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Abstract: Safety standards recommend (if not dictate) performing many analyses during the concept phase of 

development as well as the early adoption of multiple measures at the architectural design level. In practice, the 

reuse of architectural measures or safety mechanisms is widely-spread, especially in well-understood domains, 

as is reusing the corresponding safety-cases aiming to document and prove the fulfillment of the underlying 

safety goals. Safety-cases in the automotive domain are not well-integrated into architectural models and as 

such do not provide comprehensible and reproducible argumentation nor any evidence for argument 

correctness. The reuse is mostly ad-hoc, with loss of knowledge and traceability and lack of consistency or 

process maturity as well as being the most widely spread and cited drawbacks. 

Using a simplified description of software functions and their most common error management subtypes 

(avoidance, detection, handling, ..) we propose to define a pattern library covering known solution algorithms 

and architectural measures/constraints in a seamless holistic model-based approach with corresponding tool 

support. The pattern libraries would comprise the requirement the pattern covers and the architecture elements/ 

measures / constraints required and may include deployment or scheduling strategies as well as the supporting 

safety case template, which would then be integrated into existing development environments. This paper 

explores this approach using an illustrative example. 
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1. Introduction 

From advanced driver assistance and hybrid drives over autonomous high-speed rail and high precision medical 

equipment to Unmanned Aerial Vehicles: software-intensive systems that perform safety-critical tasks are 

increasingly prevalent and pervasive in today’s world. Driven by the incessant increase in the number of 

integrated control units, communication systems and software, managing architectural complexity, let alone 

mastering it, is becoming an increasingly difficult task. This difficulty in turn translates into a heightened 

possibility of design and implementation errors going undetected with hazardous consequences. This challenging 

situation is further exacerbated by the coupling of new development methods being employed for innovative 

technologies with increasingly complex international safety standards.  

Safety standards recommend (if not dictate) performing many analyses during the concept phase of development 

as well as the early adoption of multiple measures at the architectural design level [1], [2], [3], [4], [5], [6], most 

of which has become part of the day-to-day business of safety-critical development, yet has to receive adequate 

tool support. This is particularly true if one wishes to front-load these aspects into an integrated solution 

environment, in which these (mostly) repetitive tasks can be automated. Dealing with non-functional 

requirements, especially safety, at later development stages is difficult and highly costly [7], [8], [9]. 

Because these analyses and architectural measures have to be conducted during the design phase of the systems, 

they cannot be based on physical prototypes and implemented software, and, hence, have to rely on the design 

information in terms of requirements, the structural design, functional specifications, and the principled 

knowledge about the (nominal and potential deviating) behavior of the components used [10]. The field of 

model-based problem solving [11] has generated theoretical foundations, prototypical solutions, and products for 

modeling artifacts and natural systems and for using models to solve a variety of tasks, with a major focus on 

automated diagnosis, but also solutions for failure modeling as well as for automated software FMEA [12], [13].   

The use of patterns in safety-critical software development in conjunction with model-based development 

techniques is documented and well suited for these needs. Patterns of safety cases for well-known problems have 

been suggested in academic literature as well [14], [15],  [20],  [23],  [24],  [25] and  [26]. A safety case is “a 

documented body of evidence that provides a convincing and valid argument that a system is adequately SAFE 



for a given application in a given environment”, where an argument is “a connected series of claims intended to 

establish an overall claim.” A safety case should communicate a clear, comprehensive and defensible argument 

that a system is acceptably safe to operate in a particular context  [22].  

Reuse in a safety-critical context, and particularly the reuse of safety cases, is neither systematic nor 

adequate  [14]. In this paper we will show how reuse is simplified in a safety-critical context through the 

encapsulation of all information into a library element, along with the corresponding safety case to support it. 

Chapter 2 details the problem. Chapter 3 explains our approach and gives an example of a pattern library 

element, as well as its usage in a wider context. In chapter 4 we discuss the impact of this contribution and, in 

conclusion, we summarize our work and detail open research questions and future work in Chapter 5. 

2. Problem 

In practice, the reuse of architectural designs, development artifacts and entire code sequences is widely-spread, 

especially in well-understood domains. This trend holds true for the development of safety-critical products, with 

well-established architectural measures and safety mechanisms in wide reuse, as is reusing the corresponding 

safety-cases aiming to document and prove the fulfillment of the underlying safety goals. This however, is 

marred by several problems: 

• Safety-cases in the automotive domain are not well integrated into architectural models and as such  

• they do not provide comprehensible and reproducible argumentation 

• nor any evidence for the correctness of the used arguments. 

