION instruction. It is recommended [17] to use

those two instructions especially in embedded systems, for

instance, to prevent data corruption caused by power failures

in the middle of a data-base transaction. This is implemented

throughout the creation of journal log file that is specific to a

given transaction and that is removed once the transactions

succeeds.

Algorithm 1.Microbenchmarking algorithm

1: Input:
2: Number of requests: NbReq
3: Record size: Recsize
4: Query type: Qtype = insert | select | join | update
5: File system: Fs = jffs2 | ubifs
6: Output:
7: Response time of all requests: RT[NbReq]
8: Flashmon output (I/O trace) for the experiment : IOtrace

9: Init()
10: Format & mount test partition with Fs
11: Reset I/O tracer Flashmon
12: Create database schema
13: if(Qtype = select | join | update)
14: Fill database with random data
15: end if
16: Empty all system caches
17: Initialize I/O tracer Flashmon
18: MainFunction():
19: Init()
20: RT[0] = responseTime(BEGIN TRANSACTION)

21: for (i = 1; i <=NbReq; i ++)
22: RT[i] = responseTime(request i of Qtype ,with Recsize)
23: end for
24: RT[NbReq+1] = responseTime(END TRANSACTION)
25: Return IOtrace
26: Return RT

The database benchmark described in the preceeding

algorithm was executed on UBIFS and JFFS2, for the insert,

select, join (nested loop join), and update SQL queries with

record sizes of 150, 300, 450, and 600 bytes, and a number of

requests going from 100 to 5000 with an increment of 100.

2) The Flash Memory Monitor Flashmon: Flashmon

[15] is a Linux kernel module allowing to trace NAND flash

I/O low-level operations on raw flash chips. Flashmon stands

for flash monitor and traces the page read, page write and

block erase operation performed on physical pages / blocks of

the flash memory. The module is implemented at the MTD

subsystem level (see Figure 1), it is then independent from the

FFS and the NAND chip layer. Therefore, it can be used with

all the previously evocated FFS, on all the NAND flash chips

supported by the Linux MTD subsystem. Flashmon traces the

operation type, time of arrival, physical address targeted, and

also the name of the current task executed when the operation

is traced. As MTD is completely synchronous, the traced task

is responsible of the traced operation.

Flash management mechanisms such as dedicated FFS are
rather complex due to the specific constraints exhibited by the
memory. One simple I/O request from the applicative layer
can end up in several read / write / erase flash operations
according to the FFS state and algorithms as well as the flash
memory state. So, in the context of this paper, performance
evaluation of traditional metrics such as I/O response times or
throughput are not sufficient and should be completed by
some precise knowledge on the flash operations occurring
during the benchmark. Flashmon helps embedded systems
developers / researcher to extract and collect such information.

C. Hardware & Software test platform

The benchmarks were launched on the Armadeus APF27
development board [18]. It embeds an ARM9 based Freescale
i.MX27 microprocessor clocked at 400 MHz, and 128 MB of
RAM. The board contains 256 MB of Micron SLC NAND
flash. Blocks in this flash chip are composed of 64 pages of 2
KB each. The chip datasheet [19] indicates that read, write,
and erase operations' latencies are respectively 25 µs, 300 µs
and 500 µs. From a software point of view, we used the
2.6.29.6 version of the Linux kernel, and SQLite 3.7.10.

V. RESULTS AND DISCUSSIONS

In this section, we try to analyze and discuss the results of
the performance measures on the tested SQLite operations:
"select", "insert", "join", and "update" operations.

A. Flash memory throughput calibration

In order to assess the raw throughputs offered by the flash chip
and its management (driver and FFS), we ran a series of
simple tests at various levels in the storage software stack
(previously presented on Figure 1). We measured throughputs
for (A) moving data from RAM to flash and (B) from flash to
RAM in order to evaluate respectively flash write and read
performance. These measurements were achieved at three
levels: (1) the driver (MTD) level, under the FFS layer and
close to the hardware layer; (2) the MTD applicative level:
MTD programs allowing to access flash from user-space
bypassing the FFS; and (3) the applicative level: a simple C
program accessing files through the FFS. Results are depicted
in Table 1. As one can see, the complexity induced by adding
multiple software layers between the application performing
flash I/O operations and the flash chip itself leads to an
important performance.

