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Bernoulliness of [T, Id] when T is an irrational rotation:

towards an explicit isomorphism

Introduction

Let X = {0, 1} Z + , endowed with the product sigma-field X and the product measure

µ = n∈Z + (δ 0 + δ 1 )/2.
The shift operator on X is the map S : X → X defined by S(x)(n) := x(n + 1) for every x ∈ X and n ∈ Z + .

The map S preserves the measure µ, and the dynamical system (X, X , µ, S) is the unilateral dyadic Bernoulli shift.

Given any invertible dynamical system (Y, Y, ν, T ), one gets a measure-preserving map [T, Id] on the product space (X × Y, X ⊗ Y, µ ⊗ ν) by setting [T, Id](x, y) := (S(x), T x(0) y).

The map [T, Id] is not invertible. More precisely, each element (x , y ) ∈ X × Y have exactly two inverse images namly (0x , y ) and (1x , T -1 (y )).

Moreover, if (ξ, η) is a random variable with distribution µ ⊗ ν, then the law of (ξ, η) given [T, Id](ξ, η) = (x , y ) is the uniform law on the pair {(0x , y ), (1x , T -1 (y ))}. One says that the dynamical system (X × Y, X ⊗ Y, µ ⊗ ν, [T, Id]) is dyadic, like the unilateral Bernoulli shift (X, X , µ, S).

By replacing Z + with Z in the definitions above, we transform the non-invertible dynamical systems (X, X , µ, S) and (X ×Y, X ⊗Y, µ⊗ν, [T, Id]) into two invertible ones, namely the bilateral dyadic Bernoulli shift (X, X , µ, S) and (X × Y, X ⊗ Y, µ ⊗ ν, [T, Id]). These latter two systems are the natural extensions of the former two.

Let us come back to [T, Id]. For every n ≥ 0, set D n := [T, Id] -n (X ⊗ Y). Call α = {A 0 , A 1 } the partition of X × Y defined by A i = {(x, y) ∈ X × Y : x(0) = i}. Then under µ ⊗ ν,

• the blocks A 0 and A 1 have probability 1/2;

• the partition α and the σ-field D 1 are independent;

• the σ-field generated by α and D 1 is D 0 .

More generally, since [T, Id] preserves µ⊗ν, each σ-field D n is generated by D n+1 and the independent partition [T, Id] -n α into two blocks of probability 1/2 each. In particular, the sequence (D n ) n≥0 thus defined is decreasing and the partitions ([T, Id] -n α) n≥0 carry the information lost at each iteration of the map [T, Id].

For every n ≥ 0, and i ∈ {0, 1}, [T, Id] -n (A i ) = {(x, y) ∈ X × Y : x(n) = i}, so the partition [T, Id] -n α is the partition given by the coordinate n on the factor X = {0, 1} Z + . Therefore, the σ-field generated by the partitions ([T, Id] -n α) n≤0 is X ⊗ {∅, Y } and not X ⊗ Y. Hence, natural questions arise.

Exactness

First, consider the asymptotic σ-field

D ∞ := n≥0 D n .
Is it trivial (i.e. does it contain only set having probability 0 or 1 under µ ⊗ ν)? If yes, one says that the measure-preserving map [T, Id] on (X × Y, X ⊗ Y, µ ⊗ ν) is exact. As recalled in the introduction of [?], if [T, Id] is exact, then [T, Id] is a K-automorphism, which implies that both [T, Id] and [T, Id] are strongly mixing.

Moreover, the converse (if [T, Id] is a K-automorphism then [T, Id] is exact) holds provided [T, Id] has a finite generator, that is a finite measurable partition β of X × Y such that D 0 = σ(([T, Id] -n β) n≥0 ) modulo the µ ⊗ ν-null sets.

Melijson's theorem [?] shows that [T, Id] is a K-automorphism if T is totally ergodic (i.e. all positive powers of T are ergodic). Actually, assuming that T is ergodic is sufficient. A more precise statement, obtained by a different method, is given in [?]: the endomorphism [T, Id] is exact if and only if T is ergodic. In particular, [T, Id] is exact when T is an irrational rotation or a Bernoulli shift.

Standardness

We have already noticed that the independent partitions ([T, Id] -n α) n≤0 do not generate the whole partition D 0 . Is it still possible to find a sequence (β n ) n≥0 of independent partitions into two blocks of probability 1/2 each such that for every n ≥ 0, D n = σ((β k ) k≥n ) mod µ ⊗ ν? If yes, one says that the decreasing sequence of σ-fields (D n ) n≥0 , or the measure-preserving map [T, Id] on (X × Y, X ⊗ Y, µ ⊗ ν) is standard.

By Kolmogorov zero-one law, exactness of [T, Id] is a necessary condition of standardness of [T, Id], but this condition is not sufficient: for example when T is a Bernoulli shift, the map [T, Id] is not standard. A variant of this non-trivial result has been established by Heicklen and Hoffman in [?]. Heicklen and Hoffman consider the map [T, T -1 ], which can be defined by the same formula as the map [T, Id], provided {0, 1} Z + is replaced by {-1, 1} Z + . Answering to a question raised by Vershik in [?], they prove that the map [T, T -1 ] is not standard when T is a Bernoulli shift. In [?], we prove again the non-standardness of [T, T -1 ] with the help of the nibbled-word process introduced by Stephane Laurent in [?] and show that this proof still works with [T, Id].

The main tools to determine whether a dyadic (or poly-adic) measure-preserving map is standard or not, are Vershik standardness criteria [?]. As an application, Vershik states (page 744) that when T is an irrational rotation, the measure preserving map [T, T -1 ] is standard. The same arguments work with [T, Id]. This result has a striking probabilistic interpretation: consider a (stationnary) irrational simple symmetric random walk (X n ) n∈Z on the circle R/Z, indexed by Z. The steps (X n -X n-1 ) n∈Z are independent and uniformly distributed random variables on {θ, -θ} where θ is some fixed irrational number, and they generate a filtration which is smaller than (F X n ) n∈Z , the natural filtration of (X n ) n∈Z . Yet, one can generate (up to null sets) (F X n ) n∈Z by some sequence of independent uniform Bernoulli random variables. An explicit construction is given in [?] in a slightly more general context.

In [?], Feldman and Rudolph prove a general result: the measure-preserving map [T, Id] is standard when T is rank-1. This condition includes all pure-point spectrum transformations and in particular irrational rotations of the circle.

Bernoulliness

In the same vein, one can also ask two seemingly close questions:

1. Is [T, Id] isomorphic to the bilateral Bernoulli shift S? Equivalently, is it possible to find a partition β of X × Y into two blocks of probability 1/2 each, such that the partitions ([T, Id] -n β) n∈Z are independent and generate X ⊗ Y modulo µ ⊗ ν?

2. Is [T, Id] isomorphic to the unilateral Bernoulli shift S? Equivalently, is it possible to find a partition β of X × Y into two blocks of probability 1/2 each, such that the partitions ([T, Id] -n β) n≥0 are independent and generate X ⊗ Y modulo µ ⊗ ν?

Call F : X×Y → X×Y the map given by F ((x n ) n∈Z , y) = ((x n ) n≥0 , y). If a partition β of X × Y fulfills the latter condition, then β := F -1 (β) fulfills the former. Hence the Bernoulliness of [T, Id] implies the Bernoulliness of its natural extension [T, Id].

The Bernoulliness of the non-invertible map [T, Id] also implies its standardness. Indeed, since [T, Id] preserves the law µ ⊗ ν the equality σ For any real number θ (rational or not), let the map T θ : y → (y + θ) mod 1 is an automorphism of the unit interval I = [0, 1[ endowed with the Borel σ-field and Lebesgue measure ν. Set S θ = [T θ , Id]. Since the maps T θ and S θ depend only on the fractional part of θ, we may and we will assume from now on that θ ∈ [0, 1[. On the set X × I, the partition α associated to the map (x, y) → x(0) has two blocks with probability 1/2, it is independent of D 1 and we have

([T, Id] -k β) k≥0 = X ⊗ Y mod µ ⊗ ν implies for every n ≥ 0 (σ([T, Id] -k β) k≥n ) = [T, Id] -n (X ⊗ Y) = D n mod µ ⊗ ν.
D 0 = σ(α) ∨ D 1 . Parry defines another partition α θ = {A θ 0 , A θ 1 } by A θ 0 = {x ∈ X : x(0) = 0} × [0, θ[ ∪ {x ∈ X : x(0) = 1} × [0, 1 -θ[, A θ 1 = {x ∈ X : x(0) = 0} × [θ, 1[ ∪ {x ∈ X : x(0) = 1} × [1 -θ, 1[. By construction, for every (x, y) ∈ X × I, (x, y) ∈ A θ 0 ⇐⇒ x(0) = 1 [θ,1[ (T x(0) θ (y)).
But x(0) is a σ(α)-measurable function of (x, y), whereas T

x(0) θ (y) -the second component of S θ (x, y) -is a D 1 -measurable function of (x, y). Hence, µ ⊗ ν[A θ 0 |D 1 ] = 1/2, so

• the blocks A θ 0 and A θ 1 have probability 1/2;

• the partition α θ and the σ-field D 1 are independent;

• the σ-field generated by α θ and D 1 is D 0 .

