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Abstract

In the context of bivariate random variables pY p1q, Y p2qq, the marginal expected shortfall,
defined as EpY p1q|Y p2q ě Q2p1 ´ pqq for p small, where Q2 denotes the quantile function
of Y p2q, is an important risk measure, which finds applications in areas like, e.g., finance
and environmental science. Our paper pioneers the statistical modeling of this risk mea-
sure when the random variables of main interest pY p1q, Y p2qq are observed together with a
random covariate X, leading to the concept of the conditional marginal expected shortfall.
The asymptotic behavior of an estimator for this conditional marginal expected shortfall is
studied for a wide class of conditional bivariate distributions, with heavy-tailed marginal
conditional distributions, and where p tends to zero at an intermediate rate. The finite sam-
ple performance is evaluated on a small simulation experiment. The practical applicability
of the proposed estimator is illustrated on flood claim data.

1 Introduction

In the past years, many risk measures have been introduced in the literature, and these have
been used to determine the amount of an asset to be kept in reserve in the financial framework.
The most famous of these are the Value-At-Risk (VaR) defined for a random variable X as the
p´quantile

Qppq :“ inftx ě 0 : PpX ď xq ě pu, for p P p0, 1q,

and the Conditional Tail Expectation (CTE) defined as

CTEprXs “ EpX|X ą Qppqq, for p P p0, 1q.

The latter risk measure is more conservative than the VaR for a same level of degree of con-
fidence (see Landsman and Valdez 2003) and it also satisfies the desirable property of being a
coherent risk measure as defined by Artzner et al. (1999). For all these reasons, the CTE has
been extensively studied and also it has been generalized to the multivariate framework, see,
e.g., Cai and Li (2005), Cai et al. (2015), and Di Bernardino and Prieur (2018). More precisely,
if pY p1q, Y p2qq denotes a pair of risk factors, the CTE can be extended into EpY p1q|Y p2q ą Q2ppqq,
where Q2ppq is the p´quantile of the risk Y p2q. In such a multivariate context, this risk measure
is well-known as the Marginal Expected Shortfall (MES). It was introduced by Acharya et al.
(2010), and used to measure the contribution of a financial institution to an overall systemic risk.
The ongoing global credit crisis and other former financial crises have demonstrated the vital
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aspect of adequate risk measurement. For a financial firm, the MES is defined as its short-run
expected equity loss conditional on the market taking a loss greater than its VaR. The MES is
very simple to compute and therefore easy for regulators to consider. When estimating this risk
measure, one often has the availability of additional information given by covariates, and these
are important to take into account in order to obtain more precise estimates. This leads to the
concept of conditional marginal expected shortfall.

Our paper is the first contribution dealing with the estimation of the conditional marginal
expected shortfall when the random variables of main interest pY p1q, Y p2qq are recorded to-
gether with a random covariate X P Rd. We will denote by Fjp.|xq the continuous condi-
tional distribution function of Y pjq, j “ 1, 2, given X “ x, and use the notation F jp.|xq for
the conditional survival function and Ujp.|xq for the associated tail quantile function defined as
Ujp.|xq “ infty : Fjpy|xq ě 1 ´ 1{.u. Also, we will denote by fX the density function of the
covariate X and by x0 a reference position such that x0 P IntpSXq, the interior of the support
SX Ă Rd of fX , which is assumed to be non-empty. Our aim will be to estimate the conditional
marginal expected shortfall, given X “ x0, and defined as

θp “ E
„

Y p1q
ˇ

ˇ

ˇ
Y p2q ě U2

ˆ

1

p

ˇ

ˇ

ˇ
x0

˙

;x0



,

where p is small. Note that in the financial and actuarial setting where risk measures and in
particular MES have been introduced, one is often interested in positive risk factors. Thus, in
the sequel, we consider the case where Y p1q and Y p2q are positive.

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator
for the conditional marginal expected shortfall and we establish its main asymptotic properties.
Simulations are provided in Section 3 to illustrate the efficiency of our estimator, while in Section
4 the method is applied to a dataset of flood insurance claims. Some closing remarks are given
in Section 5. All the proofs of the results are postponed to Section 6.

2 Estimator and asymptotic properties

We assume that Y p1q and Y p2q are both positive and follow a conditional Pareto-type model.

Assumption pDq For all x P SX , the conditional survival functions of Y pjq, j “ 1, 2, satisfy

F jpy|xq “ Ajpxqy
´1{γjpxq

ˆ

1`
1

γjpxq
δjpy|xq

˙

,

where Ajpxq ą 0, γjpxq ą 0, and |δjp.|xq| is normalised regularly varying with index ´βjpxq,
βjpxq ą 0, i.e.,

δjpy|xq “ Bjpxq exp

ˆ
ż y

1

εjpu|xq

u
du

˙

,

with Bjpxq P R and εjpy|xq Ñ ´βjpxq as y Ñ 8. Moreover, we assume y Ñ εjpy|xq to be a
continuous function.
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Under Assumption pDq, F1p.|xq and F2p.|xq have density functions. Indeed, straightforward
differentiation gives

fjpy|xq “
Ajpxq

γjpxq
y´1{γjpxq´1

„

1`

ˆ

1

γjpxq
´ εjpy|xq

˙

δjpy|xq



, j “ 1, 2. (2.1)

Now, let pY
p1q
i , Y

p2q
i , Xiq, i “ 1, . . . , n, be independent copies of pY p1q, Y p2q, Xq. We consider

estimating the conditional marginal expected shortfall when pÑ 0 at an intermediate rate, i.e.,
p “ k{n, where k, nÑ8 such that k{nÑ 0. A natural idea is then to study

pθn :“
1

k

n
ÿ

i“1

Khpx0 ´XiqY
p1q
i 1l

tY
p2q
i ěpU2pn{k|x0qu

,

where pU2p.|x0q is an estimator for U2p.|x0q, to be introduced later, and Khp.q :“ Kp.{hq{hd, with
K a joint density function on Rd, h ” hn a positive non-random sequence of bandwidths with
hÑ 0 if nÑ8, and 1lA the indicator function on the event A. We observe that in our approach
the covariate X is recorded together with the dependent variables pY p1q, Y p2qq, and hence we
are in the situation of a random design. This should be contrasted with the fixed design, where
the x-values are determined beforehand, and where the responses are collected at these specific
design points, e.g., in a designed experiment.