TABLE I. MEASURED FLASH READ & WRITE THROUGHPUTS AT VARIOUS

LEVELS IN THE FLASH STORAGE MANAGEMENT STACK

Level Write (MB/s) Read (MB/s)

MTD kernel level
(driver)

3.36 5.94

MTD userpace level
(bypassing FFS)

2.33 3.80

Applicative level
(using FFS)

1.26 3.65

B. The "insert" operation

For the insert operation, we created a database that was
filled by inserting records in a loop via the SQLite API. We
varied the number of inserted records and their size. The
SQLite configuration used is the default one with the size of a
SQLite page equal to 1KB.

From the throughput results shown on Fig. 3, one can
observe that: (1) the throughput for both JFFS2 and UBIFS is
low as compared to the throughput the flash memory can
sustain for simple write operations (see previous section). This
is due to meta-data management (file-system and SQLite) that
is investigated farther in this section. (2) UBIFS performance
is better than JFFS2 for most cases (except small 150 bytes
records). The reasons behind such a performance difference
are due to many file-system related factors that are highlighted
in the following sections. We also can notice a large
performance gap between small and large size records. This is
related SQLite overhead of page management.

From the per-request response time analysis (see Table 2),
one can draw three main observations (note that in addition to
each request response time, we measured both "BEGIN
TRANSCTION" and "END TRANSACTION" response
times): (1) the insert operation response times are almost
constant for a given request size, for both JFFS2 or UBIFS. (2)
The "BEGIN TRANSACTION" command at the beginning of
each test takes almost a constant time to execute (around
32ms), whatever the request size, number or mounted file-
system. (3) The major performance difference between JFFS2
and UBIFS is noticed when the transaction is committed
through the "END TRANSACTION" command. We noticed
that the response time of this command is related to the size
the inserted data (number and size of insert requests) and the
file system. In fact, as we will see farther, this response time is
related to the flush operation of the SQLite buffer to the flash
memory.

In order to understand the
difference between the behaviors of
both tested file-systems, we
performed some qualitative measures
on the number of flash read and
write accesses for the achieved tests.
Fig. 4 shows the number of read I/O
accesses per KB of data according to
the number of insert requests for
different record sizes (150, 300, 450,
and 600).The curves show that for
both reads and writes JFFS2 do more

accesses to the flash memory. UBIFS performs a small fixed
number of read operations that do not depend on the number
of inserted data while for JFFS2 the number of performed
reads strictly depends on the volume of inserted objects.
Concerning the write operation, one can observe that JFFS2
performs more writes than UBIFS, this is due to two main
characteristics: UBIFS maintains a proper buffer allowing to
absorb more write operations, while JFFS2 does not (it is
completely synchronous). The other reason behind such a
behavior is that for JFFS2, we observed that the system
performs interleaved reads and writes during the insert
operation while UBIFS generates only writes. This may
concern the JFFS2 metadata reading/checking.

TABLE II. SNAPSHOT OF RESPONSE TIMES (IN MS) OF INSERT

OPERATIONS FOR DIFFERENT REQUEST SIZES ON JFFS2

Record size (Bytes)/ resp. times in
ms

Query nb 150 300 600

0 (BEGIN TR.) 32,75 35,02 34,29
1 7,27 6,47 6,83

11 0,66 0,63 0,91
12 0,78 0,61 0,77
13 0,76 0,67 0,78
14 0,81 0,60 0,90
15 0,66 0,60 0,79
16 0,65 0,67 0,78
17 0,65 0,83 0,92
18 0,65 0,61 0,90
19 0,74 0,67 0,78

101 (END TR.) 20,86 39,07 116,84

Finally, we also noticed an extremely interesting behavior
related to SQLite. In fact, it maintains a very large buffer
which prevents data from being flushed to the FFS underlying
layer until the END TRANSACTION commit instruction is
issued. Once the commit launched, all inserted objects are
flushed to the flash memory, provided that the size of the
inserted data is under a given threshold. In fact, above a given
size of inserted data, flush operations from the SQLite buffer
to the flash begin. This threshold was measured to be
approximately 1.75MB. After this threshold flush operations
to the flash memory are pipelined with the insert operations.
We infer from this behavior that in Table 2, measured
response times (except the first and last one) for the first
requests (size > 1.75MB) are related to SQLite management of
data in memory.

C. The "select" operation

In this section, we give some elements on the performance
of the select operation. Before performing the tests, the
database was filled through a set of insert requests. For each

Figure 3: I/O throughput (KB/s) of the insert operations according
to record size and number of requests

Figure 4: Number of I/O accesses to the flash memory for insert operations according to record
size and number of requests

record size, we defined a fixed size data base according to the
maximum requests it receives (5000 in our case).