Therefore, (S -n θ α θ ) n≥0 are independent and uniform partitions into two blocks. For every (x, y) ∈ X × I, denote by α θ (x, y) = 1 A θ 1 (x, y) the index of the only block containing (x, y) in the partition α θ and set

Φ θ (x, y) = (α θ • S n θ )(x, y) n≥0 .
Then the 'α θ -name' map Φ θ : X × I → X thus defined is a factor map which sends the dynamical system (X × I, X ⊗ B(I), µ ⊗ ν, S θ ) on the Bernoulli shift (X, X , µ, S). This factor map is more interesting than the canonical projection from X × I to X.

When θ is irrational and under the very strong assumption lim inf q→+∞ q 4 4 q 2 dist(θ, q -1 Z) = 0, Parry proves that the partitions (S -n θ α θ ) n≥0 generate the whole σ-field X ⊗B(I) modulo the null sets, so the map Φ θ is an explicit isomorphism between S θ = [T θ , Id] and the dyadic unilateral Bernoulli shift S.

In the present paper, we improve on Parry's method and relax Parry's additional assumption into far weaker conditions. Theorem 1 Parry's map Φ θ is an isomorphism between [T θ , Id] and the Bernoulli shift S whenever inf q≥1 q 4 dist(θ, q -1 Z) = 0.

(1)

Theorem 2 Set ||θ|| = dist(θ, Z) = [0; a 1 , a 2 , .
. .] and call (p n /q n ) n≥0 the sequence of convergents. Then Parry's map is an isomorphism between the map [T θ , Id] and the unilateral dyadic Bernoulli shift whenever

inf n≥1 q 3 n (a 1 + • • • + a n ) |q n θ -p n | = 0.
Actually, theorem ?? is a generalization of theorem ??. Indeed, if the condition of theorem ?? holds, then one can find integers q such that q 4 dist(θ, q -1 Z) is as small as one wants and in particular less that 1/2. These integers q are necessarily denominators of convergents of the expansion of θ and also of ||θ|| in continued fractions, since

q 2 dist(||θ||, q -1 Z) = q 2 dist(θ, q -1 Z) ≤ q 4 dist(θ, q -1 Z) < 1/2.
Moreover, since the partial quotients a 1 , a 2 , . . . are greater or equal to 1, a recursion on n shows that for every n ≥ 1,

q n ≥ a 1 + a 1 a 2 + • • • + a 1 • • • a n ≥ a 1 + a 2 + • • • + a n .
Hence the condition of theorem ?? implies the condition of theorem ??. Yet, theorem ?? is much simpler to establish, that is why we will prove it first.

A theorem of Khintchine [?] states that of θ is chosen randomly according to the Lebesgue measure on [0, 1[, then

a 1 + • • • + a n n ln(n) → ln 2 in probability.
But q n is at least equal to φ n , where φ is the golden ratio (since dist(θ, Z) < 1/2). Hence the typical size of

a 1 + • • • + a n is O(ln q n ln(ln q n )).
Unfortunately, the set of all θ satisfying the condition of theorem ?? has a zero Lebesgue measure. Yet, one can construct uncontably many such θ, either as the intersection of nested intervals of the form [p/q -ε q /q 4 , p/q -ε q /q 4 ] where the ε q are positive real numbers tending to 0, or by choosing recursively the sequence (a n ) n≥1 in such a way that inf

n≥1 q n (a 1 + • • • + a n )/a n+1 = 0.
This is sufficient since for every n ≥ 0,

|q n θ -p n | < 1/(a n+1 q n ).
Whether the diophantine condition on θ can be removed or not is still an open question. To indicate the remaining gap, recall that the theory of continued fractions yields lim inf

q→+∞ q 2 dist(θ, q -1 Z) ≤ 1/ √ 5 for every θ ∈ R,
and Khintchine theorem [?] yields that for every non-increasing function ψ : R *

+ → R * + , lim inf q→+∞ q ψ(q) dist(θ, q -1 Z) = 0 +∞ for almost every θ if q≥1 ψ(q) = +∞ < +∞ .
For example, lim inf q→+∞ q 2 ln(q) ln(ln(q)) dist(θ, q -1 Z) = 0 for almost every θ ∈ R.

Strategy of the proof

Let us first reformulate the strategy used by Parry. The reader will find at the end of the paper an index recalling the main notations used throughout the paper.

Parry's method

Recall that we assume that the irrational number θ lies in ]0, 1[. Each element (x, y) ∈ X × I has exactly two inverse images by S θ , which are (0x, y) and (1x, T -1 θ (y)). One of them belongs to A θ 0 and the other one to A θ 1 , respectively

F θ 0 (x, y) = 1 [θ,1[ (y)x, f θ 0 (y) where f θ 0 (y) = T -1 [θ,1[ (y) θ (y) = y -θ1 [θ,1[ (y), F θ 1 (x, y) = 1 [0,θ[ (y)x, f θ 1 (y) where f θ 1 (y) = T -1 [0,θ[ (y) θ (y) = y + (1 -θ)1 [0,θ[ (y).
As a result, for every (x, y) ∈ X × I,

(x, y) = F θ α θ (x,y) (S θ (x, y)),
and of course the same formula hold when we replace (x, y) by S n θ (x, y) for every n ≥ 0.

We have to prove that outside of null set, (x, y) can be recovered from the knowledge of its α θ -name Φ θ (x, y) = (α θ • S n θ )(x, y) n≥0 . Checking that y can be recovered is sufficient, since it implies (by translation) that the second component of each α θ (S n θ )(x, y), namely (y + (x(0) + • • • + x(n -1))θ) mod 1 can be recovered, so the sequence x can also be recovered.

To do this, Parry fixes an extremely good rational approximation r = p/q of the irrational number θ, where q > p > 0 are relatively prime integers, and he approaches the map

S θ = [T θ , Id] by S r = [T r , Id].
Unlike T θ , the rotation T r is not ergodic since it preserves the partition of I into q intervals with lengths 1/q. One checks that the factor map Ψ r :

X × I → X × [[0, q -1]]
defined by Ψ r (x, y) = (x, qy ) transforms the measure preserving map S r = [T r , Id] into a discrete analogue, namely S p,q = [T p,q , Id] where T p,q is the permutation map on [[0, q -1]] defined by T p,q (z) = (z + p) mod q. Since T p,q preserves ν q , the uniform law on [[0, q -1]], the map S p,q preserves µ ⊗ ν q .

Moreover, Ψ r sends the partion α r on the partition α p,q = {A p,q 0 , A p,q 1 } where

A p,q 0 = {x ∈ X : x(0) = 0} × [[0, p -1]] ∪ {x ∈ X : x(0) = 1} × [[0, q -1 -p]], A p,q 1 = {x ∈ X : x(0) = 0} × [[p, q -1]] ∪ {x ∈ X : x(0) = 1} × [[q -p, q -1]]. Like before, each element (x, z) ∈ X × [[0, q -1]
] has exactly two inverse images by S p,q , which are (0x, z) and (1x, (z -p) mod q). One of them belongs to A p,q 0 , namely

F p,q 0 (x, z) = 1 [[p,q-1]] (z)x, f p,q 0 (z) where f p,q 0 (z) = z -p1 [[p,q-1]][ (z)
, and the other one belongs to A p,q 1 , namely

F p,q 1 (x, z) = 1 [[0,p-1]] (z)x, f p,q 1 (z) where f p,q 1 (z) = z + (q -p)1 [[0,p-1]] (z).
As a result, for every (x, z) ∈ X × I, (x, z) = F αp,q(x,z) (S p,q (x, z)).