To simplify the situation, let us assume for the moment that U2p.|x0q is known and consider

rθn :“
1

k

n
ÿ

i“1

Khpx0 ´XiqY
p1q
i 1l

tY
p2q
i ěU2pn{k|x0qu

.

Clearly, assuming F1py|x0q is strictly increasing in y, we have

rθn “

ż 8

0

1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltY p1qi ěsu
1l
tY
p2q
i ěU2pn{k|x0qu

ds

“

ż 8

0

1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltY p1qi ěs, F 2pY
p2q
i |x0qďk{nu

ds

“

ż 8

0

1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltF 1pY
p1q
i |x0qďpk{nqrpn{kqF 1ps|x0qs, F 2pY

p2q
i |x0qďk{nu

ds

“ ´U1pn{k|x0q

ż 8

0

1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltF 1pY
p1q
i |x0qďpk{nqsnpuq, F 2pY

p2q
i |x0qďk{nu

du´γ1px0q,

where snpuq :“ n
k F 1pu

´γ1px0qU1pn{k|x0q|x0q. Note that under pDq, we have snpuq Ñ u as nÑ8.

The key statistic to consider is thus, for x0 P IntpSXq,

Tnpy1, y2|x0q :“
1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltF 1pY
p1q
i |x0qďpk{nq y1, F 2pY

p2q
i |x0qďpk{nq y2u

,

where y1, y2 ą 0.
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As a first main result we study the weak convergence of the process

"

?
khd

Tnpy1, y2|x0q ´ EpTnpy1, y2|x0qq

yη1
, y1, y2 P p0, T s

*

, (2.2)

for any T ą 0, finite, and η P r0, 1{2q. This will require some further assumptions.

In order to deal with the regression context, fX and the functions appearing in F1py|xq and
F2py|xq are assumed to satisfy the following Hölder conditions. Let }.} denote some norm on
Rd.

Assumption pHq There exist positive constants MfX , MAj , Mγj , MBj , Mεj , ηfX , ηAj , ηγj ,
ηBj and ηεj , where j “ 1, 2, such that for all x, z P SX :

|fXpxq ´ fXpzq| ď MfX }x´ z}
ηfX ,

|Ajpxq ´Ajpzq| ď MAj}x´ z}
ηAj ,

|γjpxq ´ γjpzq| ď Mγj}x´ z}
ηγj ,

|Bjpxq ´Bjpzq| ď MBj}x´ z}
ηBj ,

sup
yě1

|εjpy|xq ´ εjpy|zq| ď Mεj}x´ z}
ηεj .

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption pKq K is a bounded density function on Rd, with support SK included in the
unit ball in Rd.

Next, a uniform convergence result is needed for the joint conditional distribution of pY p1q, Y p2qq.
This condition reflects the asymptotic behaviour of the conditional copula. Let Rtpy1, y2|xq :“
tPpF 1pY

p1q|xq ď y1{t, F 2pY
p2q|xq ď y2{t|X “ xq.

Assumption pRq For all x P SX , we have as tÑ8 and h Ó 0 that

Rtpy1, y2|xq Ñ Rpy1, y2|xq,

uniformly in y1, y2 P p0, T s, for any T ą 0, and x P Bpx0, hq.

Note that Assumption pRq could also be formulated in an alternative way as follows: for all
x P SX and py1, y2q P r0,8s

2ztp8,8qu, we have as tÑ8 and h Ó 0 that

Rtpy1, y2|xq Ñ Rpy1, y2|xq,

uniformly in x P Bpx0, hq, with x Ñ Rpy1, y2|xq being a continuous function. This would then
imply the uniformity of the convergence in py1, y2q P p0, T s

2.
Also note that Assumption pRq is a stronger version of the first order condition in Cai et al.
(2015), since in our context the convergence must be uniform in a neighborhood of x0, because
of the local estimation. We also have the additional Assumptions pHq and pKq, due to the
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regression context. The latter are though common in the extreme value framework with ran-
dom covariates. As a final comment, observe that in view of assumption pRq, our key statistic
Tnpy1, y2|x0q can be linked to the estimation of Rpy1, y2|x0q, though this is not the objective of
the present paper. For what concerns the estimation of the conditional extremal dependence
structure, we refer to de Carvalho (2016), Escobar-Bach et al. (2018a, b), Castro et al. (2018)
and Mhalla et al. (2019).

The weak convergence of (2.2) is then established in the following theorem under the previous
assumptions which are quite general, and therefore satisfied by a large class of models, some
examples of them being presented in Section 3. Throughout the paper weak convergence is
denoted by ‘ ’.

Theorem 2.1. Assume pDq, pHq, pKq, pRq with x Ñ Rpy1, y2|xq being a continuous function,
x0 P Int(SXq with fXpx0q ą 0, and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Con-
sider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, khd Ñ 8 and
hηγ1^ηγ2^ηε1^ηε2 lnn{k Ñ 0. Then for η P r0, 1{2q, we have,

?
khd

Tnpy1, y2|x0q ´ EpTnpy1, y2|x0qq

yη1
 

W py1, y2q

yη1
, (2.3)

in Dpp0, T s2q, for any T ą 0, where W py1, y2q is a zero centered Gaussian process with covariance
function

EpW py1, y2qW pȳ1, ȳ2qq “ }K}
2
2fXpx0qRpy1 ^ ȳ1, y2 ^ ȳ2|x0q.

We also introduce the following weak convergence result for a related process. This process
will be useful in establishing the asymptotic properties of the quantile estimator pU2pn{k|x0q.
Let

pfnpx0q :“
1

n

n
ÿ

i“1

Khpx0 ´Xiq

be a classical kernel density estimator.

Theorem 2.2. Assume pDq, pHq, pKq, and x0 P IntpSXq with fXpx0q ą 0. Consider se-
quences k Ñ 8 and hÑ 0 as nÑ 8, in such a way that k{nÑ 0, khd Ñ 8, hηε2 lnn{k Ñ 0,?
khd hηfX^ηA2 Ñ 0,

?
khd hηγ2 lnn{k Ñ 0,

?
khd|δ2pU2pn{k|x0q|x0q|h

ηB2 Ñ 0, and
?
khd|δ2pU2pn{k|x0q|x0q|h

ηε2 lnn{k Ñ
0. Then, we have

?
khd

˜

Tnp8, y2|x0q

pfnpx0q
´ y2

¸

 
W p8, y2q

fXpx0q

in Dpp0, T sq, for any T ą 0, where W p8, y2q is a zero centered Gaussian process with covariance
function

EpW p8, y2qW p8, ȳ2qq “ }K}
2
2fXpx0qpy2 ^ ȳ2q.