A first observation one can do when looking at Fig. 5
representing the throughput of the select SQL operation for
different record sizes and request number, is that UBIFS
slightly outperforms JFFS2 for the select operation for some
measured record sizes. The throughput follows a logarithmic
shape for both file-systems due to the constant overhead
related to the log journal manipulation and other SQLite
specific processing and memory usage.

Response time analysis (see Table 3) shows more stability
(less value variations) for UBIFS response times as compared
to JFFS2. In fact, for UBIFS, we can observe periodic small
peaks (~2ms) which periodicity decreases according to the
request size. The peaks have values that are approximately the
double of the other stable values. For JFFS2, the amplitude of
the peaks is much more significant as the value is around
42ms. The period of those peaks is also much larger and
depend on the request size. In fact, this phenomenon (in
JFFS2) is related to the Linux page cache read-ahead
algorithm that prefetches chunks of 128KB (around 40ms,
giving ~3MB/s throughput) of data, allowing future SQLite
read accesses to be served from RAM rather than flash. This
behavior is only observed for JFFS2 as in UBIFS the read-
ahead mechanism is disabled by default [20]. Read-ahead is
mainly designed for hard disk drives, in which case system
management allows asynchronous IO: while the system
prefetches data, the CPU can execute other tasks taking benefit
from I/O timeouts. As stated earlier the NAND driver (MTD)
is fully synchronous, so in the best case read-ahead does not
impact flash memory I/O performance. In the general case,
read-ahead lead to a performance drop on flash storage,
because all the prefetched data is not necessarily accessed in
the future. This is the reason why it is disabled in UBIFS, and
one of the explanations of the performance difference between
the two tested FFS.

Even though UBIFS disables
the read ahead mechanism of the
Virtual File System of Linux, one
can observe that the period of the
peak response times is 4, knowing
that each record (600 B for this
example) is stored in a separate
SQLite page (of 1KB), we can
infer that the prefetch size is 4KB
(2 flash pages). In fact, this is
related to the I/O system page

granularity on Linux which is 4KB.

TABLE III. SNAPSHOT OF RESPONSE TIMES (IN MS) OF SELECT

OPERATIONS FOR 600 BYTES OBJECTS ON JFFS2 AND UBIFS

 JFFS2 (req. Of 600 B) UBIFS (req, Of 600 B)

Query nb Time (ms) Time (ms)

0 30,52 33,25

43 0,96 1,93
44 1,06 0,93
45 0,96 1,14
46 42,65 1,17
47 0,99 1,98
48 1,07 1,18
49 0,98 1,06
50 0,96 1,04
51 1,06 2,00
52 0,96 1,19

109 1,05 1,06
110 42,14 1,17
111 1,00 1,83
112 0,98 1,24

When observing the number of accesses (here I/O reads) in
Fig. 6, one can clearly see the impact of the read-ahead
prefetching algorithm. In fact, the peak values in Fig. 6 (for
JFFS2 especially for 150 B objects) represent the case where a
last prefetching (of 128KB) of data has been made but was not
profitable as prefetched data were not used, thus generating
more flash reads as compared to the needed data. In addition
to the read-ahead related behavior, under JFFS2, the system
performs more read operations especially for request number
less than 1300 select operations. This is coherent with the I/O
throughput observed in Fig. 5 but one could await a larger
difference in the throughput when looking at the number of
I/O reads generated for both file-systems. In fact, the flash
memory I/O accesses times count for a given percentage of the
total execution times but the SQLite processing and memory
activity should not be ignored. They represent a large part of
the execution time especially for small number of requests.
For the example shown in Table 3 in case of JFFS2, measures
show ~42ms response time each 64 requests. So if we consider
a period of 64 requests, around 42ms are related to flash
memory management while ~1*63ms are due to SQLite
processing (memory and CPU). This proves the important
overhead related to non-I/O operations.

D. The "join" operation

For the join operation requests, we created two tables from
which we selected all elements of the second table that have
an identifier (key) which value is equal to the one of the first
table. This is done on a given number of objects corresponding
to the number of requests. This join operation simply selects

Figure 6: Number of I/O accesses to the flash memory for select operations according to record
size and number of requests

Figure 5: I/O throughput (KB/s) of the select request according to
record size and number of requests

all the elements of the second table which identifier is smaller
than the given number of requests. So the executed request
looks like:

"SELECT table2.val FROM table1, table2 WHERE
table1.id = table2.id AND table2.id <= nb_request;"

Fig. 7 shows the results for the measured throughput of the
join operation relative to the set of selected objects. One can
observe that for a high number of selected objects, UBIFS and
JFFS2 give approximately similar results. Another observation
one can do, is that we obtain better performances for join
operations on 450 B objects than on 600 B objects for both
file-systems. This is due to the internal fragmentation
generated when the record size is 600 B, in this case, one
SQLite file page (1 KB) contains only 1 record and the rest of
the storage space is unused, while for record sizes of 450 B,
two objects are put in 1 SQLite file page (filling 900 B of 1KB
page as compare to 600 B).

