
HAL Id: hal-02272414
https://hal.science/hal-02272414v2

Submitted on 4 Jan 2020 (v2), last revised 25 Mar 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bernoulliness of [T, Id] when T is an irrational rotation:
towards an explicit isomorphism

Christophe Leuridan

To cite this version:
Christophe Leuridan. Bernoulliness of [T, Id] when T is an irrational rotation: towards an ex-
plicit isomorphism. Ergodic Theory and Dynamical Systems, In press, �10.1017/etds.2020.27�. �hal-
02272414v2�

https://hal.science/hal-02272414v2
https://hal.archives-ouvertes.fr


Bernoulliness of [T, Id] when T is an irrational rotation:

towards an explicit isomorphism.

Christophe Leuridan

January 4, 2020

Abstract

Let θ be an irrational real number. The map Tθ : y 7→ (y + θ) mod 1 from the
unit interval I = [0, 1[ (endowed with the Lebesgue measure) to itself is ergodic.

In a short paper [16] published in 1996, Parry provided an explicit isomorphism
between the measure-preserving map [Tθ, Id] and the unilateral dyadic Bernoulli
shift when θ is extremely well approached by the rational numbers, namely if

inf
q≥1

q44q
2

dist(θ, q−1Z) = 0.

A few years later, Rudolph and Hoffman showed in [6] that for every irrational
number, the measure-preserving map [Tθ, Id] is isomorphic to the unilateral dyadic
Bernoulli shift. Their proof is not constructive.

In the present paper, we relax notably Parry’s condition on θ and show that
actually, the explicit map provided by Parry’s method is an isomorphism between
the map [Tθ, Id] and the unilateral dyadic Bernoulli shift whenever

inf
q≥1

q4 dist(θ, q−1Z) = 0.

We also provide a weaker sufficient condition involving the expansion of ||θ|| :=
dist(θ,Z) in continued fraction. Set ||θ|| = [0; a1, a2, . . .] and call (pn/qn)n≥0 the
sequence of convergents. Then Parry’s map is an isomorphism between the map
[Tθ, Id] and the unilateral dyadic Bernoulli shift whenever

inf
n≥1

q3n (a1 + · · ·+ an) |qnθ − pn| < +∞.

Whether Parry’s map is an isomorphism for every θ or not is still an open
question, although we expect a positive answer.

MSC Classification : 37A05,60J05.
Keywords : diophantine approximation, irrational rotations, skew products, Bernoulli
shifts, dyadic filtrations, head-and-tail filtrations, constructive Markov chains, coupling
from the past.

1 Introduction

Let X = {0, 1}Z+ , endowed with the product sigma-field X and the product measure

µ =
⊗
n∈Z+

(δ0 + δ1)/2.
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The shift operator on X is the map S : X → X defined by

S(x)(n) := x(n+ 1) for every x ∈ X and n ∈ Z+.

The map S preserves the measure µ, and the dynamical system (X,X , µ, S) is the
unilateral dyadic Bernoulli shift.

Given any invertible dynamical system (Y,Y, ν, T ), one gets a measure-preserving
map [T, Id] on the product space (X × Y,X ⊗ Y, µ⊗ ν) by setting

[T, Id](x, y) := (S(x), T x(0)y).

The map [T, Id] is not invertible. More precisely, each element (x′, y′) ∈ X × Y have
exactly two inverse images namly (0x′, y′) and (1x′, T−1(y′)).

Moreover, if (ξ, η) is a random variable with distribution µ⊗ν, then the law of (ξ, η)
given [T, Id](ξ, η) = (x′, y′) is the uniform law on the pair {(0x′, y′), (1x′, T−1(y′))}. One
says that the dynamical system (X×Y,X ⊗Y, µ⊗ν, [T, Id]) is dyadic, like the unilateral
Bernoulli shift (X,X , µ, S).

By replacing Z+ with Z in the definitions above, we transform the non-invertible
dynamical systems (X,X , µ, S) and (X×Y,X ⊗Y, µ⊗ν, [T, Id]) into two invertible ones,
namely the bilateral dyadic Bernoulli shift (X,X , µ, S) and (X×Y,X ⊗Y, µ⊗ν, [T, Id]).
These latter two systems are the natural extensions of the former two.

Let us come back to [T, Id]. For every n ≥ 0, set Dn := [T, Id]−n(X ⊗ Y). Call
α = {A0, A1} the partition of X ×Y defined by Ai = {(x, y) ∈ X ×Y : x(0) = i}. Then
under µ⊗ ν,

• the blocks A0 and A1 have probability 1/2;

• the partition α and the σ-field D1 are independent;

• the σ-field generated by α and D1 is D0.

More generally, since [T, Id] preserves µ⊗ν, each σ-field Dn is generated by Dn+1 and the
independent partition [T, Id]−nα into two blocks of probability 1/2 each. In particular,
the sequence (Dn)n≥0 thus defined is decreasing and the partitions ([T, Id]−nα)n≥0 carry
the information lost at each iteration of the map [T, Id].

For every n ≥ 0, and i ∈ {0, 1}, [T, Id]−n(Ai) = {(x, y) ∈ X × Y : x(n) = i}, so the
partition [T, Id]−nα is the partition given by the coordinate n on the factorX = {0, 1}Z+ .
Therefore, the σ-field generated by the partitions ([T, Id]−nα)n≤0 is X ⊗{∅, Y } and not
X ⊗ Y. Hence, natural questions arise.

Exactness

First, consider the asymptotic σ-field

D∞ :=
⋂
n≥0
Dn.

Is it trivial (i.e. does it contain only set having probability 0 or 1 under µ⊗ ν)? If yes,
one says that the measure-preserving map [T, Id] on (X × Y,X ⊗ Y, µ⊗ ν) is exact. As
recalled in the introduction of [4], if [T, Id] is exact, then [T, Id] is a K-automorphism,
which implies that both [T, Id] and [T, Id] are strongly mixing.
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Moreover, the converse (if [T, Id] is a K-automorphism then [T, Id] is exact) holds
provided [T, Id] has a finite generator, that is a finite measurable partition β of X × Y
such that D0 = σ(([T, Id]−nβ)n≥0) modulo the µ⊗ ν-null sets.

Melijson’s theorem [15] shows that [T, Id] is a K-automorphism if T is totally ergodic
(i.e. all positive powers of T are ergodic). Actually, assuming that T is ergodic is
sufficient. A more precise statement, obtained by a different method, is given in [12]:
the endomorphism [T, Id] is exact if and only if T is ergodic. In particular, [T, Id] is
exact when T is an irrational rotation or a Bernoulli shift.

Standardness

We have already noticed that the independent partitions ([T, Id]−nα)n≤0 do not
generate the whole partition D0. Is it still possible to find a sequence (βn)n≥0 of inde-
pendent partitions into two blocks of probability 1/2 each such that for every n ≥ 0,
Dn = σ((βk)k≥n) mod µ ⊗ ν? If yes, one says that the decreasing sequence of σ-fields
(Dn)n≥0, or the measure-preserving map [T, Id] on (X × Y,X ⊗ Y, µ⊗ ν) is standard.

By Kolmogorov zero-one law, exactness of [T, Id] is a necessary condition of stan-
dardness of [T, Id], but this condition is not sufficient: for example when T is a Bernoulli
shift, the map [T, Id] is not standard. A variant of this non-trivial result has been estab-
lished by Heicklen and Hoffman in [5]. Heicklen and Hoffman consider the map [T, T−1],
which can be defined by the same formula as the map [T, Id], provided {0, 1}Z+ is re-
placed by {−1, 1}Z+ . Answering to a question raised by Vershik in [22], they prove that
the map [T, T−1] is not standard when T is a Bernoulli shift. In [12], we prove again
the non-standardness of [T, T−1] with the help of the nibbled-word process introduced
by Stephane Laurent in [10] and show that this proof still works with [T, Id].

The main tools to determine whether a dyadic (or poly-adic) measure-preserving map
is standard or not, are Vershik standardness criteria [22]. As an application, Vershik
states (page 744) that when T is an irrational rotation, the measure preserving map
[T, T−1] is standard. The same arguments work with [T, Id].

This result has a striking probabilistic interpretation: consider a (stationnary) irra-
tional simple symmetric random walk (Xn)n∈Z on the circle R/Z, indexed by Z. The
steps (Xn −Xn−1)n∈Z are independent and uniformly distributed random variables on
{θ,−θ} where θ is some fixed irrational number, and they generate a filtration which
is smaller than (FXn )n∈Z, the natural filtration of (Xn)n∈Z. Yet, one can generate (up
to null sets) (FXn )n∈Z by some sequence of independent uniform Bernoulli random vari-
ables. An explicit construction is given in [11] in a slightly more general context.

In [4], Feldman and Rudolph prove a general result: the measure-preserving map
[T, Id] is standard when T is rank-1. This condition includes all pure-point spectrum
transformations and in particular irrational rotations of the circle.

Bernoulliness

In the same vein, one can also ask two seemingly close questions:

1. Is [T, Id] isomorphic to the bilateral Bernoulli shift S? Equivalently, is it possible
to find a partition β of X × Y into two blocks of probability 1/2 each, such that

the partitions ([T, Id]
−n
β)n∈Z are independent and generate X ⊗Y modulo µ⊗ ν?

