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Design Space Exploration: Bridging the Gap Between High-Level Models
and Virtual Execution Platforms
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Abstract: This paper presents a novel embedded systems modeling framework that fills the gap
between high-level AADL models and low-level hardware virtual execution platforms. This approach
allows refinement and improvement of system performance through exploration of architectures at
different levels of abstraction. The aim of the proposed approach is to achieve virtual prototyping of the
complete system in order to allow validation to begin early in the design flow, thereby accelerating its
development while improving system performances. The proposed framework is validated using an
MJPEG video decoder application. Experimental results show how virtual prototyping allows the system
architect to fine-tune performances by reallocating tasks between processors and/or retargeting tasks
to hardware modules. Fives candidate architectures have been explored to find an optimal solution that
delivers 12 times the performances compared to an all-software mapping.

Keywords: Model-based engineering, AADL, SystemC, virtual prototyping, refinement, architecture
exploration, early validation, ESL

1. Introduction

The complexity of embedded systems continues to rise rapidly [1] due to technological advances and
industrial demand for electronics powerful enough to implement increasingly sophisticated software
applications. High-quality designs are becoming increasingly necessary in order to meet the demand for
embedded systems that are competitive in terms of reliability, safety and robustness.

In order to meet the challenge of improving embedded system design and managing the increasing
complexity, engineers are turning to model-based engineering (MBE) [2]. This generalisation process uses
abstraction to limit the details of system description to essential information only. However, this
simplification comes at a cost: high-level models are inherently imprecise and hide features that may need
to evolve in order to optimize system performance. Meanwhile, validation of traditional model-based
design generally considers functional and timing requirements only, and ignores target platform execution
constraints [3]. This can seriously affect performance analysis, lead to major errors in the integration
phase of the system, and cause a bottleneck at the debugging stage of the product development chain.

One of the goals of new model-based engineering methodologies and tools is to simplify the design
process by offering a trade-off between design abstraction and accuracy of results through performance
analysis. High and low levels of abstraction are thus bridged in the same design flow so that architectural
exploration and refinement can be performed at different levels.

In this paper a new modeling framework is proposed, combining the advantages of model-based
engineering methodologies using the AADL language [4] and virtual prototyping based on virtual platform
environments. Our approach uses a tool chain transformation to bridge the gap between high-level
models and the virtual execution platform to allows more accurate design space exploration.

The following section introduces related work and highlights our contribution while comparing related
approaches. The third section illustrates the proposed methodology with explanation of each of its steps,
and the fourth section shows our experimental results. Finally, the last section concludes with a summary
of the work conducted so far on this project and a list of future work to improve the methodology.



2. Related work

Various related approaches have been proposed in the literature to support different aspects of design
modeling. The authors of an ANR-funded project describe the use of high-level modeling language (AADL)
in combination with the Polychrony toolset [5]. Through formal description, the tool allows timing
analysis, validation and synthesis early in the design process. Others have developed a new methodology
to build and translate AADL models into a distributed application using the BIP tool chain [6]. This
approach allows the use of runtime analysis to assess system viability and to refine system behaviour. The
use of a rapid prototyping platform to develop distributed real-time embedded systems using high-level
AADL models has been proposed [7]. These authors explain how to check non-functional requirements
early in the design cycle using the Ocarina tool to perform timing/scheduling analysis and code
generation. In another study, the AADS tool is developed to allow early verification of timing constraints
and performance analysis of the AADL specification [8]. The SCoPE tool integrates POSIX API to support
system-level simulation. The focus of these studies is analysis of functional and non-functional
requirements. Detailed performance evaluation of the targeted execution platform is not supported. Our
contribution aims to fill this gap by linking a design-space exploration tool to a higher-level modeling
environment.