• Most analyses (FMEA, FTA, etc.) have to be performed at system level, yet the components/ measures / 

safety mechanisms themselves need to be reused independently, 

• and are not tied in any structured manner to other elements needed to provide the relevant context. 

The reuse of safety-cases is mostly ad-hoc, with loss of knowledge and traceability and lack of consistency or 

process maturity as well as inappropriate artifact reuse being the most widely spread and cited drawbacks  [14]. 

The typical reuse scenario would, in this context, involve reusing an architectural measure or design pattern, e.g., 

homogenous (hardware) duplex redundancy, in which a vulnerable critical single processing channel is 

duplicated to increase reliability as seen in Fig. [1], or a development artifact, such as a comparator function. If 

the previous safety case is at all reused, it serves as a detached guide of what needs to be provided to close the 

case, i.e. serving a prescriptive role, which is better than nothing.  

 

Figure (1): Homogenous (Hardware) Duplex Redundancy Pattern 



Yet be it the design pattern or the development artifact, the single item does not tell the entire story. For 

example, to correctly deploy homogenous redundancy, many other aspects have to be covered: 

• one has to define the requirements the pattern fulfills,  

• refine the requirements and draw up a specification,  

• detail a (logical) component architecture,  

• and optimize a deployment strategy that guarantees the duplicate components will not run on the same 

hardware resource.  

This has to be preceded by checking the availability or making the explicit assumption that the system layout 

allows, for example, a second hardware channel, which is a contextual bit of information. This is not all; to 

justify reusing this pattern, one would also have to include any tests or information proving that this particular 

pattern is suitable for the goal it targets.  

Finally, all parts comprising this information, as well as their relations, which are more complex than simple 

tracing, must be captured in a comprehensive and comprehensible manner which should also provide a suitable 

interface to the environment the reused element will be deployed in. 

As such, the reuse of well-understood and trusted design patterns or safety mechanisms cannot be confined to 

reusing the central artifact alone. Much of the information, in this case highly critical information, remains 

trapped in the heads of the developer and if mentioned at all retains a high measure of implicitness. 

This gives rise to the need of some kind of encapsulation of the reusable safety mechanism (with requirements, 

specification, components, etc.), along with a minimum set of guarantees that can be achieved at that level and 

support via a solid argumentation. 

3 Approach 

Using a simplified description of software functions and their most common error management subtypes 

(avoidance, detection, handling, ..) it is possible to define a pattern library covering known solution algorithms 

and architectural measures/constraints in a seamless holistic model-based approach with corresponding tool 

support. The pattern libraries would comprise the requirement the pattern covers and the architecture elements/ 

measures / constraints required and may include deployment or scheduling strategies as well as the supporting 

safety case template, based on the established structure notation known as GSN [16] which would then be 

integrated into existing development environments. This enables an early analysis of hazards and risks, which is 

recommended by many safety standards. Subsequently, fault types can be matched both to probable hazards but 

more importantly to the problem categories they fall into or are most similar to, from a system architecture 

design viewpoint. Combining this with known architectural constraints and patterns for solving them, we can 

thus reason about which types of architectural patterns are relevant for the system under analysis. The fault 

types, along with their requirements, are bundled with solution arguments, comprising components, their (sub-) 

architectures, deployment plans and schedules, into pattern libraries, which are rounded up by the corresponding 

safety-case templates or skeletons to provide argumentation for achieving the goals. 

Underlying the approach is the consistent use of patterns from the categorization of hazard types, over the 

abstract modeling of the respective safety concepts, and down to their implementation in the system architecture 

description, with a focus on providing argument chains in a seamless model-based environment. 

In this paper, we mainly focus on the contents of the library of reusable patterns, and the necessary structure of 

the problem and solution patterns to support a structured description of the argument and provide the necessary 

seamless integration into a model-based system development environment. While we furthermore sketched the 

necessary mechanisms for the application of those patterns and the checking of the constructed argument, 

automation via tool-support is essential to achieve the intended advantages.  

Figure (2) gives a sketch of a generic library element with some, not all, possible content, side by side with the 

supporting safety case view. The left part of the schematic gives possible parts of the reusable pattern, as detailed 



in Chapter 2, while the right part shows the corresponding safety case and connections to the relevant artifacts, 

displayed in a graphical notation using GSN.  