2. Is [T, Id] isomorphic to the unilateral Bernoulli shift S? Equivalently, is it possible
to find a partition β of X × Y into two blocks of probability 1/2 each, such that
the partitions ([T, Id]−nβ)n≥0 are independent and generate X ⊗Y modulo µ⊗ ν?
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Call F : X×Y → X×Y the map given by F ((xn)n∈Z, y) = ((xn)n≥0, y). If a partition
β of X × Y fulfills the latter condition, then β := F−1(β) fulfills the former. Hence the
Bernoulliness of [T, Id] implies the Bernoulliness of its natural extension [T, Id].

The Bernoulliness of the non-invertible map [T, Id] also implies its standardness.
Indeed, since [T, Id] preserves the law µ ⊗ ν the equality σ

(
([T, Id]−kβ)k≥0

)
= X ⊗ Y

mod µ⊗ ν implies for every n ≥ 0

(σ([T, Id]−kβ)k≥n) = [T, Id]−n(X ⊗ Y) = Dn mod µ⊗ ν.

Yet, as observed by Hoffman and Rudolph in [6], there is no relation between the
standardness of [T, Id] and the Bernoulliness of [T, Id]. In the one hand, the standardness
of [T, Id] is the possibility to generate the filtration (D−n)n≤0 (obtained by time reversal)
by some sequence of independent uniform Bernoulli random variables. In the other
hand, the Bernoulliness of [T, Id] is the existence of one measurable finite partition β
of the space X × Y whose images by all the powers (positive, null and negative) of
[T, Id] are independent and generate the whole σ-field X ⊗ Y modulo the null sets.
The former property requires adaptation to some filtration whereas the latter requires
stationarity. Indeed, various examples and counter-examples confirm the absence of
implication between these two properties. See also [7].

When T is a Bernoulli shift, the endomorphisms [T, Id] and [T, T−1] are not Bernoulli
since they are not standard. Yet, Feldman observes that the automorphism [T, Id] is
Bernoulli and has a simple independent generator (Theorem 2 in [3]). But later, Kalikow
as shown that the automorphism [T, T−1] is not Bernoulli (see [8]).

In 1972-1974, Adler and Shields proved in [1, 2] the Bernoulliness of many measure
preserving maps including [T, Id] when T is an irrational rotation.

In 2002, Rudolph and Hoffman proved in [6] the Bernoulliness of [T, Id] itself when
T is an irrational rotation. Their proof is not constructive and relies on the notion of
tree very weak Bernoulli endomorphism.

Constructive proof of Bernoulliness in the case of irrational rotations

Actually, a few years before, Parry gave in [16] a constructive proof of the Bernoulli-
ness of [T, Id] in a very particular case. Let us detail Parry’s result.

For any real number θ (rational or not), let the map Tθ : y 7→ (y + θ) mod 1 is an
automorphism of the unit interval I = [0, 1[ endowed with the Borel σ-field and Lebesgue
measure ν. Set Sθ = [Tθ, Id]. Since the maps Tθ and Sθ depend only on the fractional
part of θ, we may and we will assume from now on that θ ∈ [0, 1[.

On the set X×I, the partition α associated to the map (x, y) 7→ x(0) has two blocks
with probability 1/2, it is independent of D1 and we have D0 = σ(α)∨D1. Parry defines
another partition αθ = {Aθ0, Aθ1} by

Aθ0 = {x ∈ X : x(0) = 0} × [0, θ[ ∪ {x ∈ X : x(0) = 1} × [0, 1− θ[,

Aθ1 = {x ∈ X : x(0) = 0} × [θ, 1[ ∪ {x ∈ X : x(0) = 1} × [1− θ, 1[.

By construction, for every (x, y) ∈ X × I,

(x, y) ∈ Aθ0 ⇐⇒ x(0) = 1[θ,1[(T
x(0)
θ (y)).

But x(0) is a σ(α)-measurable function of (x, y), whereas T
x(0)
θ (y) - the second com-

ponent of Sθ(x, y) - is a D1-measurable function of (x, y). Hence, µ ⊗ ν[Aθ0|D1] = 1/2,
so
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• the blocks Aθ0 and Aθ1 have probability 1/2;

• the partition αθ and the σ-field D1 are independent;

• the σ-field generated by αθ and D1 is D0.

Therefore, (S−nθ αθ)n≥0 are independent and uniform partitions into two blocks.

For every (x, y) ∈ X × I, denote by αθ(x, y) = 1Aθ1
(x, y) the index of the only block

containing (x, y) in the partition αθ and set

Φθ(x, y) =
(
(αθ ◦ Snθ )(x, y)

)
n≥0.

Then the ‘αθ-name’ map Φθ : X × I→ X thus defined is a factor map which sends the
dynamical system (X × I,X ⊗ B(I), µ⊗ ν, Sθ) on the Bernoulli shift (X,X , µ, S). This
factor map is more interesting than the canonical projection from X × I to X.

When θ is irrational and under the very strong assumption

lim inf
q→+∞

q44q
2

dist(θ, q−1Z) = 0,

Parry proves that the partitions (S−nθ αθ)n≥0 generate the whole σ-field X ⊗B(I) modulo
the null sets, so the map Φθ is an explicit isomorphism between Sθ = [Tθ, Id] and the
dyadic unilateral Bernoulli shift S.

In the present paper, we improve on Parry’s method and relax Parry’s additional
assumption into far weaker conditions.

Theorem 1 Parry’s map Φθ is an isomorphism between [Tθ, Id] and the Bernoulli shift
S whenever

inf
q≥1

q4 dist(θ, q−1Z) = 0. (1)

Theorem 2 Set ||θ|| = dist(θ,Z) = [0; a1, a2, . . .] and call (pn/qn)n≥0 the sequence of
convergents. Then Parry’s map is an isomorphism between the map [Tθ, Id] and the
unilateral dyadic Bernoulli shift whenever

inf
n≥1

q3n (a1 + · · ·+ an) |qnθ − pn| = 0.

Actually, theorem 2 is a generalization of theorem 1. Indeed, if the condition of
theorem 1 holds, then one can find integers q such that q4 dist(θ, q−1Z) is as small as
one wants and in particular less that 1/2. These integers q are necessarily denominators
of convergents of the expansion of θ and also of ||θ|| in continued fractions, since

q2 dist(||θ||, q−1Z) = q2 dist(θ, q−1Z) ≤ q4 dist(θ, q−1Z) < 1/2.

Moreover, since the partial quotients a1, a2, . . . are greater or equal to 1, a recursion on
n shows that for every n ≥ 1,

qn ≥ a1 + a1a2 + · · ·+ a1 · · · an ≥ a1 + a2 + · · ·+ an.

Hence the condition of theorem 1 implies the condition of theorem 2. Yet, theorem 1 is
much simpler to establish, that is why we will prove it first.
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A theorem of Khintchine [9] states that of θ is chosen randomly according to the
Lebesgue measure on [0, 1[, then

a1 + · · ·+ an
n ln(n)

→ ln 2 in probability.

But qn is at least equal to φn, where φ is the golden ratio (since dist(θ,Z) < 1/2). Hence
the typical size of a1 + · · ·+ an is O(ln qn ln(ln qn)).

Unfortunately, the set of all θ satisfying the condition of theorem 2 has a zero
Lebesgue measure. Yet, one can construct uncontably many such θ, either as the inter-
section of nested intervals of the form [p/q−εq/q4, p/q−εq/q4] where the εq are positive
real numbers tending to 0, or by choosing recursively the sequence (an)n≥1 in such a
way that

inf
n≥1

qn (a1 + · · ·+ an)/an+1 = 0.

This is sufficient since for every n ≥ 0, |qnθ − pn| < 1/(an+1qn).

Whether the diophantine condition on θ can be removed or not is still an open
question. To indicate the remaining gap, recall that the theory of continued fractions
yields

lim inf
q→+∞

q2 dist(θ, q−1Z) ≤ 1/
√

5 for every θ ∈ R,

and Khintchine theorem [9] yields that for every non-increasing function ψ : R∗+ → R∗+,

lim inf
q→+∞

q

ψ(q)
dist(θ, q−1Z) =

∣∣∣∣ 0
+∞ for almost every θ if

∑
q≥1

ψ(q)

∣∣∣∣ = +∞
< +∞ .

For example,

lim inf
q→+∞

q2 ln(q) ln(ln(q)) dist(θ, q−1Z) = 0 for almost every θ ∈ R.

2 Strategy of the proof

Let us first reformulate the strategy used by Parry. The reader will find at the end of
the paper an index recalling the main notations used throughout the paper.

2.1 Parry’s method

Recall that we assume that the irrational number θ lies in ]0, 1[.

Each element (x, y) ∈ X × I has exactly two inverse images by Sθ, which are (0x, y)
and (1x, T−1θ (y)). One of them belongs to Aθ0 and the other one to Aθ1, respectively

F θ0 (x, y) =
(
1[θ,1[(y)x, fθ0 (y)

)
where fθ0 (y) = T

−1[θ,1[(y)

θ (y) = y − θ1[θ,1[(y),

F θ1 (x, y) =
(
1[0,θ[(y)x, fθ1 (y)

)
where fθ1 (y) = T

−1[0,θ[(y)

θ (y) = y + (1− θ)1[0,θ[(y).