For every n ≥ 0, call z n the second component of S n p,q (x, z). Then the equality (x, z) = F p,q αp,q(x,z)

• F p,q αp,q•Sp,q(x,z) • • • • • F p,q αp,q•S n-1 p,q (x,z) (S n p,q (x, z)) yields z = f p,q αp,q(x,z) • f p,q αp,q•Sp,q(x,z) • • • • • f p,q αp,q•S n-1 p,q (x,z) (z n ).
Then Parry uses a coupling-from-the-past argument: he establishes the existence of some -uple (i 1 , . . . , i ) ∈ {0, 1} with length ≤ q 2 such that the map 1 But when (x, z) is randomly chosen according to the law µ ⊗ ν q , the indexes (α p,q • S n p,q (x, z)) n≥0 form an i.i.d. uniform Bernoulli sequence. Almost surely, the word (i , . . . , i 1 ) appears infinitely many times in this sequence, so the value z is completely determined by the indexes (α p,q • S n p,q (x, z)) n≥0 .

f p,q i • • • • • f p,q i 1 is constant.
1 To get such an -uple, set in+1 = 1 [[0,p-1]] (un) for every n ≥ 0, where un = (f p,q in • • • • • f p,q i 1 )(0). This recursion begins with u0 = 0 ∈ [[0, p -1]], so i1 = 1. Then un+1 = fi n+1 (un) = (un -p) mod q for every n ≥ 0. Since p and q are relatively prime, the sequence (un) n≥0 visits every element of [[0, p -1]] and is q-periodic. For the same reason, q is the least period of the map z → 1 [[0,p-1]] (z mod q). Now, consider the sequence given by vn

= (f p,q in •• • ••f p,q i 1 )(v0) where v0 ∈ [[1, p-1]
] is any other starting point. For every n ≥ 0, vn+1 = (vn -p) mod q or vn+1 = vn according that 1

[[0,p-1]] (vn) = 1 [[0,p-1]] (un)
or not. Thus, if the difference dt = (vt -ut) mod q is not 0 at a given time t, there exists some n ∈ [[t + 1, t + q]] such that dn = (dt + p) mod q: otherwise, the equality

1 [[0,p-1]] (vn) = 1 [[0,p-1]] (un) would hold during the time interval [[t, t+q -1]], so the map z → 1 [[0,p-1]
] (z mod q) would be dt-periodic. Hence the sequence (dn) n≥0 reaches 0 in at most q(q -1) steps.

Using the factor map Ψ r , one deduces that for µ ⊗ ν-almost every (x, y) ∈ x × I, the integer qy is completely determined by the indexes (α r • S n r (x, z)) n≥0 . Furthermore, the probability that the knowledge of the first n indexes is not sufficient is at most (1 -2 -) n ≤ exp(-n2 -): to see this, split these indexes into n disjoint intervals with length each. This upper bound invites us to choose n much larger than 2 .

Using the extremely good approximation of θ by r, one can check that the integer qy is determined with probability close to 1 by the indexes (α θ • S n θ (x, z)) n≥0 . The result follows by using better and better approximations.

Actually, given an extremely good rational approximation r of θ, Parry uses the following upper bound of the relative entropy when n ≥ 1 and 2n|θ -r| is small:

H(S -n r α r |S -n θ α θ ) ≤ -2n|θ -r| log 2 (2n|θ -r|).

Our refinements and key tools

Following Parry's method and keeping the notations above, we bring two improvements, which require less precision in the approximation of θ by rational numbers.

First, whereas Parry proved the existence of one constant map obtained by coupounding q 2 maps chosen in {f p,q 0 , f p,q 1 }, our first improvement is to get many constant maps by composing O(q 3 ) such maps.

Theorem 3 Let (η t ) t≥1 be a sequence of independent uniform Bernoulli random vari- ables. Set T p,q c = inf{t ≥ 0 : f p,q ηt • • • • • f p,q η 1
is a constant function}. Moreover, let Z 0 be a uniform random variable with values in [[0, q -1]] and independant of (η t ) t≥1 . Fix z 0 ∈ [[0, q -1]] and set

T p,q f,z 0 = inf{t ≥ 0 : f p,q ηt • • • • • f p,q η 1 (Z 0 ) = f p,q ηt • • • • • f p,q η 1 (z 0 )}. Then E[T p,q c ] ≤ 5q 3 /3 and (q 2 -1)/6 ≤ E[T p,q f,z 0 ] ≤ q 3 /3.
Actually, we will only use the upper bound of E[T p,q f,z 0 ], which is easier to prove.

Next, instead of introducing the partition of I into q intervals with lengths 1/q, we will consider only the partition into q intervals provided by the subdividision (x k ) 0≤k≤q-1 , where x k = kθ -kθ = T k θ (0) for every k ≥ 0. The well-known three gaps [?, ?, ?, ?] theorem states that the lengths of those intervals take at most three distinct value and that when there are exactly three different lengths, the largest is the sum of the other two. Actually, the next proposition shows that when p/q is a reasonably good rational approximation of θ, there are at most two distinct values.

To abbreviate the notations, when there is no ambiguity on the approximation p/q considered, we will sometimes abbreviate f p,q 0 and f p,q 1 into f 0 and f 1 . In the same way, we will not always indicate the dependance with regard to (p, q) of many objects introduced below, namely the partition ι of I, the set L, the maps g 0 , g 1 and h below.

Proposition 4 Fix two relatively prime integers q > p > 0. Call h the permutation map on [[0, q -1]] defined by h( ) = (p ) mod q. Let u = h -1 (1) be the inverse of p modulo q, and v ∈ [[0, p -1]] the integer such that pu -qv = 1. Set

I = [x , x +u [ if ∈ [[0, q -u -1]] I = [x q-u , 1[ if = q -u I = [x , x +u-q [ if ∈ [[q -u + 1, q -1]],
and

E = [0, qθ -p[ if θ > p/q, E = [1 + qθ -p, 1[ if θ < p/q. Assume that - 1 u < qθ -p < 1 q -u or, equivalently, v u < θ < p -v q -u . Then 1. the sequence (x h -1 (k) ) 0≤k≤q-1 is increasing.
2. the intervals (I ) 0≤ ≤q-1 form a partition ι of I;

3. the intervals (I ) 0≤ ≤q-u-1 have the same length uθ -v;

4. the intervals (I ) q-u≤ ≤q-1 have the same length (p -v) -(q -u)θ;

5. if |qθ -p| < min(1/u, 1/(q -u)), both lengths are less than 2/q;

6. for every ∈ [[0, q -1]] \ {q -u -1, q -1}, the rotation T θ maps I onto I +1 ;

7. if θ > p/q, then T θ (I q-1 ) = I 0 \ E and T θ (I q-u-1 ) = I q-u ∪ E;

8. if θ < p/q, then T θ (I q-1 ) = I 0 ∪ E and T θ (I q-u-1 ) = I q-u \ E.

Remark 5 Actually, the inequalities -1/u < qθ -p < 1/(q -u) hold if and only if p/q is a semi-convergent (or, according to Khintchine's terminology, an intermediate fraction) in the continued fraction expansion of θ. See [?] for a proof of this statement. The stronger inequality |qθ -p| < 1/q holds whenever p/q is a convergent.

Proposition ?? provides a decomposition of I into two Rokhlin towers with heights q -u and u (see figures ?? and ??). If I is not a top interval, T θ maps each point of I on the point above in I +1 . The curved arrows show the image of the top intervals. Note that the difference between the two lengths, |qθ -p| is also the length of the exceptional interval E.

For every y ∈ I, denote by ι(y) the only index ∈ [[0, q -1]] such y ∈ I . When |qθ -p| is small with regard to 1/q, the lengths of the intervals (I ) 0≤ ≤q-1 are almost 1/q, so the map ι : I → [[0, q -1]] thus defined is close to be a factor map transforming T θ into the ν q -preserving map T 1,q : z → (z + 1) mod q. To use a coupling-from-thepast argument, we will work with inverses of these maps, i.e. with the maps T -θ and T -1,q : z → (z -1) mod q.

Corollary 6 Under the assumptions of proposition ??, E is a subinterval of length |qθ -p| and the equality ι(T -θ (y)) = T -1,q (ι(y)) holds everywhere on I \ E.

x 1 x u-1 x q-1 x u+1 x u x 1 x q-u x q-u+1 x q-1 x q-u-1 1 1 -θ 0 = x 0 E
Figure 1: Behaviour of T θ on the intervals I 0 , . . . , I q-1 when θ > p/q.

x 1

x q-u-1

0 = x 0 x u x u+1 x u-1 x 1 1 x q-u x q-u+1 x q-1 E x q-1 1 -θ
Figure 2: Behaviour of T θ on the intervals I 0 , . . . , I q-1 when θ < p/q.

Consider again the maps f θ 0 and f θ 1 defined by

f θ 0 (y) = y -θ1 [θ,1[ (y) and f θ 1 (y) = y + (1 -θ)1 [0,θ[ (y) Set L p,q = h -1 ([[0, p -1]]
). Then 0 ∈ L p,q whereas q -u / ∈ L p,q , and

[0, θ[= [x 0 , x 1 [= ∈Lp,q I .
Define two maps g p,q 0 and g p,q 1 from [[0, q -1]] to itself by g p,q 0 ( ) = -1 L c p,q ( ) mod q and g p,q 1 ( ) = -1 Lp,q ( ) mod q.