 

Figure (2): Generic Pattern Library Element 

 

While the left part of the schematic can entirely originate in one seamless tool, as will be shown in our 

implementation example in Section 3.1, this is not necessary. The development artifacts may reside in multiple 

repositories and be in varying formats; the binding element is the safety case shown on the right hand side, 

which gives the story and rationale behind the reusable pattern. This particular aspect is particularly important 

for reuse in a safety-critical development context. 

 

Figure (3): Data Model for GSN Representation 



In our work we evaluated several possible ways to express safety cases and settled on the Goal Structuring 

Notation (GSN), in its Community Standard Version 1.0  [16], as it was the most mature option suited to our 

needs. GSN is a structured (yet not formal) notation, which provides graphically differentiated basic safety case 

element types, such as goals, evidence, strategy, justification and so on, as well as a clear description of 

necessary and allowed connection types between these elements. A data model of safety cases according to GSN 

is provided in figure (3). A comparison with the Toulmin argumentation pattern used in EAST-ADL 2.1 is 

provided in  [18]. An illustrative implementation example is given in section 3.2. 

3.1 Pattern types 

The library of patterns can be categorized according to types, such as problem patterns, design patterns, and so 

on. As patterns may in fact belong to or satisfy more than one category, a cross referencing system using 

keywords will more likely be a more adequate approach. This will be explored in further work.  

The use of patterns in the development of safety-critical products is already in wide spread use. Catalogues 

exist  [26] that discuss highly organized and well-known safety mechanisms, such as comparators or “1outof2” 

voters. Safety case templates can be generated, stored and reused for many categories of patterns.  Some of these 

patterns are truly abstract and tackle higher system description levels, such as the “High Level Software Safety 

Argument Pattern Structure” presented in  [24], while some can target a certain context, such as the use of 

Commercial Off The Shelf Components (COTS) in a safety-critical context, as discussed in  [25].  

Safety case patterns can also be grouped according to their applications, such as: 

• Strategy (Problem solving) patterns 

The range of problems developers in a domain face, and subsequently the algorithms they favor in solving them, 

are not unlimited. By identifying recurring paradigms and analyzing them, it is possible to generate templates of 

their safety cases. The strategy node is the core element of the actual argumentation in a problem pattern safety 

case template, supporting the justification of goals being fulfilled by sub-goals. By applying strategy patterns, it 

is possible to build argumentations using only accepted justifications. This way confidence in the correctness of 

the argument can be increased. Still the appropriateness and correct use of a pattern has to be evaluated before 

trusting a safety case, but the question of the fundamental validity of each single argumentation step itself need 

not be argued. On the long run, it is desirable to establish general and domain-specific patterns as a pattern 

library for a faster and easier creation of safety arguments  [15]. 

 

Example: Logical transformation 

The required safety goal is a logical combination leading to desirable or undesirable situations. It is possible to 

generate a safety case skeleton that represents the pattern of avoiding a situation in which the constraint is 

violated, e.g. to keep the gap to the forward car larger than or equal to a minimum safe distance in an adaptive 

cruise control. This is simplified by transforming the goal into avoiding a gap which is smaller than the safe 

distance  [15], as shown in figure (4). 

 

Figure (4): Logical Transformation Pattern for ACC distance control  [15] 



• Design (Constraints) patterns 

Safety standards, such as the ISO26262, require that component architectures, independently of their 

functionalities, display certain characteristics or adhere to constraints. Some of these such as modularity, 

simplicity, and an adequate level of granularity and encapsulation are simply good engineering practices aimed 

at avoiding failures arising from unnecessary complexity.  

Other requirements, such as freedom from interference, which is the absence of dependent failures (cascading 

and common cause failures) in safety-critical components  [6], are aimed at guaranteeing correct operation of 

safety-critical functions. 

According to ISO26262, there are several ways for components to have freedom from interference. The 

components can be deployed redundantly, or be functionally diverse (the use of totally different approaches to 

achieve the same results), or be based on diverse technologies (the use of different type of equipment to perform 

the same result), or be physically separated such that foreseeable failures do not affect redundant safety-related 

systems and so on. 