As a result, for every (x, y) ∈ X × I,

(x, y) = F θαθ(x,y)(Sθ(x, y)),

and of course the same formula hold when we replace (x, y) by Snθ (x, y) for every n ≥ 0.
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We have to prove that outside of null set, (x, y) can be recovered from the knowledge
of its αθ-name Φθ(x, y) =

(
(αθ ◦Snθ )(x, y)

)
n≥0. Checking that y can be recovered is suf-

ficient, since it implies (by translation) that the second component of each αθ(S
n
θ )(x, y),

namely (y + (x(0) + · · · + x(n − 1))θ) mod 1 can be recovered, so the sequence x can
also be recovered.

To do this, Parry fixes an extremely good rational approximation r = p/q of the
irrational number θ, where q > p > 0 are relatively prime integers, and he approaches
the map Sθ = [Tθ, Id] by Sr = [Tr, Id].

Unlike Tθ, the rotation Tr is not ergodic since it preserves the partition of I into q
intervals with lengths 1/q. One checks that the factor map Ψr : X × I→ X × [[0, q − 1]]
defined by Ψr(x, y) = (x, bqyc) transforms the measure preserving map Sr = [Tr, Id]
into a discrete analogue, namely Sp,q = [Tp,q, Id] where Tp,q is the permutation map on
[[0, q − 1]] defined by Tp,q(z) = (z + p) mod q. Since Tp,q preserves νq, the uniform law
on [[0, q − 1]], the map Sp,q preserves µ⊗ νq.

Moreover, Ψr sends the partion αr on the partition αp,q = {Ap,q0 , Ap,q1 } where

Ap,q0 = {x ∈ X : x(0) = 0} × [[0, p− 1]] ∪ {x ∈ X : x(0) = 1} × [[0, q − 1− p]],

Ap,q1 = {x ∈ X : x(0) = 0} × [[p, q − 1]] ∪ {x ∈ X : x(0) = 1} × [[q − p, q − 1]].

Like before, each element (x, z) ∈ X × [[0, q − 1]] has exactly two inverse images by
Sp,q, which are (0x, z) and (1x, (z − p) mod q). One of them belongs to Ap,q0 , namely

F p,q0 (x, z) =
(
1[[p,q−1]](z)x, f

p,q
0 (z)

)
where fp,q0 (z) = z − p1[[p,q−1]][(z),

and the other one belongs to Ap,q1 , namely

F p,q1 (x, z) =
(
1[[0,p−1]](z)x, f

p,q
1 (z)

)
where fp,q1 (z) = z + (q − p)1[[0,p−1]](z).

As a result, for every (x, z) ∈ X × I,

(x, z) = Fαp,q(x,z)(Sp,q(x, z)).

For every n ≥ 0, call zn the second component of Snp,q(x, z). Then the equality

(x, z) = F p,qαp,q(x,z) ◦ F
p,q
αp,q◦Sp,q(x,z) ◦ · · · ◦ F

p,q

αp,q◦Sn−1
p,q (x,z)

(Snp,q(x, z))

yields
z = fp,qαp,q(x,z) ◦ f

p,q
αp,q◦Sp,q(x,z) ◦ · · · ◦ f

p,q

αp,q◦Sn−1
p,q (x,z)

(zn).

Then Parry uses a coupling-from-the-past argument: he establishes the existence of
some `-uple (i1, . . . , i`) ∈ {0, 1}` with length ` ≤ q2 such that the map fp,qi` ◦ · · · ◦ f

p,q
i1

is

constant. 1 But when (x, z) is randomly chosen according to the law µ⊗νq, the indexes
(αp,q ◦Snp,q(x, z))n≥0 form an i.i.d. uniform Bernoulli sequence. Almost surely, the word
(i`, . . . , i1) appears infinitely many times in this sequence, so the value z is completely
determined by the indexes (αp,q ◦ Snp,q(x, z))n≥0.

1To get such an `-uple, set in+1 = 1[[0,p−1]](un) for every n ≥ 0, where un = (fp,qin ◦ · · · ◦ f
p,q
i1

)(0).
This recursion begins with u0 = 0 ∈ [[0, p− 1]], so i1 = 1. Then un+1 = fin+1(un) = (un − p) mod q for
every n ≥ 0. Since p and q are relatively prime, the sequence (un)n≥0 visits every element of [[0, p− 1]]
and is q-periodic. For the same reason, q is the least period of the map z 7→ 1[[0,p−1]](z mod q).

Now, consider the sequence given by vn = (fp,qin ◦· · ·◦f
p,q
i1

)(v0) where v0 ∈ [[1, p−1]] is any other starting
point. For every n ≥ 0, vn+1 = (vn− p) mod q or vn+1 = vn according that 1[[0,p−1]](vn) = 1[[0,p−1]](un)
or not. Thus, if the difference dt = (vt − ut) mod q is not 0 at a given time t, there exists some
n ∈ [[t + 1, t + q]] such that dn = (dt + p) mod q: otherwise, the equality 1[[0,p−1]](vn) = 1[[0,p−1]](un)
would hold during the time interval [[t, t+q−1]], so the map z 7→ 1[[0,p−1]](z mod q) would be dt-periodic.
Hence the sequence (dn)n≥0 reaches 0 in at most q(q − 1) steps.
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Using the factor map Ψr, one deduces that for µ⊗ ν-almost every (x, y) ∈ x× I, the
integer bqyc is completely determined by the indexes (αr ◦ Snr (x, z))n≥0. Furthermore,
the probability that the knowledge of the first `n indexes is not sufficient is at most
(1 − 2−`)n ≤ exp(−n2−`): to see this, split these indexes into n disjoint intervals with
length ` each. This upper bound invites us to choose n much larger than 2`.

Using the extremely good approximation of θ by r, one can check that the integer
bqyc is determined with probability close to 1 by the indexes (αθ ◦ Snθ (x, z))n≥0. The
result follows by using better and better approximations.

Actually, given an extremely good rational approximation r of θ, Parry uses the
following upper bound of the relative entropy when n ≥ 1 and 2n|θ − r| is small:

H(S−nr αr|S−nθ αθ) ≤ −2n|θ − r| log2(2n|θ − r|).

2.2 Our refinements and key tools

Following Parry’s method and keeping the notations above, we bring two improvements,
which require less precision in the approximation of θ by rational numbers.

First, whereas Parry proved the existence of one constant map obtained by cou-
pounding q2 maps chosen in {fp,q0 , fp,q1 }, our first improvement is to get many constant
maps by composing O(q3) such maps.

Theorem 3 Let (ηt)t≥1 be a sequence of independent uniform Bernoulli random vari-
ables. Set

T p,qc = inf{t ≥ 0 : fp,qηt ◦ · · · ◦ f
p,q
η1 is a constant function}.

Moreover, let Z0 be a uniform random variable with values in [[0, q−1]] and independant
of (ηt)t≥1. Fix z′0 ∈ [[0, q − 1]] and set

T p,q
f,z′0

= inf{t ≥ 0 : fp,qηt ◦ · · · ◦ f
p,q
η1 (Z0) = fp,qηt ◦ · · · ◦ f

p,q
η1 (z′0)}.

Then
E[T p,qc ] ≤ 5q3/3 and (q2 − 1)/6 ≤ E[T p,q

f,z′0
] ≤ q3/3.

Actually, we will only use the upper bound of E[T p,q
f,z′0

], which is easier to prove.

Next, instead of introducing the partition of I into q intervals with lengths 1/q, we
will consider only the partition into q intervals provided by the subdividision (xk)0≤k≤q−1,
where xk = kθ − bkθc = T kθ (0) for every k ≥ 0.

The well-known three gaps [19, 20, 21, 14] theorem states that the lengths of those
intervals take at most three distinct value and that when there are exactly three different
lengths, the largest is the sum of the other two. Actually, the next proposition shows
that when p/q is a reasonably good rational approximation of θ, there are at most two
distinct values.

To abbreviate the notations, when there is no ambiguity on the approximation p/q
considered, we will sometimes abbreviate fp,q0 and fp,q1 into f0 and f1. In the same
way, we will not always indicate the dependance with regard to (p, q) of many objects
introduced below, namely the partition ι of I, the set L, the maps g0, g1 and h below.
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Proposition 4 Fix two relatively prime integers q > p > 0. Call h the permutation
map on [[0, q − 1]] defined by h(`) = (p`) mod q. Let u = h−1(1) be the inverse of p
modulo q, and v ∈ [[0, p− 1]] the integer such that pu− qv = 1. Set

I` = [x`, x`+u[ if ` ∈ [[0, q − u− 1]]

I` = [xq−u, 1[ if ` = q − u
I` = [x`, x`+u−q[ if ` ∈ [[q − u+ 1, q − 1]],

and E = [0, qθ − p[ if θ > p/q, E = [1 + qθ − p, 1[ if θ < p/q. Assume that

−1

u
< qθ − p < 1

q − u
or, equivalently,

v

u
< θ <

p− v
q − u

.

Then

1. the sequence (xh−1(k))0≤k≤q−1 is increasing.

2. the intervals (I`)0≤`≤q−1 form a partition ι of I;

3. the intervals (I`)0≤`≤q−u−1 have the same length uθ − v;

4. the intervals (I`)q−u≤`≤q−1 have the same length (p− v)− (q − u)θ;

5. if |qθ − p| < min(1/u, 1/(q − u)), both lengths are less than 2/q;

6. for every ` ∈ [[0, q − 1]] \ {q − u− 1, q − 1}, the rotation Tθ maps I` onto I`+1;

7. if θ > p/q, then Tθ(Iq−1) = I0 \ E and Tθ(Iq−u−1) = Iq−u ∪ E;

8. if θ < p/q, then Tθ(Iq−1) = I0 ∪ E and Tθ(Iq−u−1) = Iq−u \ E.