The joint weak convergence of the above two processes can be established by showing the
joint finite dimensional weak convergence of them, combined with joint tightness. The joint
finite dimensional convergence can be established by using the Cramér-Wold device (van der
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Vaart 1998, p. 16). This is a standard but tedious calculation which is for brevity omitted
from the paper. Note that the joint tightness follows from the individual tightness (similarly to
Lemma 1 in Bai and Taqqu 2013).

The main result of this paper is the asymptotic normality of our final estimator for the
conditional marginal expected shortfall θk{n, defined as

θn :“
pθn

pfnpx0q
“

1
k

řn
i“1Khpx0 ´XiqY

p1q
i 1l

tY
p2q
i ěpU2pn{k|x0qu

1
n

řn
i“1Khpx0 ´Xiq

. (2.4)

Intuitively, we can see this estimator as an extension of the Nadaraya-Watson estimator of
mpxq :“ ErY |X “ x0s (see Nadaraya, 1964; Watson, 1964), defined as

pmpxq :“
1
n

řn
i“1Khpx0 ´XiqY

p1q
i

1
n

řn
i“1Khpx0 ´Xiq

,

in the sense that, since in our context the conditioning is on the event tY p2q ě U2pn{k|x0qu, we

need to add the indicator of the event tY
p2q
i ě pU2pn{k|x0qu in (2.4). As a result, the numerator

in (2.4) needs to be normalized by the number of excesses above this estimated quantile, i.e., k,
instead of n.

In order to obtain the weak convergence of θn, we need to introduce the following second
order condition.

Assumption pSq. There exist β ą γ1px0q and τ ă 0 such that, as tÑ8 and h Ó 0 we have

sup
xPBpx0,hq

sup
0ăy1ă8,

1
2
ďy2ď2

|Rtpy1, y2|xq ´Rpy1, y2|x0q|

yβ1 ^ 1
“ Optτ q.

Note that this uniform requirement excludes the case where pY p1q, Y p2qq are asymptotically
upper tail independent given X “ x0, which corresponds to the case Rpy1, y2|x0q “ 0. As-
sumption pSq is a stronger version of the second order condition in Cai et al. (2015), since the
convergence must be additionally uniform in x P Bpx0, h) due to the regression context.

Theorem 2.3. Assume pDq, pHq, pKq, pSq with x Ñ Rpy1, y2|xq being a continuous function,
and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing. Let x0 P IntpSXq such that fXpx0q ą 0.
Consider sequences k “ tnα`1pnqu and h “ n´∆`2pnq, where `1 and `2 are slowly varying
functions at infinity, with α P p0, 1q and

max

ˆ

α

d` 2γ1px0qpηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2 ^ ηfX q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqpγ1px0q ^ pβ2px0qγ2px0qq ^ p´τqq

d

¯

ă ∆ ă
α

d
.

Then, for γ1px0q ă 1{2, we have

?
khd

ˆ

θn
θk{n

´ 1

˙

 ´p1´ γ1px0qq
W p8, 1q

fXpx0q
`

1

fXpx0q

ş8

0 W ps, 1qds´γ1px0q

ş8

0 Rps, 1|x0qds´γ1px0q
.
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The variance of the limiting random variable in Theorem 2.3, denoted W, is given by

VarpWq “
}K}22
fXpx0q

«

γ2
1px0q ´ 1´

ş8

0 Rps, 1|x0qds
´2γ1px0q

`ş8

0 Rps, 1|x0qds´γ1px0q
˘2

ff

. (2.5)

The conditions on k and h in Theorem 2.3 are due to the method of proof of the auxiliary result
given in Lemma 6.4 of the Appendix. Also in Cai et al. (2015) one needed a condition on the
growth of k, but in the context without covariates.

3 Simulation experiment

In this section we evaluate the finite sample behavior of the proposed estimator with a simula-
tion experiment. Since the topic of estimating the marginal expected shortfall in the regression
context is completely new in the literature, we cannot compare our estimator with any alterna-
tive estimator. We will compare it with the true value of the models under consideration.

We simulate from the following models:

Model 1. We consider the logistic copula model

Cpu1, u2|xq “ e´rp´ lnu1q
x`p´ lnu2q

xs1{x , u1, u2 P r0, 1s, x ě 2. (3.1)

We take X „ U r2, 10s, and combine this copula model with Fréchet distributions for Y p1q and
Y p2q:

Fjpyq “ e´y
´1{γj

, y ą 0,

j “ 1, 2. We set γ1 “ 0.25 and γ2 “ 0.5. This model satisfies pSq with Rpy1, y2|xq “
y1 ` y2 ´ py

x
1 ` y

x
2 q

1{x, τ “ ´1 and β “ 1´ ε for some small ε ą 0.

Model 2. The conditional distribution of pY p1q, Y p2qq given X “ x is that of

p|Z1|
γ1pxq, |Z2|

γ2pxqq,

where pZ1, Z2q follow a bivariate standard Cauchy distribution with density function

fpz1, z2q “
1

2π
p1` z2

1 ` z
2
2q
´3{2, pz1, z2q P R2.

We take X „ U r0, 1s, and set

γ1pxq “ 0.4 r0.1` sinpπxqs
”

1.1´ 0.5e´64px´0.5q2
ı

,

γ2pxq “ 0.1` 0.1x.

This model satisfies pSq with Rpy1, y2|xq “ y1` y2´
a

y2
1 ` y

2
2, τ “ ´1 and β “ 2 (see, e.g., Cai

et al. 2015, in the context without covariates).
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Model 3. We consider the logistic copula model from (3.1), with X „ U r2, 10s, combined with
conditional Burr distributions for Y p1q and Y p2q:

Fjpy|xq “ 1´

ˆ

βj

βj ` yτjpxq

˙λj

, y ą 0;βj , λj , τjpxq ą 0,

j “ 1, 2. We set β1 “ β2 “ 1, λ1 “ 1, λ2 “ 0.5, and

τ1pxq “ 2e0.2x, τ2pxq “ 8{ sinp0.3xq.