3. Proposed methodology

This paper presents a modeling framework that supports system co-design and architectural exploration
through virtual prototyping. The proposed approach spans different abstraction levels at which various
elements of the system are refined progressively. At high-level abstraction, the model contains only the
software components, the connections instances and the behavioural description of the application. At
the low-level, the model includes the hardware modules of the target platform and the mapping of the
software components on the virtual platform.

Presented in Figure 1, the design flow is composed of six steps: specification of the application (1),
architecture modeling (2), ATL transformation (3), design-space exploration (4), architecture refinement
(5) and AADL model generation (6). The following sections present each of these steps in detail.
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Figure 1 — Proposed design flow



3.1 Specification of the application

The design flow begins with the specification of the application (Step 1). Various formats are suitable: text
documents, chronograms, block diagrams and so on. In order to validate our methodology, an MJPEG
video decoder application is used as a case study throughout this paper. Figure 2 presents the main
functional blocks of the MJPEG. The input is an MJPEG stream stored in a memory array. The DEMUX
block then scans the video data and sends the quantization and Huffman tables respectively to the 1QZZ
and VLD blocks along with the data stream. The VLD block performs Huffman decoding, while the 1QZZ
inverses the quantization followed by an un-zigzag transform. The IDCT block performs an inverse discrete
cosine transform. Finally, the LIBU transforms received data into image lines for the VGA controller.
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Figure 2 — MJPEG decoder block diagram and communication paths

3.2 Architecture modeling

The architecture of the application is formalized in the second step of the design flow. This section
provides an overview of the AADL modeling language and presents the details of Step 2.

3.2.1 Overview of AADL

Architecture analysis and design language or AADL [9] is a modeling language used for real-time
embedded system design. The various AADL components (in a library) allow users to define the software
and computer platform architectures of the system. Architecture interfaces, component interactions and
binding mechanisms are defined in the same model. Tools such as OSATE 2 (open-source AADL tool
environment) [10] can be used to create the AADL model and verify functional and non-functional
properties.

3.2.2 High-level modeling using AADL

The purpose of step 2 is to describe the application software system architecture. This high-level model is
created using the AADL components library. This library contains the semantics used to represent threads,
processes and communication ports. The behaviour of each block in the application is defined using a
separate SystemC source code that will be referenced in the AADL description. Figure 3 shows the block
diagram corresponding to the AADL model of the MJPEG decoder application.
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Figure 3 — Block diagram corresponding to the AADL model of an MJPEG decoder application

To create the AADL model, we used a package structure containing the organisation of the system
architecture components. As shown in Figure 3, the package contains five process components that
communicate with each other through an AADL port event connection. Each process includes one of the
five threads: IDCT, 1QZZ, VLD, LIBU, or DEMUX. Figure 4 shows an example of a thread description. The
AADL subprogram IDCT_Function contains a reference to the SystemC source code that defines the true
functionality of the thread. The connection interface is described in the AADL feature type section inside
the thread declaration.

subprogram IDCT_ Function

properties
Source_Language => (System C);
Source_Text => ("My_idct.c");
Source_Name => "My_idct";

end IDCT Function;

thread IDCT
features
IQZZ In: in event data port IQZZ Data;
IDCT Out: out event data port IDCT Data;
properties
Dispatch Protocol => Periodic;
Compute Entrypoint=> classifier (IDCT_Function);
end IDCT;

Figure 4 — Example of AADL thread description code for the IDCT function

3.3 ATL model transformation

The third step of the design flow uses a transformation tool chain to bridge the high-level model to the
low-level virtual execution platform. This tool chain, based on the ATL model transformation language,
was developed by the Open People Project [11] to transform AADL models to SystemC models
automatically. AADL components are translated into namespace classes to express the AADL structure in
SystemC models. For example, for every AADL package there is a corresponding C++ namespace. A
SystemC runtime library containing all types and all classes equivalent to AADL concepts was developed
for this purpose. Figure 5 shows an excerpt of equivalent AADL and SystemC codes for a model. The
generated SystemC model defines the software architecture, which contains a multi-threaded C++
application that will be mapped onto a hardware/software co-design platform.