Remark 5 Actually, the inequalities −1/u < qθ − p < 1/(q − u) hold if and only if
p/q is a semi-convergent (or, according to Khintchine’s terminology, an intermediate
fraction) in the continued fraction expansion of θ. See [13] for a proof of this statement.
The stronger inequality |qθ − p| < 1/q holds whenever p/q is a convergent.

Proposition 4 provides a decomposition of I into two Rokhlin towers with heights
q− u and u (see figures 1 and 2). If I` is not a top interval, Tθ maps each point of I` on
the point above in I`+1. The curved arrows show the image of the top intervals. Note
that the difference between the two lengths, |qθ−p| is also the length of the exceptional
interval E.

For every y ∈ I, denote by ι(y) the only index ` ∈ [[0, q − 1]] such y ∈ I`. When
|qθ − p| is small with regard to 1/q, the lengths of the intervals (I`)0≤`≤q−1 are almost
1/q, so the map ι : I→ [[0, q − 1]] thus defined is close to be a factor map transforming
Tθ into the νq-preserving map T1,q : z 7→ (z + 1) mod q. To use a coupling-from-the-
past argument, we will work with inverses of these maps, i.e. with the maps T−θ and
T−1,q : z 7→ (z − 1) mod q.

Corollary 6 Under the assumptions of proposition 4, E is a subinterval of length |qθ−p|
and the equality ι(T−θ(y)) = T−1,q(ι(y)) holds everywhere on I \ E.
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x1

xu−1

xq−1

xu+1

xu

x1

xq−u

xq−u+1

xq−1

xq−u−1

1

1− θ

0 = x0
E

Figure 1: Behaviour of Tθ on the intervals I0, . . . , Iq−1 when θ > p/q.

x1

xq−u−1

0 = x0 xu

xu+1

xu−1

x1

1xq−u

xq−u+1

xq−1

E

xq−1

1− θ

Figure 2: Behaviour of Tθ on the intervals I0, . . . , Iq−1 when θ < p/q.
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Consider again the maps fθ0 and fθ1 defined by

fθ0 (y) = y − θ1[θ,1[(y) and fθ1 (y) = y + (1− θ)1[0,θ[(y)

Set Lp,q = h−1([[0, p− 1]]). Then 0 ∈ Lp,q whereas q − u /∈ Lp,q, and

[0, θ[= [x0, x1[=
⋃

`∈Lp,q

I`.

Define two maps gp,q0 and gp,q1 from [[0, q − 1]] to itself by

gp,q0 (`) = `− 1Lcp,q(`) mod q and gp,q1 (`) = `− 1Lp,q(`) mod q.

Indeed, corollary 6 yields the following consequence.

Corollary 7 Assume that |qθ − p| < 1/(q − 1) and keep the notations of corollary 6.

If θ > p/q, then the equality ι(fθ0 (y)) = gp,q0 (ι(y)) holds everywhere on I and the
equality ι(fθ1 (y)) = gp,q1 (ι(y)) holds everywhere on I \ E.

If θ < p/q, then the equality ι(fθ1 (y)) = gp,q1 (ι(y)) holds everywhere on I and the
equality ι(fθ0 (y)) = gp,q0 (ι(y)) holds everywhere on I \ E.

Actually, the maps g0 = gp,q0 and g1 = gp,q1 are conjugated to the maps f0 = fp,q0 and
f1 = fp,q1 previously introduced (see figure 3 below).

Lemma 8 One has h ◦ g0 = f0 ◦ h and h ◦ g1 = f1 ◦ h.

Proof. Let ` ∈ [[0, q − 1]]. Then h(g0(`)) and f0(h(`)) belong to [[0, q − 1]] and

h(g0(`)) ≡ pg0((`) ≡ p`− p1Lc(`) ≡ h(`)− p1[[p,q−1]](h(`)) = f0(h(`)) [q].

Hence h(g0(`)) = f0(h(`)). A similar proof yields h(g1(`)) = f1(h(`)).

Therefore, theorem 3 can be reformulated and precised as follows.

Theorem 9 Let (ηt)t≥1 be a sequence of independent uniform Bernoulli random vari-
ables. Set

T p,qc = inf{t ≥ 0 : gp,qηt ◦ · · · ◦ g
p,q
η1 is a constant function}.

Then the expectation of Tc is at most 5q3/3. Moreover, let Z0 be a uniform random
variable with values in [[0, q − 1]] and independent of (ηt)n≥1. Fix z′0 ∈ [[0, q − 1]] and set

T p,q
g,z′0

= inf{t ≥ 0 : gp,qηt ◦ · · · ◦ g
p,q
η1 (Z0) = gp,qηt ◦ · · · ◦ g

p,q
η1 (z′0)}.

Then

E[T p,qc ] ≤ 5q3/3 and
q2 − 1

6
≤ E[T p,q

g,z′0
] ≤ q3

3
.

We provide also a sharper upper bound relying on the expansion of dist(θ,Z) in
continued fraction.

Theorem 10 Keep the notations of theorem 9, set dist(θ,Z) = [0; a1, a2, . . .] and call
(pn/qn)n≥0 the sequence of convergents. Then

E[T pn,qn
g,z′0

] ≤ q2n × (a1 + . . .+ an).

11



0 1 3 4 5 6 7 8 9

0 1 2 3 4 5 6 7 8 9

f0

f1

g0

h

g1

2

Figure 3: The maps f0, f1, h, g0, g1 when p = 3 and q = 10, so u = 7, v = 2 and
L = {0, 4, 7}.

We will prove theorem 9 in section 4.

Let us make an observation (not used in the sequel) on the set L. Figure 3 suggests
that its points are well spread in the set [[0, q − 1]]. Indeed, the next statement holds.

Proposition 11 Assume that p ≥ 2. Call 0 = z0 < . . . < zp−1 the points of L. Then
the differences z1 − z0, . . . , zp−1 − zp−2, q − zp−1 are equal to bq/pc or dq/pe.

Proof. Since up− vq = 1, one has

u

q
− v

p
=

1

pq
<

1

p(p− 1)
.

Hence proposition 4 applies, with θ, p and q replaced by u/q, v and p. We get that
the points (ku/q mod 1)0≤k≤p−1 split the interval [0, 1[ into p intervals having only two
different lengths, and the difference between these lengths is p(u/q)−v = 1/q. Therefore,
the points (ku mod q)0≤k≤p−1 split the interval [0, q[ into p intervals having only two
different lengths, and the difference between these lengths is 1. Since

L = h−1
(
[[0, p− 1]]

)
= {ku mod q : 0 ≤ k ≤ p− 1},

the statement follows.

2.3 End of the proof

Recall that we only have to prove that for µ⊗ ν-almost every (x, y) ∈ X × I, the second
component y can be recovered from the knowledge of the sequence

(
(αθ ◦Snθ )(x, y)

)
n≥0.
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It is now convenient to introduce probabilistic notations. We consider a stationary
Markov chain (ξn, Yn)n∈Z defined on some probability space (Ω,A,P), with values in
{0, 1} × I, such that for every n ∈ Z,

• the law of (ξn, Yn) is µ⊗ ν;

• ξn is independent of Fξ,Yn−1 := σ((ξk, Yk)k≤n−1);

• Yn = (Yn−1 − θξn) mod 1.

If we identify the unit interval I with the circle R/Z, then (Yn)n∈Z is just a random
walk whose steps (−θξn)n∈Z are uniformly distributed on {0,−θ}. The Markov chain
(ξn, Yn)n∈Z is related to the measure preserving map Sθ = [Tθ, Id] by the relations

Sθ((ξn−k)k≥0, Yn) = ((ξn−1−k)k≥0, Yn−1).

Note that Y0 is independent of the sequence (ξn)n≤0. Indeed, for every n ≤ 0, one has

Y0 = T
ξn+1+···+ξ0
−θ (Yn). But Yn is independent of (ξn+1, · · · , ξ0) and its law ν is invariant

by T−θ. Hence Y0 is also independent of (ξn+1, · · · , ξ0).
We now construct another sequence (ηn)n∈Z of uniform Bernoulli random variables

governing the Markov chain (Yn)n∈Z. For every n ∈ Z, set

ηn = αθ((ξn−k)k≥0, Yn)

= 1[ξn=0;Yn≥θ] + 1[ξn=1;Yn≥1−θ]

= 1[ξn=0;Yn−1≥θ] + 1[ξn=1;Yn−1<θ]

=
(
ξn + 1[Yn−1≥θ]

)
mod 2.

By construction, ηn is a Fξ,Yn -measurable Bernoulli random variable, and

P
[
ηn = 1

∣∣Fξ,Yn−1] = E
[
ηn
∣∣Fξ,Yn−1] =

1

2
1[Yn−1≥θ] +

1

2
1[Yn−1<θ] =

1

2
,

so ηn is independent of Fξ,Yn−1 and uniform. Moreover, since ξn =
(
ηn+1[Yn−1≥θ]

)
mod 2,

one has [ξn = 1] = [ηn = 1]4[Yn−1 ≥ θ], so one checks that

Yn = fθηn(Yn−1).

Note that when n ≤ 0, ηn = αθ ◦ S
|n|
θ

(
(ξ−k)k≥0, Y0

)
. Hence, we get the following

probabilistic reformulation of what we have to prove.