Similarly to Model 1, this model satisfies pSq.

The marginal conditional distributions in the above models are standard heavy-tailed distribu-
tions that satisfy pDq, see, e.g., Beirlant et al. (2009). In Model 2, the functions γ1pxq and γ2pxq
are usual functions in the extreme value framework, see, e.g., Dierckx et al. (2014), Goegebeur
et al. (2014). Note that for Model 2 the function γ1pxq is much more complicated than γ2pxq
since it shows local maxima and minima, whereas γ2pxq is increasing. For Model 3, γ1pxq is
decreasing while γ2pxq has a maximum in the interval r2, 10s. The graphs of these functions are
shown in Figure 1 for Model 2 and in Figure 2 for Model 3.

Concerning the kernel function K, we take the bi-quadratic function

Kpxq “
15

16
p1´ x2q21ltxPr´1,1su.

To compute our estimator θn, the bandwidth h need to be chosen. To this aim, we use the cross
validation criterion introduced by Yao (1999), and used in an extreme value context by Daouia
et al. (2011, 2013) and Escobar-Bach et al. (2018a):

hcv :“ argmin
hPH

n
ÿ

i“1

n
ÿ

j“1

ˆ

1l!
Y
p2q
i ďY

p2q
j

) ´ pFn,h,2,´i

´

Y
p2q
j

ˇ

ˇ

ˇ
Xi

¯

˙2

,

where H is the grid of values defined as RX ˆ t0.05, 0.10, . . . , 0.30u, with RX the range of the
covariate X, and

pFn,h,2,´i py|xq :“

řn
k“1,k‰iKh px´Xkq 1l!

Y
p2q
k ďy

)

řn
k“1,k‰iKh px´Xkq

.

In Figure 3 we show the boxplots of θn based on 500 replications, at different values of x0, for
samples of size n “ 500 (left) and n “ 1000 (right), and for k{n “ 2% (top row) and k{n “ 10%
(bottom row), along with the true value of θk{n. Figures 4 and 5 are constructed similarly but for
Model 2 and Model 3, respectively. The values of θk{n are computed with numerical integration.

From these figures we can draw the following conclusions:

• Overall the estimator θn performs quite well, with the true value θk{n typically located
in the central box, but obviously the performance depends on the model and also on the
position x0. The best results are obtained for Model 1, where the dependence structure
depends on x but the marginal distributions are covariate independent. Model 2 has
covariate dependent marginal distributions, but Rpy1, y2|xq does not depend on x, and for
Model 3 both the margins and Rpy1, y2|xq depend on x. These models are more challenging
than Model 1, but the estimator continues to perform well.
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• The estimator behaves as expected in n, namely, for a fixed k{n the variance decreases
with increasing sample size.

• As a function of x, the true value θk{n follows the pattern of γ1pxq rather closely. Similarly,

the variance of θn tends to be larger for large values of γ1pxq.

• The estimator seems to be not too much sensitive on the value of the covariate x0 in case
of Model 1. On the contrary, for Model 2, it depends a lot on the value of the covariate.
Note that nearby the local maxima there is a slight underestimation of θk{n which can

be explained by the fact that in the local estimation one uses Y p1q observations from
conditional distributions with a smaller tail index than at the reference position x0. An
opposite behavior is observed at the local minima. Model 3 is in between, with some
improvement in the variability of the estimates when the covariate increases, which may
be explained by the fact that γ1pxq decreases in x.

Next, in Figure 6 we provide some normal quantile plots of
?
kh ln θn{θk{n, with k taken

as 5% of n and h obtained from the above mentioned cross-validation criterion. The rows of
Figure 6 correspond with Models 1-3, respectively, while the columns represent the sample sizes,
n “ 500 and n “ 1000, respectively. For all models and sample sizes, the normal quantile plots
show a quite linear pattern, confirming the validity of the normal approximation. Moreover,
with increasing n the normal approximation improves slightly.

4 Application to flood insurance claim data

4.1 Description of the dataset

In this section we illustrate the practical applicability of the method on a dataset of flood insur-
ance claims. Recently, the Federal Emergency Management Agency (FEMA) has released mil-
lions of records from the National Flood Insurance Program (NFIP). In particular, this database
contains approximately 2.4 million damage claims dating back to 1978, where for each claim one
has information on the date of the flood, location of the property (latitude and longitude), claim
amount, and on insurance policy and building characteristics. As such, it provides important
information for policymakers, researchers, insurers and prospective homebuyers. The dataset
is publicly available on https://www.fema.gov/media-library/assets/documents/180374.
For our purposes we consider the data from the year 2000 on, and define Y1 as the sum of the
amount paid on the building claim, the content claim and the increased cost of compliance claim,
Y2 is taken as the sum of the insured amount for the building and content, while the covariate
X consists of X1 : latitude, X2 : longitude and X3 : date of loss. Interest is in estimating the
expected claim amount conditional on an insured capital that exceeds a high quantile, and for
a given location and time. For (re-)insurance companies, accurate modeling and analysis of the
upper tail of the claim size distribution is of crucial importance, as extreme claims may pose a
major threat to their solvency. Also, the upper tail of the claim size distribution provides im-
portant information for pricing (re-)insurance contracts. By taking covariate information into
account one can differentiate the risks one is exposed to and hence obtain a more competitive
premium calculation.
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4.2 Preliminary analysis

The estimation method was implemented with the same cross-validation criterion as in the
simulation section, including the same choice for H, after standardizing the covariates to the
interval r0, 1s. As for the kernel function, we used the bi-quadratic kernel, generalized to the
case d “ 3, as follows