The join operation performs only read I/O accesses to the
flash memory layer. Fig. 8 shows the number of flash read
operations performed per KB of requested data for both file-
systems and different request size and number. The figure
shows that for large request numbers, 600 B record request
sizes give the worst performance for both file-systems due to
internal fragmentation. For JFFS, we can observe the same
phenomena as for the select requests, the read-ahead algorithm
of the VFS page cache provokes some peaks that are visible
especially for 150 B objects. The read-ahead mechanism is
active whatever the record size and request number, but is
graphically more visible when small portion of data are
accessed. This is due to the fact that the overhead of the
prefetch is proportionally higher.

One can also observe that for a small number of request
sizes, UBIFS outperforms JFFS2, while for large numbers,
performance are approximately equivalent as the number of
flash memory reads per KB of accessed data is around 2 for
both systems.

If we compare the join operation to the previous select
query tests, one could question about the fact that the join
gives far better performance. This is related to the manner
with which the tests were performed. For the select operation,
we issued one request per selected record while for the join,
one query was issued to read the whole table objects. The
difference between both cases is very important as the SQLite
related processing overhead is much higher when issuing as
many requests as there are records in the table. A single select
on the same objects retrieved with the join operation gave
better results which is normal. Indeed, for the join, the IDs of
both tables are compared and the values of objects of the
second table are retrieved while for the select, only the values

of one table are read (no comparison).

E. The "update" operation

A first extremely important observation one can draw is
the cost of the update operation as compared to the insert for
both UBIFS and JFFS2. Updates are 2 times less performing
than inserts for both JFFS2 and UBIFS. In order to update one
object, the system needs to read the flash page containing the
SQLite page which encapsulates the record to update. So to
update the object, the system needs to rewrite all the data that
are in the SQLite page.

We can also observe that UBIFS performs better than
JFFS2, especially for large update sizes. This is mainly due to
the additional buffering on UBIFS which prevents
synchronizing the SQLite file page as frequently as JFFS2.
Indeed, it collects the updates on the buffer before flushing to
the flash memory. This behavior is clearly underlined by the
number of write accesses described in Fig. 10. In addition to
the additional read operations due to meta-data management of
JFFS2, it performs an average of more than two times more

write operations.

We can also see that for JFFS2,
a larger number of erase operations
are performed that can reach
values of 0.07 block erasures per
updated KB of data. Knowing that
a block consists of 64*2KB pages,
we can say that for updating 1KB
of data for the 600B objects, we
erase an equivalent of 4.48 flash
pages (0.07*64), which is very
significant.

Figure 7: I/O throughput (KB/s) of the join operations according
to record size and number of requests

Figure 8: Number of I/O accesses to the flash memory for join operations according to record size
and number of requests

Figure 9: I/O throughput (KB/s) of the update operations
according to record size and number of requests

The values of the throughput and read/write I/O accesses
are unstable, especially for JFFS2 due to the asynchronous
garbage collector that is launched while the update test is
running, generating additional flash read/write / erase
operations and thus disturbing response times of the SQL
queries.

VI. CONCLUSION AND FUTURE WORKS

This paper presents a set of results on measuring the
performance of SQL requests targeting on-flash SQLite
running on an embedded Linux operating system. As observed
from the presented results, the performance behavior highly
depends on the used FFS and can have a significant impact on
the lifetime of the flash memory, for instance under JFFS2, the
system can perform up to 0.07 to 0.08 erase operations for
updating the equivalent of 1KB of data.

The performed tests revealed a very high disparity
according to the varied parameters for the tested queries and
the used FFS. The obtained results are closely related to the
used FFS as it has a strong interaction with the SQL engine
output due to the constraints of flash memories.

We can conclude that the performance of SQLite on
embedded flash storage system depends on (1) the I/O load
generated by the applicative layer (SQL requests) and its own
buffering mechanisms; (B) the flash management algorithms
(FFS) and (C) the state of the system: system / FFS caches
state, but also flash memory state in terms of amount and
location of valid / invalid / free pages. This was especially
observed for update operations in which the garbage collector
was launched after a given number of write operations were
performed.