Proposition 12 The following statements are equivalent

1. the partition αθ is a generator of the endomorphism Sθ.

2. for µ ⊗ ν-almost every (x, y) ∈ X × I, the second component y can be recovered
from the knowledge of the sequence Φθ(x, y) =

(
(αθ ◦ Snθ )(x, y)

)
n≥0.

3. the value Y0 is almost surely determined by the knowledge of the sequence (ηn)n≤0.
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Proof. The equivalence 1 ⇐⇒ 2 follows the remarks made at the beginning of sub-
section 2.1.

The equivalence 2 ⇐⇒ 3 follows from the equality (η−n)n≥0 = Φθ

(
(ξ−n)n≥0, Y0

)
.

Indeed, given any measurable function ψ : {0, 1}Z+ → I, we derive

P
[
Y0 = ψ

(
(η−n)n≥0

)]
= (µ⊗ ν){(x, y) ∈ X × I : y = ψ(Φθ(x, y))},

since (η−n)n≥0 and Y0 are independent with respective laws µ and ν.

The proof is complete.

To approach Y0 in probability by measurable fonctions of the sequence (ηn)n≤0, we
fix two integers q > p > 0 such that |qθ − p| < 1/(q − 1), we consider the partition
ι provided by proposition 4 and the associated map ι : I → [[0, q − 1]]. Then, we set
Zn = ι(Yn) for every n ≤ Z. Corollaries 6 and 7 show that the recursion formula
Zn = gp,qηn (Zn−1) holds with probability close to 1.

Lemma 13 Assume that |qθ − p| < 1/(q − 1) and keep the notations of corollary 6.
Then for every n ∈ Z,

1. If θ > p/q, then [Zn 6= gp,qηn (Zn−1)] = [ηn = 1 ; Yn−1 < qθ − p].

2. If θ < p/q, then [Zn 6= gp,qηn (Zn−1)] = [ηn = 0 ; Yn−1 ≥ 1 + qθ − p].

In both cases,

P
[
Zn 6= gp,qηn (Zn−1)

]
=

1

2
|qθ − p|.

We have now all the ingredients to deduce theorems 1 and 2 from theorems 9 and 10.
The final argument is given by the next lemma.

Lemma 14 Assume the existence of a sequence of rational numbers (pn/qn)n≥1 in ]0, 1[,
written in irreducible form such that limn→+∞ qn = +∞ and

lim
n→+∞

E[T pn,qng,0 ]× |qnθ − pn| = 0.

Then the equivalent statements of proposition 12 are true.

Proof. Given ε ∈]0, 1[, one can fix two integers q ≥ 5 and p ∈ [[1, q − 1]] such that

E[T p,qg,0 ]× |qθ − p| ≤ ε2.

Since

(q − 1) ≤ q2 − 1

6
≤ E[T p,qg,0 ],

one has (q − 1)|qθ − p| ≤ ε2 < 1, so the results of the last subsection apply.

We now omit the superscripts p, q. For every t ≥ 1, set Gt = gηt ◦ · · · ◦ gη1 and
Zt = ι(Yt). Let t(ε) = bE[Tg,0]/εc. By Markov inequality,

P[Gt(ε)(Z0) 6= Gt(ε)(0)] = P[T p,qg,0 ≥ t(ε) + 1] ≤
E[T p,qg,0 ]

t(ε) + 1
≤ ε.
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But

[Zt(ε) 6= Gt(ε)(Z0)] ⊂
t(ε)⋃
t=1

[Zt 6= gηt(Zt−1)],

so lemma 13 yields

P[Zt(ε) 6= Gt(ε)(Z0)] ≤ t(ε)×
1

2
|qθ − p| ≤ 1

2
ε−1E[T p,qg,0 ]|qθ − p| ≤ ε/2.

Hence,
P[Zt(ε) 6= Gt(ε)(0)] ≤ 3ε/2.

Let ζ = g0 ◦ · · · ◦ gη−t(ε)+1
(0) and call Υ0 the middle of the interval Iζ (remind that the

length of this interval is at most 2/q). Then Υ0 is a measurable function of the sequence
(ηt)t≤0 and by stationarity,

P
[
|Y0 −Υ0| > 1/q

]
≤ P[Y0 /∈ Iζ ] = P[Z0 6= ζ] ≤ 3ε/2.

Since ε can be taken as small as one wants, the conclusion follows.

3 Proof of proposition 4

Let us define real numbers y0, . . . , yq−1 in the same way as x0, . . . , xq−1 by replacing θ
with p/q: for every ` ∈ [[0, q − 1]], let

y` := `× p

q
−
⌊
`× p

q

⌋
=

(`p)mod q

q
=
h(`)

q
.

Then for every k ∈ [[0, q − 1]], yh−1(k) = k/q, so 0 = yh−1(0) < yh−1(1) < . . . < yh−1(q−1).
The idea is to check that inequalities −1/u < qθ − p < 1/(q − u) imply that the real
numbers x0, . . . , xq−1 are close to real numbers y0, . . . , yq−1 and are in the same order.

Preliminary. First, let us prove that

∀k ∈ [[0, q − 1]], xh−1(k) =
k

q
+ h−1(k)

(
θ − p

q

)
. (2)

In equality 2, equality modulo 1 follows from the definition of xh−1(k) and yh−1(k) and
from the equality yh−1(k) = k/q. So it remains to check that the right-hand side belongs
to [0, 1[, like xh−1(k).

If k > 0, the inequalities qθ − p > −1/u and h−1(k) ≤ ku (since ku ≥ 0 and
h−1(k) = (ku) mod q) yield

k

q
+ h−1(k)

(
θ − p

q

)
≥ k

q
− h−1(k)

qu
≥ 0,

whereas the inequalities h−1(k) > 0, qθ − p < 1/(q − u) and h−1(k) ≤ (q − k)(q − u)
(since h−1(k) = ((q − k)(q − u)) mod q and (q − k)(q − u) ≥ 0) yield

k

q
+ h−1(k)

(
θ − p

q

)
<
k

q
+

h−1(k)

q(q − u)
≤ k

q
+
q − k
q

= 1.

Equality 2 follows. If k = 0, then h−1(k) = 0, so the equality 2 still holds.
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Proof of items 1, 2, 3 and 4. For every k ∈ [[0, q−2]], h−1(k+ 1) ≡ h−1(k) +u [q].

If h−1(k) ≤ q − u − 1, then h−1(k + 1) = h−1(k) + u, so equality 2, inequality
qθ − p > −1/u and equality up− vq = 1 yield

xh−1(k+1) − xh−1(k) =
1

q
+ u
(
θ − p

q

)
= uθ − v > 0.

If q−u ≤ h−1(k) ≤ q−2, then h−1(k+1) = h−1(k)−(q−u), so equality 2, inequality
qθ − p < 1/(q − u) and equality up− vq = 1 yield

xh−1(k+1) − xh−1(k) =
1

q
− (q − u)

(
θ − p

q

)
= (p− v)− (q − u)θ > 0.

By the same arguments, we have also

1− xh−1(q−1) =
1

q
− (q − u)

(
θ − p

q

)
= (p− v)− (q − u)θ > 0.

As a result, we get 0 = xh−1(0) < xh−1(1) < . . . < xh−1(q−1) < 1, so the intervals
Jk = [xh−1(k), xh−1(k+1)[ for k ∈ [[0, q − 2]] and Jq−1 = [xh−1(q−1), 1[ form a partition of
I. But Jk = Ih−1(k) for every k ∈ [[0, q − 1]]. Items 1, 2, 3 and 4 follow.

Proof of item 5. Under the assumption of item 5 that |qθ−p| < min(1/u, 1/(q−u)),
we have

uθ − v = u
(
θ − p

q

)
+ u

p

q
− v < u

qu
+

1

q
=

2

q

and

(p− v)− (q − u)θ = (p− v)− (q − u)
p

q
− (q − u)

(
θ − p

q

)
≤ 1

q
+

q − u
q(q − u)

=
2

q
.

Items 5 follows.

Proof of items 6, 7 and 8. By definition, the map Tθ coincides with a translation
on each interval [0, 1− θ[ and [1− θ, 1[, sends 1− θ on 0 and sends each x` on xl+1. To
derive item 6, it suffices to check that 1− θ belongs to Iq−u−1 or to Iq−1. To do this, we
use again equality 2 and and equality up− vq = 1.

Since q − u− 1 = h−1(q − 1− p), so we get

xq−u−1 − (1− θ) =
q − 1− p

q
+ (q − u− 1)

(
θ − p

q

)
+ θ − 1

= (q − u)θ − (p− v) < 0.

If u 6= 1, then p 6= 1, so 0 ≤ q + 1− p ≤ q − 1 and u− 1 = h−1(q + 1− p). We get

xu−1 − (1− θ) =
q + 1− p

q
+ (u− 1)

(
θ − p

q

)
+ θ − 1

= uθ − v > 0.

Last, q − 1 = h−1(q − p), so we get

xq−1 − (1− θ) =
q − p
q

+ (q − 1)
(
θ − p

q

)
+ θ − 1

= qθ − p.
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If θ > p/q, we get xq−u−1 < 1− θ < xq−1, so 1− θ ∈ [xq−u−1, xq−1[= Iq−u−1 and

Tθ(Iq−u−1) = [xq−u, 1[ ∪ [0, xq−1 + θ − 1[ = Iq−u ∪ [0, qθ − p[.