Khpxq “
1

h3
K

ˆ

}x}

h

˙

,

where x P R3, and }.} denotes the Euclidean norm.
In order to verify the Pareto-type behavior of Y p1q and Y p2q, we constructed the local Hill

plots of the Y p1q and Y p2q data, respectively, for which the X coordinate is in a neighborhood
of (latitude, longitude)=(33.84,-84.45), and date of loss equal to 2018, July, see Figure 7. The
location under consideration is in the city of Atlanta. In these plots we show the local Hill

estimates H
pjq
k px0q :“ 1

k

řk
i“1 ln rY

pjq
nx0´i`1,nx0

´ ln rY
pjq
nx0´k,nx0

as a function of k, where rY
pjq
i,nx0

,

i “ 1, . . . , nx0 , are the order statistics of the Y pjq data for which the X coordinate belongs to
Bpx0, hq, and nx0 is the number of observations in Bpx0, hq. For both Y p1q and Y p2q the Hill
estimate is clearly positive for the smaller k values supporting the assumption of underlying
conditional Pareto-type distributions. For Y p1q, total claim amount, the Hill plot shows a stable
estimate for γ1px0q of about 0.3 when k is in the range 50-200. This satisfies the theoretical
requirement that γ1px0q ă 0.5. For Y p2q, capital insured, the Hill plot shows some systematic
pattern beyond k “ 150, which is due to the occurrence of repeated values for this variable.
Despite this, the local Hill plot also suggests an underlying conditional Pareto-type distribution.
Similar local Hill plots were obtained at other locations and for other time points. Next, we
investigate the asymptotic dependence assumption by plotting an estimate for Rp1.5, 1.5|x0q

as a function of k, at several values of x0. Lemma 6.2 gives an indication that Tnpy1, y2|x0q

estimates fXpx0qRpy1, y2|x0q, but Tnpy1, y2|x0q is only a pseudo estimator as it depends on the
unknown marginal conditional distribution functions F1p.|x0q and F2p.|x0q. To resolve this, we
consider an adjustment of the estimator proposed in Escobar-Bach et al. (2018b), which is for
the context of estimation of Lpy1, y2|x0q, to the context of estimation of Rpy1, y2|x0q, namely

pRpy1, y2|x0q “

1
k

řn
i“1Kh px0 ´Xiq 1l!

pFn,1pY
p1q
i |Xi qď

k
n
y1,

pFn,2pY
p2q
i |Xi qď

k
n
y2

)

pfnpx0q
, (4.1)

where pFn,1 is a kernel estimator for F1, of the same form as pFn,2. In Figure 8 we plot
pRp1.5, 1.5|x0q as a function of k, at x0 corresponding to the above mentioned location, and
for 2009, July 1 (left), and 2017, January 1 (right). Clearly, the displays show a positive esti-
mate for Rp1.5, 1.5|x0q, which gives evidence of asymptotic dependence of Y p1q and Y p2q given
X “ x0.

4.3 Estimation of the conditional marginal expected shortfall

We illustrate the estimation of the conditional marginal expected shortfall at the above men-
tioned location, for the period 2008 till present, and using k{n “ 1% (solid line) and k{n “ 10%
(dashed-dotted line), respectively, see Figure 9. As expected, the conditional marginal expected
shortfall at quantile level k{n “ 1% shows more variability than the one at level k{n “ 10%,
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due to the smaller amount of data available to estimate the former, but otherwise they show
the same pattern. The plot shows clearly the catastrophic Atlanta flood in 2009, September,
resulting from multiple days of prolonged rainfall. The height of the event was on September
20-21 where 10 to 20 inches of rain occurred in less than 24 hours, which led to flash flooding,
with flooded river basins remaining swollen for weeks. For this period, the difference between
the two levels of the conditional marginal expected shortfall is larger than at other time points
included in the analysis, which can be probably explained by the increased frequency of very
large damage claims. Note that although the flood event took place at some specific time, its
effect is smoothed out over a window due to the local estimation. This is in our setting also
partially due to the use of a global bandwidth parameter h, i.e., a bandwidth that gives a
reasonable performance over the whole covariate range. Alternatively, the bandwidth could be
selected locally, for the specific x0 where one wants to do the estimation. One can expect then
that at x0 where the parameter of interest, here θp, changes quickly, the resulting bandwidth
would be smaller. This is a topic for future investigation. Finally, we supplement Figure 9 with
pointwise 95% confidence intervals, see Figure 10. The approximate confidence intervals of level
100p1´ αq% for θk{n are obtained from Theorem 2.3 and given by

»

–

θn

1` Φ´1
`

1´ α
2

˘

b

{VarpWq
khd

,
θn

1´ Φ´1
`

1´ α
2

˘

b

{VarpWq
khd

fi

fl ,

where Φ´1 denotes the standard normal quantile function and {VarpWq is an estimate for the
asymptotic variance given in (2.5), obtained by using a local Hill estimate for γ1px0q and (4.1)
as estimate for Rpy1, y2|x0q. Note that the latter both require an adaptive selection of their
respective k-value, which will be denoted by k̄ to avoid confusion with the k from θk{n. These
adaptive k̄-values are obtained by plotting the estimates as a function of k̄ whereafter the k̄ is
selected by a stability criterion as described in Goegebeur et al. (2019). In Figure 10 we show
the approximate pointwise 95% confidence intervals for θk{n with k{n “ 1% (left) and k{n “ 10%
(right) as a function of time, at the above considered location. Note that the confidence intervals
seem reasonable, and are, e.g., wider for θk{n with k{n “ 1% than for k{n “ 10%, as expected.
At a few x0 positions we could not obtain a confidence interval, either due to a negative estimate

of VarpWq or a negative value for 1´ Φ´1 p1´ α{2q

b

{VarpWq{pkhdq.

5 Closing remarks

This paper is a pioneering contribution to the statistical modeling of the conditional marginal ex-
pected shortfall in the asymptotic dependence framework. It also provides a series of interesting
open questions which will lead to further investigations, among them:

• The extrapolation outside the Y p2q data range: due to the conditions k, n Ñ 8 with
k{n Ñ 0, the Y p2q quantile is intermediate, and the estimator θn cannot be used for
extrapolation. Clearly this case where p ă 1{n will be not trivial and it will require again
an elaborate analysis. A natural idea will be to use a Weissman-type construction (see,
Weissman 1978) based on the fact that under Assumptions pRq and pDq with γ1px0q ă 1,
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one can show (see Cai et al. 2015, Proposition 1) that

lim
pÑ0

θp
U1p1{p|x0q

“ ´

ż 8

0
Rps, 1|x0qds

´γ1px0q,

from which the following approximation can be deduced

θp „
U1p1{p|x0q

U1pn{k|x0q
θ k
n
„

ˆ

k

np

˙γ1px0q

θ k
n
. (5.1)

To construct an estimator based on (5.1), we need first to define an estimator for γ1px0q

and then we need to establish its asymptotic theory in terms of a process, related to the
process we have already studied.