For future works, we consider investigating more SQLite
complex requests as joins. We are also about to study real
SQLite traces from typical embedded applications. Finally, we
did not focus on the initial state of the flash memory in this
paper. In fact we considered clean partitions at the beginning
of each test. It would interesting to inject different initial states
in terms of invalid/valid/clean pages and see how FFS deal
with different configurations.

REFERENCES

[1] Market Research, “Advanced
Solid State Non-Volatile Memory Market
to Grow 69% Annually through 2015”,

from
http://www.marketresearch.com/corporate/a

boutus/press.asp?view=3&article=2223,
MarketResearch press release, 2012,
(accessed on 06/2013).

[2] Storage Newsletter, “NAND
Chip Market Growth Propelled by
Smartphones and Media Tablets”, from
http://www.storagenewsletter.com/news/ma
rketreport/ihs-isuppli-nor-nand-chip, 2012,
(accessed on 06/2013).

[3] J. Boukhobza, "Flashing in the
Cloud: Shedding Some Light on NAND
Flash Memory Storage Systems." Data
Intensive Storage Services for Cloud
Environments. IGI Global, 2013. 241-266.

[4] D. Woodhouse, “JFFS: The
journalling flash file system,” in Ottawa
Linux Symposium, 2001, vol. 2001.

[5] Wookey, “YAFFS2: a NAND
Flash File System,” 2004.

[6] A. Schierl, G. Schellhorn, D. Haneberg, and W. Reif, “Abstract
Specification of the UBIFS File System for Flash Memory,” in FM
2009: Formal Methods, vol. 5850, A. Cavalcanti and D. R. Dams, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 190–206.

[7] A. B. Bityutskiy, “JFFS3 design issues”, from http://www.linux-
mtd.infradead.org/doc/JFFS3design.pdf, 2005 (accessed 12/2013).

[8] V. Kataria, S. Amit, P.Singh, S. Pravin, "Commercial Embedded
Database Systems: Analysis and Selection", 2004.

[9] M. A. Olson, K. Bostic, M. Seltzer, "Berkeley DB", in Proceedings of
the USENIX Annual Technical Conference, 1999.

[10] Firebird developers, Firebird website, from http://www.firebirdsql.org/,
2013 (accessed 12/2013).

[11] SQLite developers, SQLite homepage, from http://www.sqlite.org/, 2013
(accessed 12/2013).

[12] J. Li, Y. Xu, "Remote Monitoring Systems Based on Embedded
Database", Proceedings of the 3rd International Conference on Genetic
and Evolutionnary Computing (WGEC'09), 2009.

[13] K. Yue, L. Jiang, L. Yang, H. Pang, "Research of Embedded Database
SQLite Application in Intelligent Remote Monitoring System", in
Proceedings of the International Forum on Information Technology and
Applications (IFITA'10), 2010.

[14] G. Qinlong, C. Xingmei, T. Weiwei, Y. Minghai, "Study and
Application of SQLite Embedded Database System Based on Windows
CE", in Proceedings of the 2nd International Conference on Information
Science and Engineering (ICISE'10), 2010.

[15] P. Olivier, J. Boukhobza, E. Senn, “Flashmon v2 : Monitoring Raw
Flash Memory Accesses for Embedded Linux,” in Proceedings of the
Embed With Linux Workshop (EWiLi'13), 2013.

[16] L. Bellatreche, S. Cheikh, S. Breß, A. Kerkad, A. Boukhorca, et J.
Boukhobza, « How to Exploit the Device Diversity and Database
Interaction to Propose a Generic Cost Model? », in Proceedings of the
17th International Database Engineering & Applications Symposium,
New York, NY, USA, 2013, p. 142–147.

[17] SQLite developers, Journal mode pragma statement, from
http://www.sqlite.org/pragma.html#pragma_journal_mode, 2013
(accessed 12/2013).

[18] Armadeus Systems, “APF27 Board Datasheet”, from
http://www.armadeus.com/_downloads/apf27Dev/documentation/dataSh
eet_APF27Dev.pdf, 2012 (accessed 12/2013).

[19] Micron Technology, Inc., « MT29F2G16ABDHC-ET:D NAND Flash
Memory Datasheet ». 2007.

[20] UBIFS developers, UBIFS and Linux read-ahead, from
http://www.linux-mtd.infradead.org/doc/ubifs.html#L_readahead, 2008
(accessed 12/2013).

Figure 10: Number of I/O accesses to the flash memory for update operations according to record
size and number of requests