Tθ(Iq−1) = [xq−1 + θ − 1, xu[ = [qθ − p, xu[ = I0 \ [0, qθ − p[.

If θ ≤ p/q, we get that 1 − θ ∈ Iq−1 since Iq−1 = [xq−1, xu−1[ if u 6= 1 and Iq−1 =
[xq−1, 1[ otherwise. As Tθ sends the upper bound of Iq−1 on xu, we get

Tθ(Iq−1) = [xq−1 + θ, 1[ ∪ [0, xu[ = [1 + qθ − p, 1[ ∪ I0.

Tθ(Iq−u−1) = [xq−u, xq−1 + θ − 1[ = [xq−u, 1 + qθ − p[ = Iq−u \ [1 + qθ − p, 1[.

Items 6,7 and 8 follow.

4 Proof of theorem 9

We will use repeatedly the following classical fact (see for example [18], chapter 10,
section 14, subsection 4): given two positive integers a and b, the expected reaching
time of {−a, b} by a simple symmetric random walk in Z starting at 0 is ab. As a result,
given two integers ` ≥ k ≥ 0 the expected reaching time of 0 by a simple symmetric
random walk in Z/`Z starting at k is k(`− k).

Since the integers q > p > 0 are fixed, we omit the superscripts p, q. We begin the
proof with the second part, since it is simpler and helps us to prove the first part.

4.1 Proof of the second part

For every t ≥ 0, set Ft = σ(Z0, η1, . . . , ηt),

Zt = gηt ◦ · · · ◦ gη1(Z0), Z ′t = gηt ◦ · · · ◦ gη1(z′0), Xt = Zt − Z ′t,

where the bar indicates the equivalence class in Z/qZ. Then

Tg,z′0 = inf{n ≥ 0 : Xt = 0}.

After time Tg,z′0 , the processes Z and Z ′ coincide, so X stays at 0.

By construction, the processes Z = (Zt)t≥0 and Z ′ = (Z ′t)t≥0 are Markov chains in
the filtration (Ft)t≥0. The definition of the maps g0 and g1 yields for every n ≥ 1

Zt = gηt(Zt−1) = (Zt−1 − ξt) mod q where ξt = (ηt + 1Lc(Zt−1)) mod 2,

Z ′t = gηt(Z
′
t−1) = (Z ′t−1 − ξ′t) mod q where ξ′t = (ηt + 1Lc(Z

′
t−1)) mod 2.

The random variables ξt and ξ′t are Ft-measurable and are uniform on {0, 1} conditionally
on Ft−1; they coincide on the event [1L(Zt−1) = 1L(Z ′t−1)] and add up to 1 on its
complement. Hence

Xt = Xt−1 − 2ξt − 1 if 1L(Zt−1) 6= 1L(Z ′t−1)
Xt = Xt−1 otherwise.

Define stopping times (τn)n≥0 and (σn)n≥1 by τ0 = 0 and for every n ≥ 1,

σn = inf{t ≥ τn−1 : 1L(Zt) 6= 1L(Z ′t)} and τn = σn + 1.
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Therefore

τn = inf{t > τn−1 : Xt 6= Xτn−1} on the event [τn−1 < +∞],

so
Tg,z′0 = τN where N = inf{n ≥ 0 : Zτn = Z ′τn} = inf{n ≥ 0 : Xτn = 0}.

In particular, Tg,z′0 ≥ N . We now introduce a very crude upper bound.

Lemma 15 Let z and z′ be two distincts elements in [[0, q − 1]]. Then a deterministic
walk in [[0, q − 1]]2 starting from (z, z′) and making steps equal to (−1,−1) modulo q
reaches the set L× Lc ∪ Lc × L in at most q − 2 steps.

Proof. The map k 7→ 1L(k mod q) from Z to Z is q-periodic by construction. Call `
its least period. Then q = d` for some integer d ≥ 1, and

p = |L| =
q−1∑
k=0

1L(k mod q) = d
`−1∑
k=0

1L(k mod q).

Hence d divides p and q. Since p and q are relatively prime, we get d = 1, so ` = q.
Therefore, there are at least two integers k ∈ [[0, q − 1]] such that 1L

(
(z − k) mod q

)
6=

1L
(
(z′ − k) mod q

)
. The statement follows. �

Actually, the upper bound q − 2 above corresponds to the worst case, namely when
z′ − z ≡ ±u[q]. We will get and use better bounds in the next section. At the moment,
we continue the proof of theorem 9 with this rough estimate.

On the event [τn−1 < Tg,z′0 ] and on the time interval [[τn−1, σn]], the process (Zt, Z ′t)

coincides with a random walk on (Z/qZ)2 whose steps are uniformly distributed on the
pair {(0, 0), (−1,−1)}. By lemma 15, we get

E[τn − τn−1|τn−1 < Tg,z′0 ] = E[σn − τn−1|τn−1 < Tg,z′0 ] + 1 ≤ 2(q − 2) + 1 ≤ 2q.

Therefore, P[τn < +∞|τn−1 < Tg,z′0 ] = 1. A recursion shows that τn < +∞ almost
surely on the event [n ≤ N ], whereas τn = +∞ on the event [n > N ], so the events
[τn−1 < Tg,z′0 ] and [n ≤ N ] almost surely coincide. Putting things together, we derive

E[Tg,z′0 ] =
∑
n≥1

E[(τn − τn−1)1n≤N ] ≤
∑
n≥1

2qP[n ≤ N ] = 2qE[N ].

But the process (Xτn)0≤n≤N is a simple symmetric random walk on the group Z/qZ up
to its hitting time of 0, whose initial position is uniform on Z/qZ. Thus

E[N ] =
1

q

q−1∑
k=0

k(q − k) =
1

q

((q − 1)q2

2
− (q − 1)q(2q − 1)

6

)
=

(q − 1)(q + 1)

6
≤ q2

6
.

Since Tg,z′0 ≥ N , we get (q2 − 1)/6 ≤ E[Tg,z′0 ] ≤ q3/3 as desired.

4.2 Proof of the first part

The proof relies on the following lemma. For every t ≥ 0, we set Gt = gηt ◦ · · · ◦ gη1 .
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Lemma 16 Let R be a subset of [[0, q − 1]] with size k ≥ 2. Set

TR = inf{t ≥ 0 : |Gt(R)| < k}.

Then

E[TR] ≤ 2q3

k2
if k divides q or k = 2,

E[TR] ≤ 4q3

(k + 1)2
if k ≥ 3.

Proof. Set R = {z0, . . . , zk−1} with z0 < . . . < zk−1 and set zk = z0. We define
processes Z0, . . . , Zk−1, Zk = Z0, D0, . . . , Dk−1 and D taking values in [[0, q − 1]] by

Zit = Gt(zi), Di
t =

(
Zi+1
t − Zit

)
mod q, Dt = min(D0

t , . . . , D
k−1
t ).

Let us define a process I taking values in the collection of all non-empty subsets of
[[0, k − 1]] by

It = {i ∈ [[0, k − 1]] : Di
t = Dt}.

All these processes are adapted to the filtration defined by Ft = σ(η1, . . . , ηt).

For each i ∈ [[0, k − 1]], the increments of the process Zi are 0 or −1 modulo q, so
the increments of the process Di are 1, 0 or −1 modulo q. Moreover, if Di

t = 0, then
Di
s = 0 for all s ≥ t.

Therefore, at each time t, the positions Z0
t , . . . , Z

k−1
t are in the same cyclic order (in

a large sense since there may be equalities) as the initial positions z0, . . . , zk−1, and the
sum D0

t + · · ·+Dk−1
t remains constant equal to q, so Dt ≤ q/k. We also deduce that

TR = inf{t ≥ 0 : Dt = 0}.

We now adapt the arguments given in the last subsection to our present situation.
Note that Di

t+1 = Di
t on the event [1L(Zit) = 1L(Zi+1

t )], whereas P[Di
t+1 = Di

t+1|Ft] =

P[Di
t+1 = Di

t − 1|Ft] = 1/2 on the event [1L(Zit)) 6= 1L(Zi+1
t )].

Define stopping times (τn)n≥0 and (σn)n≥1 by τ0 = 0 and for every n ≥ 1,

σn = inf{t ≥ τn−1 : ∃i ∈ It, 1L(Zit) 6= 1L(Zi+1
t )} and τn = σn + 1.

Since the process D cannot vary (although the process I may increase) during the time
intervals [τn−1, σn], one has TR = τN where N is some random positive index, possibly
infinite, and lemma 15 yields again E[τn − τn−1|τn−1 < +∞] ≤ 2q, so E[τR] ≤ 2qE[N ].

Moreover, on each event [σn < TR ; i ∈ Iσn ], one has

P[Dτn = Dτn−1 − 1|Fσn ] ≥ P[Di
σn+1 = Di

σn − 1|Fσn ] =
1

2
.

Set m = bq/kc ≥ 1. We derive a stochastic domination of the process (Dτn)0≤n≤N by
a Markov chain M on the state space [[0,m]], starting at m and killed immediatly after
hitting 0, with transition probabilities given by

P (d, d− 1) = 1/2 if 1 ≤ d ≤ m,
P (d, d+ 1) = 1/2 if 1 ≤ d ≤ m− 1,

P (m,m) = 1/2.
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Therefore, E[N ] is bounded above by the expected hitting time of 0 by M , which is
also the expected hitting time of 0 by a simple symmetric random walk on Z/(2m+ 1)Z
starting at m, so E[N ] ≤ m(m+ 1).