AADL SystemC
package mjpeg aadl namespace AADL mjpeg aadl ({

public
thread IDCT namespace mjpeg aadl {class idct
. public AADL: :threadType
end IDCT; {public:idct (AADL: :moduleName
thread implementation name) :AADL: : threadType (name) {}};}
IDCT.impl
namespace mjpeg_aadl {typedef
My idct idct DOT impl;}..}

Figure 5 — AADL to SystemC code transformation

It is important to note that the communication ports are not yet included in the automatic transformation
of the AADL model. The communication links will be defined manually in Step 4 using SpaceStudio
functions.

3.4 Design space exploration

The back end of our proposed methodology (i.e. steps 4 and 5 in Figure 1) is obtained using an electronic-
system-level (ESL) framework enabled by the SpaceStudio™ tool suite. This is a complete
hardware/software co-design platform with the unique ability to transform functions (threads) between
hardware and software as designers decide on the makeup of their system [12]. In the following sections,
we present the design framework and its components.

3.4.1 Overview

In the SystemC model, the application is specified as a set of concurrent tasks communicating through
explicit interfaces (input of Step 4). The SpaceStudio library then provides several possible architectures,
of which the variables include the number of processors and cores, the number of buses, the
hardware/software partitioning of tasks, the mapping of software tasks to processor cores, and
architectural component configuration. For each possible architecture and mapping, SpaceStudio
automatically generates a SystemC TLM-2.0 virtual platform of the system hardware components and
embedded software binaries for each processor core in the platform. By taking advantage of the SystemC
library definitions and TLM-2.0 interface standards, a single language, C/C++, can be used. This allows us
to create a fully modeled functional software representation of a hardware/software SoC design.
Simulations are then conducted at different levels of abstraction in order to obtain a profile of
architecture performance. Hardware resource usage and power consumption can also be estimated.
Finally, the selected architecture(s) is (are) translated into AADL for further analysis.

3.4.2 Virtual prototyping

One of the key elements of an electronic system level (ESL) methodology is the concept of platform-based
design. Platform-based design allows extensive re-use of components, which reduces the design cycle
time (time-to-market) for the first release of a product, maintenance, and subsequent releases [13]. The
following presents the three steps to create the virtual platform in SpaceStudio.

1) Configuration of the virtual platform

This step consists of configuring the virtual platform of the system using the SpaceStudio component
library. The virtual platform allows execution of the application model as well as software early validation
and performance evaluation. No manual coding is needed to configure the platform; the user needs only
to instantiate components from the library. As shown in Figure 6, the configuration manager option of
SpaceStudio allows us to select the desired components (“Available components”) and to modify module
parameters (“Current configuration content”) in order to enhance system performance, perform
architectural exploration or vary the configuration type. Examples of typical parameters are the number of
processors, the CPU frequency, inter-connection type and latency, address range, cache type and memory
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size. To implement our MJPEG decoder application, an ARM Cortex-A9 dual-core (core 0 and core 1) with
an OS on each (asymmetric multiprocessing), two sets of peripherals (e.g. PIC) and a RAM block were
selected and configured.

Components
Availables components Current configuration content
(= Bridge Component Instance Property Value
(= Bus { AMBA_AXIBus AMBA_AXIBus1 CPU Clock Frequency 800 MHz
(= ExternallOSlave B armCortexA9  armCortexAS1 id key ARMCORTEXAL D
& 10 I sc_dock SysClock Inst‘a.nc.er —— armCortexA91
@ 158 xilinBRAM  XiinxBRAM1 Verbose false
(= Memory P= XilinxPIC XilinxPIC1
= PIC P& XilinxP1C XilinxPIC2
(= serial
(= signal