• The extension to the case of a real-valued Y p1q or Y p2q. In our approach we have assumed
that Y p1q and Y p2q are non-negative random variables. This was also the case in Joe
and Li (2011), and Das and Fasen-Hartmann (2018, 2019) where various properties of the
marginal expected shortfall were studied in a framework without covariates. The problem
of handling a real valued Y p1q requires an elaborate analysis, which does not fit in the
current framework of our proofs.

• Study of the bias-properties of the proposed estimator. We have studied our estimator
under Assumption pHq, which allowed us to obtain the order of the various bias-terms, and
hence to control them. However, in this approach one cannot make the bias terms explicit.
A more precise quantification of the bias terms can be done by replacing Assumption
pHq by suitable differentiability conditions on the various parameters (functions of x),
along with using Taylor series expansions in the theoretical derivations. Alternatively,
the estimation of the conditional marginal expected shortfall could also be studied in the
framework of local polynomial maximum likelihood estimation. Such estimators are well-
known to have an attractive behaviour near the boundary of the support, as documented
in Wand and Jones (1995), Fan and Gijbels (1996), and Aerts and Claeskens (1997). In
the context of estimation of the conditional marginal expected shortfall, a local polynomial
estimator could be obtained by minimisation of

S :“
n
ÿ

i“1

Khpx0 ´Xiq

˜

Y
p1q
i ´

s
ÿ

j“0

βjpXi ´ x0q
j

¸2

1l
tY
p2q
i ěpU2pn{k|x0qu

,

where we have for simplicity assumed that d “ 1. In particular, the estimator for the

conditional marginal expected shortfall at x0 would in this case be pθ
pLP q
n “ pβ0, where pβ0 is

the estimator for β0 obtained from solving the above minimisation problem. Interestingly,
by taking s “ 0, corresponding to a local constant estimation, one obtains as estimator

θ̌n :“

řn
i“1Khpx0 ´XiqY

p1q
i 1l

tY
p2q
i ěpU2pn{k|x0qu

řn
i“1Khpx0 ´Xiq1ltY p2qi ěpU2pn{k|x0qu

,

which is in nature close to the estimator proposed in the present paper.
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• High dimensional covariates. Although our theoretical developments allow for an arbitrary
dimension d of the covariate, local estimators are known to have a deteriorating practical
performance in higher dimensions due to the so-called curse of dimensionality. With high
dimensional covariates, the local estimation could be combined with dimension reduction
techniques, e.g., Gardes (2018) and Xu et al. (2020) for dimension reduction in the context
of estimation of extreme conditional quantiles.

• The extension to the asymptotic independence framework: in the absence of covariates,
this topic has been very recently studied in the literature in, e.g., Das and Fasen-Hartmann
(2018) and Cai and Musta (2020).

• Confidence bands. The result of Theorem 2.3 allows to construct confidence intervals
for θk{n at a specific x0, so pointwise, as illustrated in the real data analysis. A natural

question would be to know if a result for θn with a varying x0´value in the covariate
space can be obtained. This means, in that case, that we inquire about a convergence
of θn correctly normalized as a stochastic process in x0. However, even in the simpler
case of local estimation of conditional tail index γpx0q of a Pareto-type tail with random
covariates, it remains uncertain whether this type of result is possible. In our context this
is highly more complicated than this latter framework, and thus the problem is still open.

• The development of a completely automatic data-driven way for obtaining confidence
intervals, along with a study of the corresponding coverage probabilities.

6 Appendix

Lemma 6.1. Assume pDq and pHq and x0 P Int(SXq. Let ptnqně1 and phnqně1 be arbitrary

sequences satisfying tn Ñ8 and hn Ñ 0 such that h
ηγj^ηεj
n ln tn Ñ 0, as nÑ8, and 0 ď η ă 1.

Then
ˇ

ˇ

ˇ

ˇ

tnF jpUjptn{y|x0q|xq

yη
´ y1´η

ˇ

ˇ

ˇ

ˇ

Ñ 0, as nÑ8,

uniformly in y P p0, T s and x P Bpx0, hnq.

Lemma 6.2. Assume pDq, pHq, pKq and pRq with xÑ Rpy1, y2|xq being a continuous function,
and x0 P IntpSXq such that fXpx0q ą 0. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8 in
such a way that k{nÑ 0 and hηγ1^ηγ2^ηε1^ηε2 lnn{k Ñ 0. Then, as nÑ8

EpTnpy1, y2|x0qq Ñ fXpx0qRpy1, y2|x0q,

khdVarpTnpy1, y2|x0qq Ñ }K}22fXpx0qRpy1, y2|x0q.

The proof of these lemmas and all the subsequent ones are given in Section 6.5.

6.1 Proof of Theorem 2.1

To prove the result we will make use of empirical process theory with changing function classes,
see for instance van der Vaart and Wellner (1996). To this aim we start by introducing some
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notation. Let P be the distribution measure of pY p1q, Y p2q, Xq, and denote the expected value
under P , the empirical version and empirical process as follows

Pf :“

ż

fdP, Pnf :“
1

n

n
ÿ

i“1

f
´

Y
p1q
i , Y

p2q
i , Xi

¯

, Gnf :“
?
npPn ´ P qf,

for any real-valued measurable function f : R2ˆRd Ñ R. For a function class F , letNrspε,F , L2pP qq,
denote the minimal number of ε´brackets needed to cover F . The bracketing integral is then
defined as

Jrspδ,F , L2pP qq “

ż δ

0

b

lnNrspε,F , L2pP qqdε.

We introduce our sequence of classes Fn on R2 ˆ Rd as

Fn :“
 

pu, zq Ñ fn,ypu, zq, y P p0, T s
2
(

where

fn,ypu, zq :“

d

nhd

k
Khpx0 ´ zq

1ltF 1pu1|x0qďpk{nq y1, F 2pu2|x0qďpk{nq y2u

yη1
.

Denote also by Fn an envelope function of the class Fn. Now, according to Theorem 19.28
in van der Vaart (1998) the weak convergence of the stochastic process (2.3) follows from the
following four conditions. Let ρx0 be a semimetric, possibly depending on x0, making p0, T s2

totally bounded. We have to prove that

sup
ρx0 py,ȳqďδn

P pfn,y ´ fn,ȳq
2 ÝÑ 0 for every δn Œ 0, (6.1)

PF 2
n “ Op1q, (6.2)

PF 2
n1ltFnąε

?
nu ÝÑ 0 for every ε ą 0, (6.3)

Jrspδn,Fn, L2pP qq ÝÑ 0 for every δn Œ 0, (6.4)

along with the pointwise convergence of the covariance function.