Case where k divides q. In this case, q = km, so Dt = m if and only if all Di
t are

equal to m. When the process is at m, it goes necessarily to m− 1 as soon as one of the
processes Di varies. Thus we may modify the transition probabilities of the dominating
chain M by setting P (m,m − 1) = 1, so the expected hitting time of 0 by M becomes
the expected hitting time of 0 by a simple symmetric random walk on Z/2mZ starting
at m, which is m2. Note that if k ≥ 3, then m2 = q2/k2 ≤ 2q2/(k + 1)2.

Case where k does not divide q. If k = 2, then q = 2m+ 1, so q2/4 ≥ m(m+ 1).
If k ≥ 3 and k does not divide q, then q ≥ km+ 1, so

q2

m(m+ 1)
≥ k2m2 + (2k − 1)m+m+ 1

m(m+ 1)

=
k2m+ (2k − 1)

m+ 1
+

1

m

= k2 − (k − 1)2

m+ 1
+

1

m

By derivating, one checks that the right hand side is an increasing function of m ∈ [1,∞[,
so

q2

m(m+ 1)
≥ k2 − (k − 1)2

2
+ 1 =

(k + 1)2

2
.

Hence m(m+ 1) ≤ 2q2/(k + 1)2. The proof is complete.

Let us now prove the first part of theorem 9.

For every t ≥ 0, call Rt the range of the map Gt. For every k ∈ [[1, q]], set

Tk = inf{t ≥ 1 : |Rt| ≤ k}.

Then 0 = Tq ≤ . . . ≤ T1 = Tc, so

Tc =

q∑
k=2

(Tk−1 − Tk) =

q∑
k=2

(Tk−1 − Tk)1[|RTk |=k].
Applying Markov property at time Tk and lemma 16 to the set |RTk | yields

E
[
T1 − T2

∣∣FT2] ≤ q3

2
on the event

[
|RT2 | = 2

]
and for every k ∈ [[3, q]],

E
[
Tk−1 − Tk

∣∣FTk] ≤ 4q3

(k + 1)2
on the event

[
|RTk | = k

]
.

Hence,

E[T1] ≤
q3

2
+

q∑
k=3

4q3

(k + 1)2
= q3

(1

2
+ 4
(π2

6
− 1− 1

4
− 1

9

))
= q3

(2π2

3
− 89

18

)
≤ 5q3

3
.
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5 Proof of theorem 2

In the whole section, we assume that θ ∈]0, 1/2[, so dist(θ,Z) = θ. Therefore, we will
consider rational approximations p/q, where q > p > 0 are relatively prime integers such
that p/q < 1/2. These approximations will be given by convergents of the continued
fraction expansion of θ.

5.1 Reminders on continued fraction expansions

Given any integer a0 and positive integers (an)n≥1, we set

[a0; a1, · · · , an] = a0 +
1

a1 + 1
··· ···
an−1+

1
an

.

Every irrational number θ admits a unique expansion

θ = [a0; a1, a2, a3, · · · ] = lim
n→+∞

[a0; a1, · · · , an],

provided by a variant of Euclidean algorithm, where we set recursively

a0 := bθc, θ1 :=
1

θ − a0
, a1 := bθ1c, θ2 :=

1

θ1 − a1
, ...

The positive integers (an)n≥1 thus defined are called the partial quotients of the continued
fraction expansion of θ.

Define two sequences (pn)n≥−2 and (qn)n≥−2 of integers by p−2 = 0, q−2 = 1, p−1 = 1,
q−1 = 0, and for every n ≥ 0,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

A recursion yields qn ≥ Fn+1 for every n ≥ 0, where (Fn)n≥0 is the Fibonacci sequence
with first terms F0 = 0 and F1 = 1. When θ ∈]0, 1/2[, the stronger inequality qn ≥ φn

holds for every n ≥ 0, where φ is the golden ratio. In every cases, the sequence (qn)n≥0
is positive, non-decreasing and goes to infinity.

A recursion shows that for every n ≥ 0, and x > 0,

xpn−1 + pn−2
xqn−1 + qn−2

= [a0, a1, · · · , an−1, x].

In particular,
pn
qn

= [a0; a1, · · · , an].

Moreover, pn and qn are relatively prime since pnqn−1 − qnpn−1 = (−1)n−1.

The following inequalities hold

p0
q0
<
p2
q2
< · · · < θ < · · · < p3

q3
<
p1
q1
.

In particular, the difference θ − pn/qn has the same sign as (−1)n and∣∣∣θ − pn
qn

∣∣∣ < ∣∣∣pn+1

qn+1
− pn
qn

∣∣∣ =
1

qnqn+1
≤ 1

q2n
.
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Hence the sequence (pn/qn)n≥0 converges to θ.

By definition, the convergents of θ are the rational numbers pn/qn = [a0; a1, · · · , an]
and the semiconvergents of θ are the rational numbers

bpn−1 + pn−2
bqn−1 + qn−2

= [a0, a1, · · · , an−1, b], where n ≥ 1 and b ∈ [[1, an − 1]].

5.2 Using extended Euclidean algorithm to get a sharper estimate

From now on, we assume that θ ∈]0, 1/2[, so p0 = a0 = 0 and 0 < pn ≤ qn/2 < qn for
n ≥ 1. Hence the results of subsection 2.2 apply when (p, q) = (pn, qn) for some n ≥ 1.

We fix n ≥ 1 and (p, q) = (pn, qn), so we omit the superscripts p, q. We now want
to get a shaper estimate than the crude upper bound given by lemma 15. Recall that
L = h−1([[0, p − 1]]) where h is the permutation map defined by h(z) = (pz) mod q on
the set [[0, q − 1]].

Let z and z′ be two distincts elements in [[0, q − 1]]. The number of steps (−1,−1)
modulo q required to reach the set L×Lc∪Lc×L from (z, z′) is also the number of steps
(−p,−p) modulo q required to reach the set [[0, p− 1]]× [[p, q− 1]]∪ [[p, q− 1]]× [[0, p− 1]]
from (h(z), h(z′)).

Denote by dq(z, z
′) the distance modulo q between z and z′. Then the upper bound

we will give is a function of dq(h(z), h(z′)), which is a function of dq(z, z
′), namely

dq(h(z), h(z′)) = dist(pdq(z, z
′), qZ).

Indeed, if z′ − z ≡ ±d [q], then h(z′)− h(z) ≡ p(z′ − z) ≡ ±pd [q].

To do this, we apply the extended euclidean algorithm to the integers p and q. Since
p and q are relatively prime and p/q = [0, a1, · · · , an], this algorithm yields remainders
r−1 = q > r0 = p > r1 > . . . > rn−1 = 1 > rn = 0 such that

q = pa1 + r1,
p = r1a2 + r2,
. . . = . . .
rn−3 = rn−2an−1 + rn−1,
rn−2 = rn−1an + rn,

Extended Euclidean algorithm provides Bezout identities: a recursion shows that

∀k ∈ [[0, n]], rk = (−1)k(qkp− pkq).

Indeed, q0p−p0q = 1×p−0×q = p = r0 and q1p−p1q = a1p−q = −r1. Given k ∈ [[2, n]],
the equalities rk−2 = (−1)k−2(qk−2p− pk−2q) and rk−1 = (−1)k−1(qk−1p− pk−1q) yield

qkp− pkq = ak(qk−1p− pk−1q) + (qk−2p− pk−2q) = (−1)k(−akrk−1 + rk−2) = (−1)krk.

As a result, given k ∈ [[0, n]], making qk translations of −p modulo q is equivalent to
make one translation of (−1)k+1rk modulo q. This observation yields the next lemma.

Lemma 17 Let k ∈ [[0, n − 1]] and d ∈ [[rk, rk−1 − 1]]. Let J ⊂ [[0, q − 1]] be a subset
containing exactly d elements which are consecutive modulo q. Then J can be reached
from anywhere in [[0, q − 1]] by making at most a1q0 + · · · + ak+1qk translations of −p
modulo q.
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Proof. We argue by recursion on k.

First, assume that k = 0, so d ≥ r0 = p. Since q = a1p + r1 ≤ (a1 + 1)p, J can
be reached from anywhere in [[0, q − 1]] by making at most a1 = a1q0 translations of −p
modulo q.

Assume that the property holds at level k−1. Let k ∈ [[0, n−1]] and d ∈ [[rk, rk−1−1]].
Let J ⊂ [[0, q−1]] be a subset containing exactly d elements which are consecutive modulo
q. Complete J by adding rk−1 − d consecutive (modulo q) points to get a subset J ′ of
[[0, n− 1]] made with rk−1 consective (modulo q) points. These additional points should
be on the right of J if k is even, and on the left of J if k is odd. The number of additional
points is rk−1− d ≤ rk−1− rk ≤ ak+1rk. Therefore, to reach J from anywhere, one may
first reach J ′ by making at most a1q0 + · · · + akqk−1 translations of −p modulo q, and
then make at most ak+1 translations of (−1)k+1rk modulo q, provided by at most ak+1qk
translations of −p modulo q. This yields the property at level k.

The proof is complete.

We now give the better estimate announced above.

Corollary 18 Let z and z′ be two distincts elements in [[0, q − 1]]. Assume that the
distance dq(h(z), h(z′)) = dist(pdq(z, z

′), qZ) belongs to [[rk, rk−1− 1]] with k ∈ [[0, n− 1]]
Then a deterministic walk in [[0, q − 1]]2 starting from (z, z′) and making steps equal to
(−1,−1) modulo q reaches the set L×Lc ∪Lc ×L in at most a1q0 + · · ·+ ak+1qk steps.