Figure 6 — SpaceStudio virtual platform configuration manager

2) Mapping process

Once the hardware virtual platform is configured, the SystemC models generated in Step 3 (ATL
transformation) are imported into SpaceStudio. As shown in Figure 7, the five modules of the MJPEG
decoder application are now available as “User Blocks” in the SpaceStudio binding table. The mapping
process is performed at this stage. Figure 7 illustrates one possible mapping solution: a
hardware/software solution with IDCT and LIBU on core 0, DEMUX, IQZZ on core 1 and VLD connected as
a co-processor on the AMBA AXI channel. Note that the ARM Cortex-A9, the BRAM, the two PICs and a
VGA controller are also connected to that channel. Other mapping solutions can be determined by
modifying the connection matrix of Figure 7. The unique hardware/software transformation capability of
SpaceStudio allows the user to specify and re-specify the mapping of application tasks either to software
running on a processor, or as dedicated hardware, without having to re-design or re-code functional
blocks and without extensive integration work (e.g. on the communication/bus interface).

Technology: Simtek Configuration: all_ SW_Less VLD1

Binding table
MIJPEG Please select a component before binding it to a channel, bus or processor. Connection
modules User Block Instance 4 AMBA AX.. ® armCortex.. B armCortex. Matrix
B armCortexA9  armCortexA91 :- T e T T T T -;
_ [ @XinERAM __ XiinBRAML | E |
| | ® DEMUX DEMUXL| i . |
| | emDCT IDCTL ! X . X
1 | ®IQZZ (07474 S, 1 . 1
| | eLBU Ul I . X
tgewo ____ | viL__, ! < !
73 XilinxPIC Xilim®PICL | . |
3 XilinxPIC XilinxPIC2 1 . I
® VGA_CONTR... VGA_CONTRO.;_ I I — :

Figure 7 — SpaceStudio binding table used for mapping the application on the virtual hardware platform

3) Component inter-connexion

For each potential mapping, SpaceStudio automatically builds a SystemC TLM-2.0 virtual platform
modeling the hardware components (processor models, buses, memories, peripherals, and the hardware-
mapped application tasks) and their connections. It also automatically associates cross-compiled software
binaries to their respective processor models in the platform.

Figure 8 illustrates the link established between platform components through an explicit interface
predefined by SpaceStudio. It describes a portion of the generated code that shows some peripherals



(ISS_adapter 1 & 2, VGA Controller, XilinxBRAM, etc.) connected to the AXI channel. This capability
reduces development time and coding effort.

ISSAdapter2.WriteFifoIFPort[5] (ISSAdapter2 FIFO 2.WriteFifolIFExport);

AMBA AXIBusl.master sock (AMBA AXIBusl SlaveAdapter DebugModulel.slave sock);
AMBA AXIBusl.master sock (AMBA AXIBusl SlaveAdapter ISSAdapterl.slave_ sock);
AMBA AXIBusl.master sock (AMBA AXIBusl SlaveAdapter ISSAdapter2.slave_ sock);
AMBA AXIBusl.master sock (AMBA AXIBusl SlaveAdapter VGA CONTROLLER1.slave_ sock);
AMBA AXIBusl.master sock (AMBA AXIBusl SlaveAdapter XilinxBRAMl.slave sock);

—_~ e~ o~ —~

Figure 8 — Component communication interface
3.5 Architecture refinement

In this step, design exploration is performed using some combination of architectural parameter
modification, refinement of the high-level AADL model and adjustment of hardware/software partitioning.
By keeping the same virtual platform to analyze and improve system performance, refinement cycles are
accelerated compared to traditional RTL-based approaches (i.e. hours rather than days or weeks).

3.6 AADL model generation

Once the hardware architecture is optimized while respecting the initial specification, other evaluations
may be desirable. An AADL hardware platform model of the solution can be generated from SpaceStudio
in order to verify and analyze aspects not covered by this tool (e.g. reliability, safety, security, robustness,
cost, etc.). This phase will be explored in future work on improvement of the design flow.