Proof of condition p6.1q. Let ρx0py, ȳq :“ |y1´ ȳ1|` |y2´ ȳ2|. Denote An,y :“ tF 1pY
p1q|x0q ď

pk{nq y1, F 2pY
p2q|x0q ď pk{nq y2u. We have then

P pfn,y ´ fn,ȳq
2 “

nhd

k
E

«

K2
hpx0 ´Xq

ˆ

1lAn,y
yη1

´
1lAn,ȳ
ȳη1

˙2
ff

“
nhd

k
E

«

K2
hpx0 ´XqE

«

ˆ

1lAn,y
yη1

´
1lAn,ȳ
ȳη1

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

X

ffff

. (6.5)

We consider now three cases.
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Case 1: y1 ^ ȳ1 ď δn. Assume without loss of generality that y1 ď ȳ1. By expanding the
square in the above conditional expectation and using the fact that, e.g., An,y Ă tF 1pY

p1q|x0q ď

pk{nq y1u, we obtain the following inequality

E

«

ˆ

1lAn,y
yη1

´
1lAn,ȳ
ȳη1

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

X “ x

ff

ď
3P pF 1pY

p1q|x0q ď pk{nq y1|X “ xq

y2η
1

`
P pF 1pY

p1q|x0q ď pk{nq ȳ1|X “ xq

ȳ2η
1

,

which, after substituting in (6.5) leads to

P pfn,y ´ fn,ȳq
2

ď 3
n

k

ż

SK

K2pvq
P pF 1pY

p1q|x0q ď pk{nq y1|X “ x0 ´ hvq

y2η
1

fXpx0 ´ hvqdv

`
n

k

ż

SK

K2pvq
P pF 1pY

p1q|x0q ď pk{nq ȳ1|X “ x0 ´ hvq

ȳ2η
1

fXpx0 ´ hvqdv.

Now note that

P pF 1pY
p1q|x0q ď pk{nq y1|X “ x0 ´ hvq “ F 1 pU1pn{pky1q|x0q|x0 ´ hvq ,

which, together with the result of Lemma 6.1, motivates the following decomposition

P pfn,y ´ fn,ȳq
2

ď 3y1´2η
1

ż

SK

K2pvqfXpx0 ´ hvqdv

`3

ż

SK

K2pvq

«

1

y2η
1

n

k
F 1 pU1pn{pky1q|x0q|x0 ´ hvq ´ y

1´2η
1

ff

fXpx0 ´ hvqdv

`ȳ1´2η
1

ż

SK

K2pvqfXpx0 ´ hvqdv

`

ż

SK

K2pvq

«

1

ȳ2η
1

n

k
F 1 pU1pn{pkȳ1q|x0q|x0 ´ hvq ´ ȳ

1´2η
1

ff

fXpx0 ´ hvqdv.

Using Lemma 6.1 and the fact that ρx0py, ȳq ď δn which implies ȳ1 ď 2δn, we get

P pfn,y ´ fn,ȳq
2 ď 5δ1´2η

n

ż

SK

K2pvqfXpx0 ´ hvqdv ` op1q,

where the op1q term does not depend on y1 and ȳ1.

Case 2: y1 ^ ȳ1 ą δn and y2 ^ ȳ2 ď δn. Assume without loss of generality that y2 ď ȳ2.
Similarly to the approach followed in Case 1, we obtain

E

«

ˆ

1lAn,y
yη1

´
1lAn,ȳ
ȳη1

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

X “ x

ff

ď
3P pF 2pY

p2q|x0q ď pk{nq y2|X “ xq

py1 ^ ȳ1q
2η

`
P pF 2pY

p2q|x0q ď pk{nq ȳ2|X “ xq

py1 ^ ȳ1q
2η

,
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and thus

P pfn,y ´ fn,ȳq
2

ď
3y2

py1 ^ ȳ1q
2η

ż

SK

K2pvqfXpx0 ´ hvqdv

`
3y2η

2

py1 ^ ȳ1q
2η

ż

SK

K2pvq

«

1

y2η
2

n

k
F 2 pU2pn{pky2q|x0q|x0 ´ hvq ´ y

1´2η
2

ff

fXpx0 ´ hvqdv

`
ȳ2

py1 ^ ȳ1q
2η

ż

SK

K2pvqfXpx0 ´ hvqdv

`
ȳ2η

2

py1 ^ ȳ1q
2η

ż

SK

K2pvq

«

1

ȳ2η
2

n

k
F 2 pU2pn{pkȳ2q|x0q|x0 ´ hvq ´ ȳ

1´2η
2

ff

fXpx0 ´ hvqdv.

Again by Lemma 6.1 and using that ȳ2 ď 2δn we have that

P pfn,y ´ fn,ȳq
2 ď 5δ1´2η

n

ż

SK

K2pvqfXpx0 ´ hvqdv ` op1q,

where the op1q term does not depend on y2 and ȳ2.

Case 3: y1^ ȳ1 ą δn and y2^ ȳ2 ą δn. Let y_ ȳ denote the vector with the component-wise
maxima of y and ȳ, and similarly y^ ȳ is the vector with the component-wise mimima of y and
ȳ. Then

P pfn,y ´ fn,ȳq
2 ď

nhd

k
E

«

K2
hpx0 ´XqE

«

ˆ

1lAn,y_ȳ
py1 ^ ȳ1q

η
´

1lAn,y^ȳ
py1 _ ȳ1q

η

˙2
ˇ

ˇ

ˇ

ˇ

ˇ

X

ffff

.