Indeed, corollary ?? yields the following consequence.

Corollary 7 Assume that |qθ -p| < 1/(q -1) and keep the notations of corollary ??.

If θ > p/q, then the equality ι(f θ 0 (y)) = g p,q 0 (ι(y)) holds everywhere on I and the equality ι(f θ 1 (y)) = g p,q 1 (ι(y)) holds everywhere on I \ E. If θ < p/q, then the equality ι(f θ 1 (y)) = g p,q 1 (ι(y)) holds everywhere on I and the equality ι(f θ 0 (y)) = g p,q 0 (ι(y)) holds everywhere on I \ E.

Actually, the maps g 0 = g p,q 0 and g 1 = g p,q 1 are conjugated to the maps f 0 = f p,q 0 and f 1 = f p,q 1 previously introduced (see figure ?? below).

Lemma 8 One has h • g 0 = f 0 • h and h • g 1 = f 1 • h. Proof. Let ∈ [[0, q -1]].
Then h(g 0 ( )) and f 0 (h( )) belong to [[0, q -1]] and

h(g 0 ( )) ≡ pg 0 (( ) ≡ p -p1 L c ( ) ≡ h( ) -p1 [[p,q-1]] (h( )) = f 0 (h( )) [q].
Hence h(g 0 ( )) = f 0 (h( )). A similar proof yields h(g 1 ( )) = f 1 (h( )).

Therefore, theorem ?? can be reformulated and precised as follows.

Theorem 9 Let (η t ) t≥1 be a sequence of independent uniform Bernoulli random variables. Set T p,q c = inf{t ≥ 0 :

g p,q ηt • • • • • g p,q
η 1 is a constant function}. Then the expectation of T c is at most 5q 3 /3. Moreover, let Z 0 be a uniform random variable with values in [[0, q -1]] and independent of (η t ) n≥1 . Fix z 0 ∈ [[0, q -1]] and set

T p,q g,z 0 = inf{t ≥ 0 : g p,q ηt • • • • • g p,q η 1 (Z 0 ) = g p,q ηt • • • • • g p,q η 1 (z 0 )}.
Then E[T p,q c ] ≤ 5q 3 /3 and

q 2 -1 6 ≤ E[T p,q g,z 0 ] ≤ q 3 3 .
We provide also a sharper upper bound relying on the expansion of dist(θ, Z) in continued fraction.

Theorem 10 Keep the notations of theorem ??, set dist(θ, Z) = [0; a 1 , a 2 , . . .] and call (p n /q n ) n≥0 the sequence of convergents. Then The maps f 0 , f 1 , h, g 0 , g 1 when p = 3 and q = 10, so u = 7, v = 2 and L = {0, 4, 7}.

E[T pn,qn g,z 0 ] ≤ q 2 n × (a 1 + . . . + a n ).
We will prove theorem ?? in section ??.

Let us make an observation (not used in the sequel) on the set L. Figure ?? suggests that its points are well spread in the set [[0, q -1]]. Indeed, the next statement holds.

Proposition 11 Assume that p ≥ 2. Call 0 = z 0 < . . . < z p-1 the points of L. Then the differences z 1 -z 0 , . . . , z p-1 -z p-2 , q -z p-1 are equal to q/p or q/p .

Proof. Since up -vq = 1, one has

u q - v p = 1 pq < 1 p(p -1)
.

Hence proposition ?? applies, with θ, p and q replaced by u/q, v and p. We get that the points (ku/q mod 1) 0≤k≤p-1 split the interval [0, 1[ into p intervals having only two different lengths, and the difference between these lengths is p(u/q)-v = 1/q. Therefore, the points (ku mod q) 0≤k≤p-1 split the interval [0, q[ into p intervals having only two different lengths, and the difference between these lengths is 1. Since

L = h -1 [[0, p -1]] = {ku mod q : 0 ≤ k ≤ p -1},
the statement follows.

End of the proof

Recall that we only have to prove that for µ ⊗ ν-almost every (x, y) ∈ X × I, the second component y can be recovered from the knowledge of the sequence (α θ • S n θ )(x, y) n≥0 .

It is now convenient to introduce probabilistic notations. We consider a stationary Markov chain (ξ n , Y n ) n∈Z defined on some probability space (Ω, A, P), with values in {0, 1} × I, such that for every n ∈ Z,

• the law of (ξ n , Y n ) is µ ⊗ ν; • ξ n is independent of F ξ,Y n-1 := σ((ξ k , Y k ) k≤n-1 ); • Y n = (Y n-1 -θξ n ) mod 1.
If we identify the unit interval I with the circle R/Z, then (Y n ) n∈Z is just a random walk whose steps (-θξ n ) n∈Z are uniformly distributed on {0, -θ}. The Markov chain (ξ n , Y n ) n∈Z is related to the measure preserving map S θ = [T θ , Id] by the relations

S θ ((ξ n-k ) k≥0 , Y n ) = ((ξ n-1-k ) k≥0 , Y n-1 ).
Note that Y 0 is independent of the sequence (ξ n ) n≤0 . Indeed, for every n ≤ 0, one has

Y 0 = T ξ n+1 +•••+ξ 0 -θ (Y n ). But Y n is independent of (ξ n+1 , • • • , ξ 0 ) and its law ν is invariant by T -θ . Hence Y 0 is also independent of (ξ n+1 , • • • , ξ 0 ).
We now construct another sequence (η n ) n∈Z of uniform Bernoulli random variables governing the Markov chain (Y n ) n∈Z . For every n ∈ Z, set

η n = α θ ((ξ n-k ) k≥0 , Y n ) = 1 [ξn=0;Yn≥θ] + 1 [ξn=1;Yn≥1-θ] = 1 [ξn=0;Y n-1 ≥θ] + 1 [ξn=1;Y n-1 <θ] = ξ n + 1 [Y n-1 ≥θ] mod 2.
By construction, η n is a F n -measurable Bernoulli random variable, and

P η n = 1 F ξ,Y n-1 = E η n F ξ,Y n-1 = 1 2 1 [Y n-1 ≥θ] + 1 2 1 [Y n-1 <θ] = 1 2 , so η n is independent of F ξ,Y n-1 and uniform. Moreover, since ξ n = η n +1 [Y n-1 ≥θ] mod 2, one has [ξ n = 1] = [η n = 1] [Y n-1 ≥ θ], so one checks that Y n = f θ ηn (Y n-1 ).
Note that when n ≤ 0,

η n = α θ • S |n| θ (ξ -k ) k≥0 , Y 0 .
Hence, we get the following probabilistic reformulation of what we have to prove.

Proposition 12

The following statements are equivalent 1. the partition α θ is a generator of the endomorphism S θ .

2. for µ ⊗ ν-almost every (x, y) ∈ X × I, the second component y can be recovered from the knowledge of the sequence Φ θ (x, y) = (α θ • S n θ )(x, y) n≥0 .

3. the value Y 0 is almost surely determined by the knowledge of the sequence (η n ) n≤0 .

Proof. The equivalence 1 ⇐⇒ 2 follows the remarks made at the beginning of subsection ??.

The equivalence 2 ⇐⇒ 3 follows from the equality (η -n ) n≥0 = Φ θ (ξ -n ) n≥0 , Y 0 . Indeed, given any measurable function ψ : {0, 1} Z + → I, we derive

P Y 0 = ψ (η -n ) n≥0 = (µ ⊗ ν){(x, y) ∈ X × I : y = ψ(Φ θ (x, y))},
since (η -n ) n≥0 and Y 0 are independent with respective laws µ and ν.

The proof is complete.

To approach Y 0 in probability by measurable fonctions of the sequence (η n ) n≤0 , we fix two integers q > p > 0 such that |qθ -p| < 1/(q -1), we consider the partition ι provided by proposition ?? and the associated map ι : I → [[0, q -1]]. Then, we set Z n = ι(Y n ) for every n ≤ Z. Corollaries ?? and ?? show that the recursion formula Z n = g p,q ηn (Z n-1 ) holds with probability close to 1.

Lemma 13 Assume that |qθ -p| < 1/(q -1) and keep the notations of corollary ??.

Then for every n ∈ Z,

1. If θ > p/q, then [Z n = g p,q ηn (Z n-1 )] = [η n = 1 ; Y n-1 < qθ -p]. 2. If θ < p/q, then [Z n = g p,q ηn (Z n-1 )] = [η n = 0 ; Y n-1 ≥ 1 + qθ -p].
In both cases,

P Z n = g p,q ηn (Z n-1 ) = 1 2 |qθ -p|.
We have now all the ingredients to deduce theorems ?? and ?? from theorems ?? and ??. The final argument is given by the next lemma.