Proof. Let d = dq(h(z), h(z′)) = dist(pdq(z, z
′), qZ), so 1 ≤ d ≤ q/2. By symmetry,

one may assume that h(z′) = (h(z)− d) mod q.

The number of steps above is also the number of steps (−p,−p) modulo q required
to reach the set [[0, p− 1]]× [[p, q − 1]] ∪ [[p, q − 1]]× [[0, p− 1]] from (h(z), h(z′)).

This is at most the number of steps −p modulo q required to reach the interval
[[0,min(d, p)− 1]] from h(z) since for every k ∈ N,

(h(z)− kp) mod q ∈ [[0,min(d, p)− 1]] =⇒
{

(h(z)− kp) mod q ∈ [[0, p− 1]],
(h(z′)− kp) mod q ∈ [[p, q − 1]].

Hence lemma 17 applies, yielding the conclusion.

The upper bound provided by corollary 18 is a function of dq(h(z), h(z′)) and also a
function of dq(z, z

′). Denote by M(dq(h(z), h(z′))) = N(dq(z, z
′)) this upper bound.

Corollary 19 One has

bq/2c∑
d=1

N(d) =

bq/2c∑
d=1

M(d) ≤ q
n∑
k=1

ak − q.

Proof. For every d ∈ [[1, bq/2c]], set h̃(d) = dist(pd, qZ). Then N(d) = M(h̃(d)) because
dq(h(z), h(z′)) = h̃(dq(z, z

′)) for every z and z′ in [[0, q− 1]]. Since p and q are relatively
prime, the map h̃ is a permutation on the set [[1, bq/2c]], so

bq/2c∑
d=1

N(d) =

bq/2c∑
d=1

M(d).
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But corollary 18 yields

∀d ∈ [[1, bq/2c]], M(d) =
n−1∑
k=0

ak+1qk1[d≤rk−1−1]

and for every k ∈ [[0, n− 1]], one has ak+1qk = qk+1 − qk−1 and qkrk−1 ≤ q since

q − qkrk−1 = (−1)k−1(qk−1pk − pk−1qk)q − (−1)k−1qk(qk−1p− pk−1q)
= (−1)k−1qk−1(pkq − pqk)
≥ 0.

Hence, one gets

bq/2c∑
d=1

M(d) =
n−1∑
k=0

ak+1qk(rk−1 − 1)

=

n−1∑
k=0

ak+1qkrk−1 − (qn + qn−1 − q0 − q−1)

≤ q
n−1∑
k=0

ak+1 − q.

The proof is complete.

5.3 Proof of theorem 10

We keep the notations of the last subsections, fix n ≥ 1 and (p, q) = (pn, qn), so we omit
the superscripts p, q.

For every t ≥ 0, set Gt = gηt ◦ · · · ◦ gη1 , Zt = Gt(Z0), Z
′
t = Gt(z

′
0), and Ft =

σ(Z0, η1, . . . , ηt). Consider the stopping time

τ1 = inf{t ≥ 0 : (Zt − Z ′t) mod q 6= (Z0 − z′0) mod q}.

By definition of the maps g0 and g1, one has

τ1 = inf{t ≥ 0 : (Zt, Z
′
t) ∈ L× Lc ∪ Lc × L}+ 1.

Given z0 ∈ [[0, q − 1]], set e(z0, z
′
0) = E[Tg,z′0 |Z0 = z0], w(z0, z

′
0) = E[τ1|Z0 = z0] and

call n(z0, z
′
0) the number of steps required to reach the set L×Lc ∪Lc×L from (z0, z

′
0)

by making steps equal to (−1,−1) modulo q.

Conditionally on Ft and on the event [(Zt, Z
′
t) ∈ L×L∪Lc×Lc], the random variable

(Zt+1, Z
′
t+1) equals (Zt, Z

′
t) or ((Zt− 1) mod q, (Z ′t− 1) mod q), each possibility having

probability 1/2. Hence if z0 6= z′0, then w(z0, z
′
0) = 2n(z0, z

′
0) + 1. Proposition 18 yields

an upper bound n(z0, z
′
0) ≤ N(dq(z0, z

′
0)) so

w(z0, z
′
0) ≤W (dq(z0, z

′
0)) := 2N(dq(z0, z

′
0)) + 1.

But Markov property yields

e(z0, z
′
0) ≤ w(z0, z

′
0) + E[e(Gτ1(Z0), Gτ1(z′0))].
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and Gτ1(z′0)−Gτ1(z0) = (z′0 − z0 ± 1) mod q, each possibility having probability 1/2.

Let m = bq/2c be the maximum possible value for the distance dq(z0, z
′
0) and set

ed = max{e(z0, z′0) : dq(z0, z
′
0) = d} for every d ∈ [[0,m]]. Then e0 = 0 and

ed ≤W (d) +
1

2
(ed−1 + ed+1) if d ∈ [[1,m− 1]],

em ≤W (m) + em−1 if q is even,

em ≤W (m) +
1

2
(em−1 + em) if q is odd.

Hence ed− ed−1 ≤ 2W (d) + ed+1− ed for every d ∈ [[1,m−1]], and em− em−1 ≤ 2W (m),
whatever the parity of q is. By addition, we get successively

∀d ∈ [[1,m]], ed − ed−1 ≤ 2
m∑
j=d

W (j) ≤ 2S where S :=
m∑
j=1

W (j),

∀i ∈ [[0,m]], ei =

i∑
d=1

(ed − ed−1) ≤ 2iS.

But Z0 is uniform on [[0, q − 1]], so

E[Tg,z′0 ] =
1

q

q−1∑
z0=0

e(z0, z
′
0).

If q is even, i.e. q = 2m, we derive

E[Tg,z′0 ] ≤ 1

2m
(e0 + 2e1 + · · ·+ 2em−1 + em) ≤ 1

m

(
2
m−1∑
i=1

i+m
)
S = mS.

If q is odd, i.e. q = 2m+ 1, we derive

E[Tg,z′0 ] ≤ 1

2m+ 1
(e0 + 2e1 + · · ·+ 2em) ≤ 4

2m+ 1

m∑
i=1

iS =
2m(m+ 1)

2m+ 1
S ≤ 2m+ 1

2
S.

In both cases, we get

E[T p,q
g,z′0

] ≤ q

2

m∑
j=1

W (j) ≤ q

2

(
2

m∑
j=1

N(j) +m
)
≤ q2

n∑
k=1

ak,

by lemma 19. The proof is complete.
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Index of notations

We recall here the notations widely used throughout the paper.

Numbers

θ fixed irrational number. By convenience, we assume that θ ∈ [0, 1[ and even that
θ ∈ [0, 1/2[ in section 5. This is not a true restriction.

r = p/q denotes a good rational aproximation of θ, where p and q are relatively
prime integers and q ≥ 2. Here, good means that −1/u < qθ − p < 1/(q − u) where
u ∈ [[1, q − 1]] is the inverse of p modulo q. We call v ∈ Z+ the integer such that
up− vq = 1.

Dynamical systems considered

S unilateral shift on X = {0, 1}Z+ , endowed with the measure µ =
⊗

n≥0(δ0 +δ1)/2.

Tθ : y 7→ (y + θ) mod 1 on I = [0, 1[, endowed with the Lebesgue measure ν.

Sθ = [Tθ, Id] : (x, y) 7→
(
x(0), (y + x(0)θ) mod 1

)
on X × [0, 1[, endowed with the

measure µ⊗ ν.

Tp,q : z 7→ (z + p) mod q on [[0, q − 1]], endowed with the uniform measure νq.

Sp,q = [Tp,q, Id] : (x, z) 7→
(
x(0), (z+ x(0)p) mod q

)
on X × [[0, q− 1]], endowed with

the measure µ⊗ νq.
Partitions

αθ = {Aθ0, Aθ1} the partition considered by Parry, and also the associated map from
X × I to {0, 1}.

αp,q the discrete analogue on X × [[0, q − 1]].

Φθ : (x, y) 7→ αθ
(
(Snθ (x, y))n≥0

)
the associated factor map.

ι = {I0, . . . , Iq−1} the partition of I = [0, 1[ provided by the subdivision (xk)0≤k≤q−1,
where xk = kθ − bkθc. We also denote by ι the associated map from X × I to {0, 1}.

Maps

fθ0 (y) = y − θ1[θ,1[(y) and fθ1 (y) = y + (1− θ)1[0,θ[(y) for y ∈ I.

fp,q0 (z) = z − p1[[p,q−1]](z) and fp,q1 (z) = z + (q − p)1[[0,p−1]](z) for z ∈ [[0, q − 1]].

h(z) = hp,q(z) = (pz) mod q for z ∈ [[0, q − 1]]. The map hp,q is a permutation and
its inverse is given by h−1p,q(z) = (uz) mod q. We set Lp,q = h−1p,q([[0, p− 1]]).

gp,q0 (z) = z − 1Lcp,q(z) and gp,q1 (z) = z − 1Lp,q(z) for z ∈ [[0, q − 1]].
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bourg, Strasbourg (2004).

[11] C. Leuridan, Filtration d’une marche aléatoire stationnaire sur le cercle. Séminaire
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[20] Surányi, J., Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann.
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