Example: Redundancy 

The guidelines above have in turn matured into various design patterns, many of which revolve around 

redundancy and partitioning, which is the separation of functions or component elements to achieve a design, 

which can be used for fault containment to avoid cascading failures. The design patterns vary in their addressed 

context, structure, and presented solution and can be categorized in many ways. For example, for redundancy 

alone,  [27] lists 8 hardware patterns, i.e. patterns that contain explicit hardware redundancy, 5 Software patterns, 

and two combined patterns. 

All of the above patterns do however, represent one general paradigm and as such can be covered by a general 

safety case pattern template as shown in figure (5), namely that of solving the lack of confidence in the safety-

critical channel using a redundancy strategy. This general template can in turn be instantiated and subsequently 

further specified and extended to suit the specific case and used solution, for example using context 

elements  [18], and would for the case of our Homogeneous Duplex Redundancy Pattern example yield the more 

detailed safety case discussed in the example in section 3.2 and seen  in figure (6). The choice of which method 

or pattern to employ depends on the system constraints, and thus does not tell the whole story on its own. 

 

 

Figure (5): Pattern Library Element: Homogeneous Duplex Redundancy Pattern  [18] 

 

As shown by the example in the following section, the approach should lend itself well to any well-understood 

reusable pattern or component. We will implement further examples in future work. 

3.2 Implementation example 

We have carried out a specification in the integrated development environment for the ITEA2 SAFE project 

[17], [18] as well as examined a proof-of-concept in the research CASE tool AUTOFOCUS3(AF3) [19] to 

support seamless safety-case modeling and partially automated generation in a model-based development 

environment. While we haven’t yet fully implemented a library, preliminary results show the approach is 

feasible and should scale well. This will be proven at a later stage when safety cases are fully supported in AF3. 



It also identified compositionality of argumentation as being a major hurdle and open research question for the 

successful reuse of safety cases. The underlying approach was well received by the reviewing OEM advisory 

board industry experts (SAFE project) and published in [18], [20] and [21]. 

Using the example of homogenous hardware redundancy, introduced in Chapter 2 and shown in figure (1), figure 

(6) shows an exemplary pattern library element. On the left are snapshots of screen grabs of potential candidate 

functionalities for the generation of pattern artifacts from the research CASE tool AF3  [19] [21] [28] and on the 

right is the corresponding (simplified) safety case.  

 

Figure (6): Pattern Library Element: Homogeneous Duplex Redundancy Pattern 

 

This single reusable pattern element would thus contain the requirements and their refinement, specification, 

logical components and logical architecture design, deployment strategy as well as all relevant tests and their 

results, held together by the links from all relevant artifacts to the corresponding safety case elements. Using the 

relations described in the GSN data model described in figure (3), it is possible to perform completeness and 

consistency checks on the safety case, such as “solutions must stem from goals and no other elements” or “no 

open goals remain”. All the information required to reuse the pattern is now encapsulated in a clear defensible 

package, enabling modular argumentation. 

3.3 Modular and compositional argumentation 

The use of patterns as a way of documenting and reusing successful safety argument structures was pioneered by 

Kelly  [29], who developed an example safety case pattern catalogue which provided a number of generic 

solutions identified from existing safety cases. Although providing multiple useful generic argument strategies, 

the catalogue merely represents a cross-section of useful solutions for unconnected parts of arguments. The 

safety argument pattern approach was further developed by Weaver  [23], who specifically developed a safety 

pattern catalogue for software. The crucial difference being that this catalogue not only specifically targeted 

software aspects of the system under development, the set of included patterns were specifically designed to 

connect together in order to form a coherent argument. The solution was, however, not generic. 



A number of weaknesses have since been identified with Weaver’s pattern catalogue. First, the patterns take a 

fairly narrow view of assuring software safety, in that they focus on the mitigation of known failure modes in the 

design. Mitigation of failure modes is important, but there are other aspects of software assurance which should 

be given similar prominence. Second, issues such as safety requirement traceability and mitigation were 

considered at a single point in Weaver’s patterns. This is not a good approach; as it does not reflect the building 

up of assurance relating to traceability and mitigation over the decomposition of the software design. Finally, 

Weaver’s patterns have a rigid structure that leaves little scope for any alternative strategies that might be needed 

for novel technologies or design techniques  [24]. 

A software safety pattern catalogue was also developed by Ye  [25], specifically to consider arguments about the 

safety of systems including COTS software products. Ye’s patterns provide some interesting developments to 

Weaver’s, including patterns for arguing that the evidence is adequate for the assurance level of the claim it is 

supporting  [24].  