Lemma 14 Assume the existence of a sequence of rational numbers (p n /q n ) n≥1 in ]0, 1[, written in irreducible form such that lim n→+∞ q n = +∞ and

lim n→+∞ E[T pn,qn g,0 ] × |q n θ -p n | = 0.
Then the equivalent statements of proposition ?? are true.

Proof. Given ε ∈]0, 1[, one can fix two integers q ≥ 5 and p ∈ [[1, q -1]] such that E[T p,q g,0 ] × |qθ -p| ≤ ε 2 . Since (q -1) ≤ q 2 -1 6 ≤ E[T p,q g,0 ],
one has (q -1)|qθ -p| ≤ ε 2 < 1, so the results of the last subsection apply.

We now omit the superscripts p, q. For every t ≥ 1, set

G t = g ηt • • • • • g η 1 and Z t = ι(Y t ). Let t(ε) = E[T g,0 ]/ε . By Markov inequality, P[G t(ε) (Z 0 ) = G t(ε) (0)] = P[T p,q g,0 ≥ t(ε) + 1] ≤ E[T p,q g,0 ] t(ε) + 1 ≤ ε. But [Z t(ε) = G t(ε) (Z 0 )] ⊂ t(ε) t=1 [Z t = g ηt (Z t-1 )],
so lemma ?? yields

P[Z t(ε) = G t(ε) (Z 0 )] ≤ t(ε) × 1 2 |qθ -p| ≤ 1 2 ε -1 E[T p,q g,0 ]|qθ -p| ≤ ε/2.
Hence,

P[Z t(ε) = G t(ε) (0)] ≤ 3ε/2. Let ζ = g 0 • • • • • g η -t(ε)+1 ( 
0) and call Υ 0 the middle of the interval I ζ (remind that the length of this interval is at most 2/q). Then Υ 0 is a measurable function of the sequence (η t ) t≤0 and by stationarity,

P |Y 0 -Υ 0 | > 1/q ≤ P[Y 0 / ∈ I ζ ] = P[Z 0 = ζ] ≤ 3ε/2.
Since ε can be taken as small as one wants, the conclusion follows.

3 Proof of proposition ??

Let us define real numbers y 0 , . . . , y q-1 in the same way as x 0 , . . . , x q-1 by replacing θ with p/q: for every ∈ [[0, q -1]], let

y := × p q -× p q = ( p)mod q q = h( ) q .
Then for every k ∈ [[0, q -1]], y h -1 (k) = k/q, so 0 = y h -1 (0) < y h -1 (1) < . . . < y h -1 (q-1) .

The idea is to check that inequalities -1/u < qθ -p < 1/(q -u) imply that the real numbers x 0 , . . . , x q-1 are close to real numbers y 0 , . . . , y q-1 and are in the same order.

Preliminary. First, let us prove that

∀k ∈ [[0, q -1]], x h -1 (k) = k q + h -1 (k) θ - p q . (2) 
In equality ??, equality modulo 1 follows from the definition of x h -1 (k) and y h -1 (k) and from the equality y h -1 (k) = k/q. So it remains to check that the right-hand side belongs to

[0, 1[, like x h -1 (k) . If k > 0, the inequalities qθ -p > -1/u and h -1 (k) ≤ ku (since ku ≥ 0 and h -1 (k) = (ku) mod q) yield k q + h -1 (k) θ - p q ≥ k q - h -1 (k) qu ≥ 0, whereas the inequalities h -1 (k) > 0, qθ -p < 1/(q -u) and h -1 (k) ≤ (q -k)(q -u) (since h -1 (k) = ((q -k)(q -u)) mod q and (q -k)(q -u) ≥ 0) yield k q + h -1 (k) θ - p q < k q + h -1 (k) q(q -u) ≤ k q + q -k q = 1.
Equality ?? follows. If k = 0, then h -1 (k) = 0, so the equality ?? still holds.

Proof of items 1, 2, 3 and 4. For every k ∈

[[0, q -2]], h -1 (k + 1) ≡ h -1 (k) + u [q]. If h -1 (k) ≤ q -u -1, then h -1 (k + 1) = h -1 (k) + u,
so equality ??, inequality qθ -p > -1/u and equality up -vq = 1 yield

x h -1 (k+1) -x h -1 (k) = 1 q + u θ - p q = uθ -v > 0. If q -u ≤ h -1 (k) ≤ q -2, then h -1 (k + 1) = h -1 (k) -(q -u)
, so equality ??, inequality qθ -p < 1/(q -u) and equality up -vq = 1 yield

x h -1 (k+1) -x h -1 (k) = 1 q -(q -u) θ - p q = (p -v) -(q -u)θ > 0.
By the same arguments, we have also

1 -x h -1 (q-1) = 1 q -(q -u) θ - p q = (p -v) -(q -u)θ > 0.
As a result, we get 0 = x h -1 (0) < x h -1 (1) < . . . < x h -1 (q-1) < 1, so the intervals Proof of item 5. Under the assumption of item 5 that |qθ -p| < min(1/u, 1/(q -u)), we have

J k = [x h -1 (k) , x h -1 (k+1) [ for k ∈ [[0, q -2]] and J q-1 = [x h -1 (q-1) , 1[ form a partition of I. But J k = I h -1 (k) for every k ∈ [[0, q -1]].
uθ -v = u θ - p q + u p q -v < u qu + 1 q = 2 q and (p -v) -(q -u)θ = (p -v) -(q -u) p q -(q -u) θ - p q ≤ 1 q + q -u q(q -u) = 2 q .
Items 5 follows.

Proof of items 6, 7 and 8. By definition, the map T θ coincides with a translation on each interval [0, 1 -θ[ and [1 -θ, 1[, sends 1 -θ on 0 and sends each x on x l+1 . To derive item 6, it suffices to check that 1 -θ belongs to I q-u-1 or to I q-1 . To do this, we use again equality ?? and and equality up -vq = 1.

Since q -u -1 = h -1 (q -1 -p), so we get

x q-u-1 -(1 -θ) = q -1 -p q + (q -u -1) θ - p q + θ -1 = (q -u)θ -(p -v) < 0.
If u = 1, then p = 1, so 0 ≤ q + 1 -p ≤ q -1 and u -1 = h -1 (q + 1 -p). We get

x u-1 -(1 -θ) = q + 1 -p q + (u -1) θ - p q + θ -1 = uθ -v > 0.
Last, q -1 = h -1 (q -p), so we get

x q-1 -(1 -θ) = q -p q + (q -1) θ - p q + θ -1 = qθ -p.
If θ > p/q, we get x q-u-1 < 1 -θ < x q-1 , so 1 -θ ∈ [x q-u-1 , x q-1 [= I q-u-1 and

T θ (I q-u-1 ) = [x q-u , 1[ ∪ [0, x q-1 + θ -1[ = I q-u ∪ [0, qθ -p[. T θ (I q-1 ) = [x q-1 + θ -1, x u [ = [qθ -p, x u [ = I 0 \ [0, qθ -p[. If θ ≤ p/q, we get that 1 -θ ∈ I q-1 since I q-1 = [x q-1 , x u-1 [ if u = 1 and I q-1 = [x q-1 , 1[ otherwise.
As T θ sends the upper bound of I q-1 on x u , we get

T θ (I q-1 ) = [x q-1 + θ, 1[ ∪ [0, x u [ = [1 + qθ -p, 1[ ∪ I 0 . T θ (I q-u-1 ) = [x q-u , x q-1 + θ -1[ = [x q-u , 1 + qθ -p[ = I q-u \ [1 + qθ -p, 1[.
Items 6,7 and 8 follow.

4 Proof of theorem ??

We will use repeatedly the following classical fact (see for example [?], chapter 10, section 14, subsection 4): given two positive integers a and b, the expected reaching time of {-a, b} by a simple symmetric random walk in Z starting at 0 is ab. As a result, given two integers ≥ k ≥ 0 the expected reaching time of 0 by a simple symmetric random walk in Z/ Z starting at k is k( -k).

Since the integers q > p > 0 are fixed, we omit the superscripts p, q. We begin the proof with the second part, since it is simpler and helps us to prove the first part.