4. Experimental results

Figure 9 shows a candidate architecture that includes a single ARM Cortex-A9 dual core processor, AMBA
AXI channel, BRAM memory block, VGA controller, plus two programmable interrupt controllers (one per
processor) and ISS adapters. The ARM processor has a frequency of 800 MHz configured in the
asymmetric multi-processing mode, running the uC OS Il (RTOS).

\
'GA_CONTROLLER
IC1

N
sw sw
DEMUX1 |
XilinxBRAM1

ISSAdapter2

Figure 9 — SpaceStudio graphical interface representing the virtual platform

AMBA_AXIBus1

Once the virtual prototype of the system has been created, the execution of the application can be
launched, with a data log capturing the simulation results for system performance evaluation purposes.
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For functions targeted as software running on processors, the data logs can be used to generate pie charts
that show CPU loading. Figure 10 shows simulation results for processor load distribution when all blocks
of the application are mapped in software (on an ARM Cortex-A9 core).

[+] General Info:
Simulation Length: 0,00699801 (s)
Global Utilization Rate: 67,86 (%)

Bootstrap: 8,96% (0,000627004 s)
Idle Time: 32,14% (0,002047581 s)
All Tasks Time: 63,45% (0,004042552 s)

Number of software tasks: 3
DEMUX1: 0,00% (0,0 s)
IDCT1: 19,14% (0,001219259 s)
1QZZ1: 16,36% (0,001042196 s)
VLD1: 27,96% (0,001781097 s)
Estimated Context Switch Rate: 1,48%

Usage of armcCortexA91.core1l

VLD1
27.96%
Idle 32,14%
1azz1
16.36%

® DEMUX1 0,00% ®IDCT119,14% 1QZZ1 16,36%  VLD1 27,96% @ Idle 32,14%
IRQ 2,93% Context switch 1,48%

Close
Figure 10 — Simulation results showing the distribution of processor load

System architects can proceed to an architecture refinement process that speeds up performance, for
example by reallocating software tasks between processors, introducing additional processors, and/or
retargeting tasks to hardware as co-processors on a bus/channel. Table 1 shows an example of five
mapping architecture candidates that were explored in just a few minutes. As shown in Figure 10, VLD1
has the highest load (28 %) on the ARM Cortex-A9. To accelerate processing, VLD1 could be moved from
software to hardware, as it appears in Figure 9.

Table 1 — Architectural exploration via the task retargeting process

Architecture candidate Mapping on software Mapping on hardware
1 All tasks -
2 DEMUX1, 1QZZ1, LIBU1, IDCT1 VLD1
3 DEMUX1, LIBU1, 1QZZ1 VLD1, IDCT1
4 DEMUX1, LIBU1 VLD1, IDCT1, 1QZZ1
5 DEMUX1 LIBU1, VLD1, IDCT1, IQZZ1

Figure 11 shows the increases in system performance achieved by retargeting functions from software to
hardware, starting from an all-software mapping. The graphic presents the number of images per second
decoded by the MJPEG for the five architecture candidates. We can see that the architecture candidate #5
can process 12 times more images per second than the all-software mapping (#1).
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Figure 11 — Gain (12-fold) in processing speed for the MJPEG obtained using the mappings in Table 1

5. Conclusion

In this work, we have proposed a novel modeling framework for embedded systems design that
considerably reduces design process complexity and development time, while providing means of
increasing system performance. Our model-based engineering approach consists of developing an AADL
high-level model of the system behaviour and then generating SystemC code to create a model that can
be executed on a customisable virtual platform. We intend to improve the design flow in future work by
exploring the following solutions: (1) including the communication interface in the transformation chain
and ensuring its automatic extension from the AADL model to the virtual prototyping environment; (2)
developing a new procedure to perform many non-functional analyses using an AADL model generated
from a SpaceStudio, thus improving system robustness and enhancing product quality, and finally (3) using
an avionics application as a case study to test and validate the resulting design flow.
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