These approaches all focused on generating safety case templates for known patterns, whereas the safety case 

templates alone are the end result. Our approach encourages the encapsulation of the reusable development 

artifacts along with the supporting safety cases to enable true and speedy reuse in a safety-critical context. 

The cognitive process of employing patterns is a fairly straightforward example of normal human pattern 

matching; the developer finds a problem or need, which can be expressed in a requirement, namely to eliminate 

the problem or satisfy the need, and then proceeds to firstly recall similar past problems and subsequently 

identify the most probable solution, based on his experience. Thus the entry point is a goal, which the developer 

believes they can satisfy by reusing previously successful solutions. We postulate the same adage holds for 

employing our patterns library elements. The interface to the system, whose problems the pattern solves, would 

be at the safety goal boundary.  

To illustrate this we return to the example provided in section 3.1 and the corresponding safety case shown in 

figure (4). The arbitrator we choose to employ can be a COTS HW/SW unit we buy from a trusted supplier who 

also provides the corresponding detailed safety case for the arbitrator. That (sub-) safety case would then snap on 

to the larger safety case, shown in figure (4), at the safety sub-goal G1.2.2 it satisfies. The entire safety case in 

figure (4) would then itself snap into the parent (system) safety case at the G1 goal boundary defining its 

purpose, and this process would repeat itself hierarchically and cumulatively. As such, satisfying all the system’s 

goals at the interface would enable not only modular but also compositional argumentation. This approach does, 

however, give rise to at least three as yet open questions: 

1- Is the safety goal the most adequate boundary interface for modular compositional argumentation? 

2- How do we guarantee that all goals (and sub-goals) have been identified? 

and more importantly, 

3- How do we guarantee that the introduced pattern or component has no negative impact on the system? 

The answers to these questions lie outside the scope of this paper and are the subject of future work. 

4. Impact and use 

The design of functional-safety systems is largely driven by best practices – like use of fault monitors, safe 

states, or redundant paths. These best practices can often be presented in form of patterns – both to describe a 

possible solution but also to document an argumentation about their contribution to a safety case. The provision 

of library of such patterns allows the identification and (re-)use of suitable architectural measures and of 

corresponding components along with their safety cases in a pattern-library based approach that allows 

compositional argumentation about the achieved safety goals. Thus, it contributes to the optimization of the 

development with respect to system safety in general, and specifically to safety-critical component reuse, but 

also COTS (Commercial Of-The Shelf) components.  It further more provides support for the “Safety Element 

out of Context” clause cited in safety standards, such as the ISO26262 [6].  



5. Conclusion and future work 

This paper presents a concise overview of pattern-based methods for safety analysis and argumentation, a 

pattern-based approach for the encapsulated reuse and modular argumentation in a safety-critical context and an 

outlook at tool implementation. We furthermore explored the possibilities and show the opportunities supported 

by this approach. A holistic pattern-based approach to the construction of safety-cases in a seamless model-based 

development of safety-critical systems requires several elements, the main constituents of which we have 

identified.  These are: 

1- A library of reusable argumentation patterns – both in form of problem patterns (e.g., faults like 

early, late, or wrong sensor information; temporal or spatial interference between functions) and 

solution patterns (e.g., error avoidance, detection, mitigation; sensor fault detection and correction 

mechanisms; partitioning mechanisms) – built from elements of a model-based description of the 

system under development (e.g., requirements, functions, SW-/HW-components, channels, busses, 

deployment strategies) as well as GSN safety cases (e.g., goals, solutions, justifications, contexts) 

2- A mechanism for the instantiation (e.g., stuck at-/noise-like faults; different filter for fault 

detection) and application (e.g., linking to the corresponding HW- and SW-elements) of those 

patterns in a compositional fashion. 

3- A mechanism to check the soundness of the constructed argumentation (e.g., no open sub-goals; all 

context are covered by corresponding system elements) w.r.t. to its structure. 

Using the example in Section 3.1, we have discussed the feasibility of (at least partially) handling all three of the 

above points.  

In the next step we are focusing on expanding our pattern library with more implementation examples to test for 

general application and scalability as well as examining adequate methods for cross-referencing and categorizing 

patterns. The following stage will tackle the research questions pertaining to the compositionality of 

argumentation discussed briefly in section 3.3, particularly the identification of an appropriate boundary 

interface for integrating safety cases. 
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