Proof of the second part

For every t ≥ 0, set F t = σ(Z 0 , η 1 , . . . , η t ),

Z t = g ηt • • • • • g η 1 (Z 0 ), Z t = g ηt • • • • • g η 1 (z 0 ), X t = Z t -Z t ,
where the bar indicates the equivalence class in Z/qZ. Then T g,z 0 = inf{n ≥ 0 : X t = 0}. After time T g,z 0 , the processes Z and Z coincide, so X stays at 0. By construction, the processes Z = (Z t ) t≥0 and Z = (Z t ) t≥0 are Markov chains in the filtration (F t ) t≥0 . The definition of the maps g 0 and g 1 yields for every n ≥ 1

Z t = g ηt (Z t-1 ) = (Z t-1 -ξ t ) mod q where ξ t = (η t + 1 L c (Z t-1 )) mod 2, Z t = g ηt (Z t-1 ) = (Z t-1 -ξ t ) mod q where ξ t = (η t + 1 L c (Z t-1 )) mod 2.
The random variables ξ t and ξ t are F t -measurable and are uniform on {0, 1} conditionally on F t-1 ; they coincide on the event [1 L (Z t-1 ) = 1 L (Z t-1 )] and add up to 1 on its complement. Hence

X t = X t-1 -2ξ t -1 if 1 L (Z t-1 ) = 1 L (Z t-1 ) X t = X t-1
otherwise.

Define stopping times (τ n ) n≥0 and (σ n ) n≥1 by τ 0 = 0 and for every n ≥ 1,

σ n = inf{t ≥ τ n-1 : 1 L (Z t ) = 1 L (Z t )} and τ n = σ n + 1.
Therefore

τ n = inf{t > τ n-1 : X t = X τ n-1 } on the event [τ n-1 < +∞], so T g,z 0 = τ N where N = inf{n ≥ 0 : Z τn = Z τn } = inf{n ≥ 0 : X τn = 0}.
In particular, T g,z 0 ≥ N . We now introduce a very crude upper bound.

Lemma 15 Let z and z be two distincts elements in [[0, q -1]]. Then a deterministic walk in [[0, q -1]] 2 starting from (z, z ) and making steps equal to (-1, -1) modulo q reaches the set L × L c ∪ L c × L in at most q -2 steps.

Proof. The map k → 1 L (k mod q) from Z to Z is q-periodic by construction. Call its least period. Then q = d for some integer d ≥ 1, and

p = |L| = q-1 k=0 1 L (k mod q) = d -1 k=0 1 L (k mod q).
Hence d divides p and q. Since p and q are relatively prime, we get d = 1, so = q. Therefore, there are at least two integers k ∈

[[0, q -1]] such that 1 L (z -k) mod q = 1 L (z -k) mod q . The statement follows.
Actually, the upper bound q -2 above corresponds to the worst case, namely when z -z ≡ ±u[q]. We will get and use better bounds in the next section. At the moment, we continue the proof of theorem ?? with this rough estimate.

On the event [τ n-1 < T g,z 0 ] and on the time interval [[τ n-1 , σ n ]], the process (Z t , Z t ) coincides with a random walk on (Z/qZ) 2 whose steps are uniformly distributed on the pair {(0, 0), (-1, -1)}. By lemma ??, we get

E[τ n -τ n-1 |τ n-1 < T g,z 0 ] = E[σ n -τ n-1 |τ n-1 < T g,z 0 ] + 1 ≤ 2(q -2) + 1 ≤ 2q.
Therefore, P[τ n < +∞|τ n-1 < T g,z 0 ] = 1. A recursion shows that τ n < +∞ almost surely on the event [n ≤ N ], whereas τ n = +∞ on the event [n > N ], so the events [τ n-1 < T g,z 0 ] and [n ≤ N ] almost surely coincide. Putting things together, we derive

E[T g,z 0 ] = n≥1 E[(τ n -τ n-1 )1 n≤N ] ≤ n≥1 2qP[n ≤ N ] = 2qE[N ].
But the process (X τn ) 0≤n≤N is a simple symmetric random walk on the group Z/qZ up to its hitting time of 0, whose initial position is uniform on Z/qZ. Thus

E[N ] = 1 q q-1 k=0 k(q -k) = 1 q
(q -1)q 2 2 -(q -1)q(2q -1) 6 = (q -1)(q + 1) 6 ≤ q 2 6 .

Since T g,z 0 ≥ N , we get (q 2 -1)/6 ≤ E[T g,z 0 ] ≤ q 3 /3 as desired.

Proof of the first part

The proof relies on the following lemma. For every t ≥ 0, we set

G t = g ηt • • • • • g η 1 .
Lemma 16 Let R be a subset of

[[0, q -1]] with size k ≥ 2. Set T R = inf{t ≥ 0 : |G t (R)| < k}.
Then

E[T R ] ≤ 2q 3 k 2 if k divides q or k = 2, E[T R ] ≤ 4q 3 (k + 1) 2 if k ≥ 3.
Proof. Set R = {z 0 , . . . , z k-1 } with z 0 < . . . < z k-1 and set z k = z 0 . We define processes Z 0 , . . . , Z k-1 , Z k = Z 0 , D 0 , . . . , D k-1 and D taking values in [[0, q -1]] by

Z i t = G t (z i ), D i t = Z i+1 t -Z i t mod q, D t = min(D 0 t , . . . , D k-1 t ).
Let us define a process I taking values in the collection of all non-empty subsets of [[0, k -1]] by

I t = {i ∈ [[0, k -1]] : D i t = D t }.
All these processes are adapted to the filtration defined by F t = σ(η 1 , . . . , η t ).

For each i ∈ [[0, k -1]], the increments of the process Z i are 0 or -1 modulo q, so the increments of the process D i are 1, 0 or -1 modulo q. Moreover, if D i t = 0, then D i s = 0 for all s ≥ t. Therefore, at each time t, the positions Z 0 t , . . . , Z k-1 t are in the same cyclic order (in a large sense since there may be equalities) as the initial positions z 0 , . . . , z k-1 , and the sum

D 0 t + • • • + D k-1 t
remains constant equal to q, so D t ≤ q/k. We also deduce that

T R = inf{t ≥ 0 : D t = 0}.
We now adapt the arguments given in the last subsection to our present situation. Note that

D i t+1 = D i t on the event [1 L (Z i t ) = 1 L (Z i+1 t )], whereas P[D i t+1 = D i t + 1|F t ] = P[D i t+1 = D i t -1|F t ] = 1/2 on the event [1 L (Z i t )) = 1 L (Z i+1 t )
]. Define stopping times (τ n ) n≥0 and (σ n ) n≥1 by τ 0 = 0 and for every n ≥ 1,

σ n = inf{t ≥ τ n-1 : ∃i ∈ I t , 1 L (Z i t ) = 1 L (Z i+1 t )} and τ n = σ n + 1.
Since the process D cannot vary (although the process I may increase) during the time intervals [τ n-1 , σ n ], one has T R = τ N where N is some random positive index, possibly infinite, and lemma ??

yields again E[τ n -τ n-1 |τ n-1 < +∞] ≤ 2q, so E[τ R ] ≤ 2qE[N ].
Moreover, on each event [σ n < T R ; i ∈ I σn ], one has

P[D τn = D τ n-1 -1|F σn ] ≥ P[D i σn+1 = D i σn -1|F σn ] = 1 2 .
Set m = q/k ≥ 1. We derive a stochastic domination of the process (D τn ) 0≤n≤N by a Markov chain M on the state space [[0, m]], starting at m and killed immediatly after hitting 0, with transition probabilities given by

P (d, d -1) = 1/2 if 1 ≤ d ≤ m, P (d, d + 1) = 1/2 if 1 ≤ d ≤ m -1, P (m, m) = 1/2.
Therefore, E[N ] is bounded above by the expected hitting time of 0 by M , which is also the expected hitting time of 0 by a simple symmetric random walk on Z/(2m + 1)Z starting at m, so E[N ] ≤ m(m + 1).

Case where k divides q. In this case, q = km, so D t = m if and only if all D i t are equal to m. When the process is at m, it goes necessarily to m -1 as soon as one of the processes D i varies. Thus we may modify the transition probabilities of the dominating chain M by setting P (m, m -1) = 1, so the expected hitting time of 0 by M becomes the expected hitting time of 0 by a simple symmetric random walk on Z/2mZ starting at m, which is m 2 . Note that if k ≥ 3, then m 2 = q 2 /k 2 ≤ 2q 2 /(k + 1) 2 .

Case where k does not divide q. If k = 2, then q = 2m + 1, so q 2 /4 ≥ m(m + 1). If k ≥ 3 and k does not divide q, then q ≥ km + 1, so

q 2 m(m + 1) ≥ k 2 m 2 + (2k -1)m + m + 1 m(m + 1) = k 2 m + (2k -1) m + 1 + 1 m = k 2 - (k -1) 2 m + 1 + 1 m
By derivating, one checks that the right hand side is an increasing function

of m ∈ [1, ∞[, so q 2 m(m + 1) ≥ k 2 - (k -1) 2 2 + 1 = (k + 1) 2 2 .
Hence m(m + 1) ≤ 2q 2 /(k + 1) 2 . The proof is complete.

Let us now prove the first part of theorem ??.

For every t ≥ 0, call R t the range of the map G t . For every k ∈ [ [1, q]], set

T k = inf{t ≥ 1 : |R t | ≤ k}.
Then 0 = T q ≤ . . . ≤ T 1 = T c , so

T c = q k=2 (T k-1 -T k ) = q k=2 (T k-1 -T k )1 |R T k |=k .
Applying Markov property at time T k and lemma ?? to the set

|R T k | yields E T 1 -T 2 F T 2 ≤ q 3 2 on the event |R T 2 | = 2
and for every k ∈ [ [3, q]],

E T k-1 -T k F T k ≤ 4q 3 (k + 1) 2 on the event |R T k | = k .
Hence,

E[T 1 ] ≤ q 3 2 + q k=3 4q 3 (k + 1) 2 = q 3 1 2 + 4 π 2 6 -1 - 1 4 - 1 9 = q 3 2π 2 3 - 89 18 ≤ 5q 3 3 .
5 Proof of theorem ??

In the whole section, we assume that θ ∈]0, 1/2[, so dist(θ, Z) = θ. Therefore, we will consider rational approximations p/q, where q > p > 0 are relatively prime integers such that p/q < 1/2. These approximations will be given by convergents of the continued fraction expansion of θ.

Reminders on continued fraction expansions

Given any integer a 0 and positive integers (a n ) n≥1 , we set

[a 0 ; a 1 , • • • , a n ] = a 0 + 1 a 1 + 1 ••• ••• a n-1 + 1 an .
Every irrational number θ admits a unique expansion

θ = [a 0 ; a 1 , a 2 , a 3 , • • • ] = lim n→+∞ [a 0 ; a 1 , • • • , a n ],
provided by a variant of Euclidean algorithm, where we set recursively

a 0 := θ , θ 1 := 1 θ -a 0 , a 1 := θ 1 , θ 2 := 1 θ 1 -a 1 , ...
The positive integers (a n ) n≥1 thus defined are called the partial quotients of the continued fraction expansion of θ.

Define two sequences (p n ) n≥-2 and (q n ) n≥-2 of integers by p -2 = 0, q -2 = 1, p -1 = 1, q -1 = 0, and for every n ≥ 0, p n = a n p n-1 + p n-2 , q n = a n q n-1 + q n-2 .

A recursion yields q n ≥ F n+1 for every n ≥ 0, where (F n ) n≥0 is the Fibonacci sequence with first terms F 0 = 0 and F 1 = 1. When θ ∈]0, 1/2[, the stronger inequality q n ≥ φ n holds for every n ≥ 0, where φ is the golden ratio. In every cases, the sequence (q n ) n≥0 is positive, non-decreasing and goes to infinity.

A recursion shows that for every n ≥ 0, and x > 0,

xp n-1 + p n-2 xq n-1 + q n-2 = [a 0 , a 1 , • • • , a n-1 , x].
In particular,

p n q n = [a 0 ; a 1 , • • • , a n ].
Moreover, p n and q n are relatively prime since p n q n-1 -q n p n-1 = (-1) n-1 .

The following inequalities hold

p 0 q 0 < p 2 q 2 < • • • < θ < • • • < p 3 q 3 < p 1 q 1 .
In particular, the difference θ -p n /q n has the same sign as (-1) n and

θ - p n q n < p n+1 q n+1 - p n q n = 1 q n q n+1 ≤ 1 q 2 n .
Proof. We argue by recursion on k.

First, assume that k = 0, so d ≥ r 0 = p. Since q = a 1 p + r 1 ≤ (a 1 + 1)p, J can be reached from anywhere in [[0, q -1]] by making at most a 1 = a 1 q 0 translations of -p modulo q.

Assume that the property holds at level k

-1. Let k ∈ [[0, n-1]] and d ∈ [[r k , r k-1 -1]]. Let J ⊂ [[0, q-1
]] be a subset containing exactly d elements which are consecutive modulo q. Complete J by adding r k-1 -d consecutive (modulo q) points to get a subset J of [[0, n -1]] made with r k-1 consective (modulo q) points. These additional points should be on the right of J if k is even, and on the left of J if k is odd. The number of additional points is r k-1 -d ≤ r k-1 -r k ≤ a k+1 r k . Therefore, to reach J from anywhere, one may first reach J by making at most a 1 q 0 + • • • + a k q k-1 translations of -p modulo q, and then make at most a k+1 translations of (-1) k+1 r k modulo q, provided by at most a k+1 q k translations of -p modulo q. This yields the property at level k.

The proof is complete.

We now give the better estimate announced above.

Corollary 18 Let z and z be two distincts elements in

[[0, q -1]]. Assume that the distance d q (h(z), h(z )) = dist(pd q (z, z ), qZ) belongs to [[r k , r k-1 -1]] with k ∈ [[0, n -1]]
Then a deterministic walk in [[0, q -1]] 2 starting from (z, z ) and making steps equal to (-1, -1) modulo q reaches the set L × L c ∪ L c × L in at most a 1 q 0 + • • • + a k+1 q k steps.

Proof. Let d = d q (h(z), h(z )) = dist(pd q (z, z ), qZ), so 1 ≤ d ≤ q/2. By symmetry, one may assume that h(z ) = (h(z) -d) mod q.

The number of steps above is also the number of steps (-p, -p) modulo q required to reach the set [[0, p -1]] × [[p, q -1]] ∪ [[p, q -1]] × [[0, p -1]] from (h(z), h(z )). This is at most the number of steps -p modulo q required to reach the interval [[0, min(d, p) -1]] from h(z) since for every k ∈ N, (h(z) -kp) mod q ∈ [[0, min(d, p) -1]] =⇒ (h(z) -kp) mod q ∈ [[0, p -1]], (h(z ) -kp) mod q ∈ [[p, q -1]].

Hence lemma ?? applies, yielding the conclusion.

The upper bound provided by corollary ?? is a function of d q (h(z), h(z )) and also a function of d q (z, z ). Denote by M (d q (h(z), h(z ))) = N (d q (z, z )) this upper bound. Proof. For every d ∈ [[1, q/2 ]], set h(d) = dist(pd, qZ). Then N (d) = M ( h(d)) because d q (h(z), h(z )) = h(d q (z, z )) for every z and z in [[0, q -1]]. Since p and q are relatively prime, the map h is a permutation on the set [[1, q/2 ]], so and for every k ∈ [[0, n -1]], one has a k+1 q k = q k+1 -q k-1 and q k r k-1 ≤ q since q -q k r k-1 = (-1) k-1 (q k-1 p k -p k-1 q k )q -(-1) k-1 q k (q k-1 p -p k-1 q) = (-1) k-1 q k-1 (p k q -pq k ) ≥ 0.

Hence, one gets q/2 d=1 M (d) = n-1 k=0 a k+1 q k (r k-1 -1) = n-1 k=0 a k+1 q k r k-1 -(q n + q n-1 -q 0 -q -1 )

≤ q n-1 k=0 a k+1 -q.
The proof is complete.

Proof of theorem ??

We keep the notations of the last subsections, fix n ≥ 1 and (p, q) = (p n , q n ), so we omit the superscripts p, q.

For every t ≥ 0, set G t = g ηt • • • • • g η 1 , Z t = G t (Z 0 ), Z t = G t (z 0 ), and F t = σ(Z 0 , η 1 , . . . , η t ). Consider the stopping time τ 1 = inf{t ≥ 0 : (Z t -Z t ) mod q = (Z 0 -z 0 ) mod q}.

By definition of the maps g 0 and g 1 , one has

τ 1 = inf{t ≥ 0 : (Z t , Z t ) ∈ L × L c ∪ L c × L} + 1.
Given z 0 ∈ [[0, q -1]], set e(z 0 , z 0 ) = E[T g,z 0 |Z 0 = z 0 ], w(z 0 , z 0 ) = E[τ 1 |Z 0 = z 0 ] and call n(z 0 , z 0 ) the number of steps required to reach the set L × L c ∪ L c × L from (z 0 , z 0 ) by making steps equal to (-1, -1) modulo q.

Conditionally on F t and on the event [(Z t , Z t ) ∈ L×L∪L c ×L c ], the random variable (Z t+1 , Z t+1 ) equals (Z t , Z t ) or ((Z t -1) mod q, (Z t -1) mod q), each possibility having probability 1/2. Hence if z 0 = z 0 , then w(z 0 , z 0 ) = 2n(z 0 , z 0 ) + 1. Proposition ?? yields an upper bound n(z 0 , z 0 ) ≤ N (d q (z 0 , z 0 )) so w(z 0 , z 0 ) ≤ W (d q (z 0 , z 0 )) := 2N (d q (z 0 , z 0 )) + 1.

But Markov property yields e(z 0 , z 0 ) ≤ w(z 0 , z 0 ) + E[e(G τ 1 (Z 0 ), G τ 1 (z 0 ))]. and G τ 1 (z 0 ) -G τ 1 (z 0 ) = (z 0 -z 0 ± 1) mod q, each possibility having probability 1/2. Let m = q/2 be the maximum possible value for the distance d q (z 0 , z 0 ) and set e d = max{e(z 0 , z 0 ) : d q (z 0 , z 0 ) = d} for every But Z 0 is uniform on [[0, q -1]], so

E[T g,z 0 ] = 1 q q-1 z 0 =0
e(z 0 , z 0 ).

If q is even, i.e. q = 2m, we derive In both cases, we get

E[T p,q g,z 0 ] ≤ q 2 m j=1 W (j) ≤ q 2 2 m j=1 N (j) + m ≤ q 2 n k=1 a k ,
by lemma ??. The proof is complete.

  Yet, as observed by Hoffman and Rudolph in [?], there is no relation between the standardness of [T, Id] and the Bernoulliness of [T, Id]. In the one hand, the standardness of [T, Id] is the possibility to generate the filtration (D -n ) n≤0 (obtained by time reversal) by some sequence of independent uniform Bernoulli random variables. In the other hand, the Bernoulliness of [T, Id] is the existence of one measurable finite partition β of the space X × Y whose images by all the powers (positive, null and negative) of [T, Id] are independent and generate the whole σ-field X ⊗ Y modulo the null sets. The former property requires adaptation to some filtration whereas the latter requires stationarity. Indeed, various examples and counter-examples confirm the absence of implication between these two properties. See also [?]. When T is a Bernoulli shift, the endomorphisms [T, Id] and [T, T -1 ] are not Bernoulli since they are not standard. Yet, Feldman observes that the automorphism [T, Id] is Bernoulli and has a simple independent generator (Theorem 2 in [?]). But later, Kalikow as shown that the automorphism [T, T -1 ] is not Bernoulli (see [?]). In 1972-1974, Adler and Shields proved in [?, ?] the Bernoulliness of many measure preserving maps including [T, Id] when T is an irrational rotation. In 2002, Rudolph and Hoffman proved in [?] the Bernoulliness of [T, Id] itself when T is an irrational rotation. Their proof is not constructive and relies on the notion of tree very weak Bernoulli endomorphism. Constructive proof of Bernoulliness in the case of irrational rotations Actually, a few years before, Parry gave in [?] a constructive proof of the Bernoulliness of [T, Id] in a very particular case. Let us detail Parry's result.

2 Figure 3 :

 23 Figure3: The maps f 0 , f 1 , h, g 0 , g 1 when p = 3 and q = 10, so u = 7, v = 2 and L = {0, 4, 7}.

  Items 1, 2, 3 and 4 follow.
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  d ∈ [[0, m]]. Then e 0 = 0 ande d ≤ W (d) + 1 2 (e d-1 + e d+1 ) if d ∈ [[1, m -1]],e m ≤ W (m) + e m-1 if q is even,e m ≤ W (m) + 1 2 (e m-1 + e m ) if q is odd.Hence e d -e d-1 ≤ 2W (d) + e d+1 -e d for every d ∈ [[1, m -1]], and e m -e m-1 ≤ 2W (m), whatever the parity of q is. By addition, we get successively ∀d ∈ [[1, m]], e d -e d-1 ≤ 2 m j=d W (j) ≤ 2S where S := m j=1 (j), ∀i ∈ [[0, m]], e i = i d=1 (e d -e d-1 ) ≤ 2iS.
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 21 [T g,z 0 ] ≤ 1 2m (e 0 + 2e 1 + • • • + 2e m-1 + e m ) ≤ 1 + m S = mS.If q is odd, i.e. q = 2m + 1, we deriveE[T g,z 0 ] ≤ 1 2m + 1 (e 0 + 2e 1 + • • • + 2e m )
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Hence the sequence (p n /q n ) n≥0 converges to θ.

By definition, the convergents of θ are the rational numbers p n /q n = [a 0 ; a 1 , • • • , a n ] and the semiconvergents of θ are the rational numbers 

Using extended Euclidean algorithm to get a sharper estimate

From now on, we assume that θ ∈]0, 1/2[, so p 0 = a 0 = 0 and 0 < p n ≤ q n /2 < q n for n ≥ 1. Hence the results of subsection ?? apply when (p, q) = (p n , q n ) for some n ≥ 1.

We fix n ≥ 1 and (p, q) = (p n , q n ), so we omit the superscripts p, q. We now want to get a shaper estimate than the crude upper bound given by lemma ??. Recall that

) where h is the permutation map defined by h(z) = (pz) mod q on the set [[0, q -1]].

Let z and z be two distincts elements in [[0, q -1]]. The number of steps (-1, -1) modulo q required to reach the set L×L c ∪L c ×L from (z, z ) is also the number of steps (-p, -p) modulo q required to reach the set

Denote by d q (z, z ) the distance modulo q between z and z . Then the upper bound we will give is a function of d q (h(z), h(z )), which is a function of d q (z, z ), namely

To do this, we apply the extended euclidean algorithm to the integers p and q. Since p and q are relatively prime and p/q = [0, a 1 , • • • , a n ], this algorithm yields remainders r -1 = q > r 0 = p > r 1 > . . . > r n-1 = 1 > r n = 0 such that

Extended Euclidean algorithm provides Bezout identities: a recursion shows that

Indeed, q 0 p-p 0 q = 1×p-0×q = p = r 0 and q 1 p-p

As a result, given k ∈ [[0, n]], making q k translations of -p modulo q is equivalent to make one translation of (-1) k+1 r k modulo q. This observation yields the next lemma.

]] be a subset containing exactly d elements which are consecutive modulo q. Then J can be reached from anywhere in [[0, q -1]] by making at most a 1 q 0 + • • • + a k+1 q k translations of -p modulo q.

Index of notations

We recall here the notations widely used throughout the paper.

Numbers

θ fixed irrational number. By convenience, we assume that θ ∈ [0, 1[ and even that θ ∈ [0, 1/2[ in section ??. This is not a true restriction. r = p/q denotes a good rational aproximation of θ, where p and q are relatively prime integers and q ≥ 2. Here, good means that -1/u < qθ -p < 1/(q -u) where u ∈ [[1, q -1]] is the inverse of p modulo q. We call v ∈ Z + the integer such that up -vq = 1.

Dynamical systems considered

S unilateral shift on X = {0, 1} Z + , endowed with the measure µ = n≥0 (δ 0 + δ 1 )/2.

T θ : y → (y + θ) mod 1 on I = [0, 1[, endowed with the Lebesgue measure ν. S θ = [T θ , Id] : (x, y) → x(0), (y + x(0)θ) mod 1 on X × [0, 1[, endowed with the measure µ ⊗ ν.

T p,q : z → (z + p) mod q on [[0, q -1]], endowed with the uniform measure ν q . S p,q = [T p,q , Id] : (x, z) → x(0), (z + x(0)p) mod q on X × [[0, q -1]], endowed with the measure µ ⊗ ν q .

Partitions α θ = {A θ 0 , A θ 1 } the partition considered by Parry, and also the associated map from X × I to {0, 1}. α p,q discrete analogue on X × [[0, q -1]]. Φ θ : (x, y) → α θ (S n θ (x, y)) n≥0 the associated factor map. ι = {I 0 , . . . , I q-1 } the partition of I = [0, 1[ provided by the subdivision (x k ) 0≤k≤q-1 , where x k = kθ -kθ . We also denote by ι the associated map from X × I to {0, 1}.

Maps

) for y ∈ I. f p,q 0 (z) = z -p1 [[p,q-1]] (z) and f p,q 1 (z) = z + (q -p)1 [[0,p-1]] (z) for z ∈ [[0, q -1]]. h(z) = h p,q (z) = (pz) mod q for z ∈ [[0, q -1]]. The map h p,q is a permutation and its inverse is given by h -1 p,q (z) = (uz) mod q. We set L p,q = h -1 p,q ([[0, p -1]]). g p,q 0 (z) = z -1 L c p,q (z) and g p,q 1 (z) = z -1 Lp,q (z) for z ∈ [[0, q -1]].