Note that
ˆ

1lAn,y_ȳ
py1 ^ ȳ1q

η
´

1lAn,y^ȳ
py1 _ ȳ1q

η

˙2

“

ˆ

1

yη1
´

1

ȳη1

˙2

1lAn,y^ȳ `
1

py1 ^ ȳ1q
2η
p1lAn,y_ȳ ´ 1lAn,y^ȳq, (6.6)

which leads to

P pfn,y ´ fn,ȳq
2

ď
pyη1 ´ ȳ

η
1 q

2

py1ȳ1q
2η

n

k

ż

SK

K2pvqP
´

F 1pY
p1q|x0q ď pk{nq y1 ^ ȳ1, F 2pY

p2q|x0q ď pk{nq y2 ^ ȳ2

ˇ

ˇ

ˇ
X “ x0 ´ hv

¯

ˆfXpx0 ´ hvqdv

`
1

py1 ^ ȳ1q
2η

n

k

ż

SK

K2pvq
”

P
´

F 1pY
p1q|x0q ď pk{nq y1 _ ȳ1, F 2pY

p2q|x0q ď pk{nq y2 _ ȳ2

ˇ

ˇ

ˇ
X “ x0 ´ hv

¯

´P
´

F 1pY
p1q|x0q ď pk{nq y1 ^ ȳ1, F 2pY

p2q|x0q ď pk{nq y2 ^ ȳ2

ˇ

ˇ

ˇ
X “ x0 ´ hv

¯ı

fXpx0 ´ hvqdv

“: Q1,n `Q2,n.

As for Q1,n, we easily obtain

Q1,n ď
pyη1 ´ ȳ

η
1q

2

py1ȳ1q
2η

ż

SK

K2pvq
n

k
F 1 pU1pn{pk y1 ^ ȳ1q|x0q|x0 ´ hvq fXpx0 ´ hvqdv.
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Now, by the mean value theorem, applied to pyη1 ´ ȳη1q
2, and a decomposition motivated by

Lemma 6.1,

Q1,n

ď py1 ^ ȳ1q
´1´2ηpy1 ´ ȳ1q

2

ż

SK

K2pvqfXpx0 ´ hvqdv

`py1 ^ ȳ1q
´2py1 ´ ȳ1q

2

ż

SK

K2pvq

„

1

py1 ^ ȳ1q
2η

n

k
F 1

´

U1pn{pk y1 ^ ȳ1q|x0q

ˇ

ˇ

ˇ
x0 ´ hv

¯

´py1 ^ ȳ1q
1´2η

‰

ˆ fXpx0 ´ hvqdv.

This then gives

Q1,n ď δ1´2η
n

ż

SK

K2pvqfXpx0 ´ hvqdv ` op1q,

where the op1q term does not depend on y1 and ȳ1.

Concerning Q2,n, we have the following inequality

Q2,n

ď
1

py1 ^ ȳ1q
2η

n

k

ż

SK

K2pvqP
´

pk{nq y1 ^ ȳ1 ď F 1pY
p1q|x0q ď pk{nq y1 _ ȳ1

ˇ

ˇ

ˇ
X “ x0 ´ hv

¯

fXpx0 ´ hvqdv

`
1

py1 ^ ȳ1q
2η

n

k

ż

SK

K2pvqP
´

pk{nq y2 ^ ȳ2 ď F 2pY
p2q|x0q ď pk{nq y2 _ ȳ2

ˇ

ˇ

ˇ
X “ x0 ´ hv

¯

fXpx0 ´ hvqdv

“: Q2,1,n `Q2,2,n.

We only give details about Q2,1,n, the term Q2,2,n can be handled analogously. Direct compu-
tations give

Q2,1,n “
1

py1 ^ ȳ1q
2η

n

k

ż

SK

K2pvq

ż U1pn{pkpy1^ȳ1qq|x0q

U1pn{pkpy1_ȳ1qq|x0q

f1py|x0 ´ hvqdyfXpx0 ´ hvqdv,

and, after substituting u “ pn{kqF 1py|x0q, we have

Q2,1,n “
1

py1 ^ ȳ1q
2η

ż

SK

K2pvq

ż y1_ȳ1

y1^ȳ1

f1pU1pn{pkuq|x0q|x0 ´ hvq

f1pU1pn{pkuq|x0q|x0q
dufXpx0 ´ hvqdv.

Using (2.1) and arguments similar to those used in the proof of Lemma 6.1 one obtains for n
large and some small κ ą 0,

f1pU1pn{pkuq|x0q|x0 ´ hvq

f1pU1pn{pkuq|x0q|x0q
ď Cu´κ,

where C does not depend on u. Then, for n large enough,

Q2,1,n ď
C

py1 ^ ȳ1q
2η

ż y1_ȳ1

y1^ȳ1

u´κdu

ż

SK

K2pvqfXpx0 ´ hvqdv

ď
C

py1 ^ ȳ1q
2η
py1 ^ ȳ1q

´κpy1 _ ȳ1 ´ y1 ^ ȳ1q

ď Cδ1´2η´κ
n

“ op1q,
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for a small κ P p0, 1´ 2ηq.
Combining all the above we have verified p6.1q.

Proof of condition p6.2q. A natural envelope function of the class Fn is

Fnpu, zq :“

c

nhd

k
Khpx0 ´ zq

1l
tF 1pu1|x0qďkT {nu

rpn{kqF 1pu1|x0qs
η
.

This yields

PF 2
n “

´n

k

¯1´2η

hd E

˜

K2
hpx0 ´XqE

«

1l
tF 1pY p1q|x0qďkT {nu

pF 1pY p1q|x0qq
2η

ˇ

ˇ

ˇ

ˇ

ˇ

X

ff¸

“

´n

k

¯1´2η
ż

SK

K2pvqE

«

1l
tF 1pY p1q|x0qďkT {nu

pF 1pY p1q|x0qq
2η

ˇ

ˇ

ˇ

ˇ

ˇ

X “ x0 ´ hv

ff

fXpx0 ´ hvqdv

“

´n

k

¯1´2η
ż

SK

K2pvq

ż 8

U1pn{pkT q|x0q

1

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

`

´n

k

¯1´2η
ż

SK

K2pvq

ż 8

U1pn{pkT q|x0q

1

pF 1py|x0 ´ hvqq2η

ˆ

#

ˆ

F 1py|x0 ´ hvq

F 1py|x0q

˙2η

´ 1

+

dF1py|x0 ´ hvqfXpx0 ´ hvqdv

“: Q3,npT q `Q4,npT q.

Concerning Q3,npT q we obtain by direct integration and a slight adjustment of Lemma 6.1, for
large n

Q3,npT q “
1

1´ 2η

´n

k

¯1´2η
ż

SK

K2pvqrF 1pU1pn{pkT q|x0q|x0 ´ hvqs
1´2ηfXpx0 ´ hvqdv

“
T 1´2η

1´ 2η

ż

SK

K2pvqfXpx0 ´ hvqdv

`
1

1´ 2η

ż

SK

K2pvq

„

´n

k
F 1pU1pn{pkT q|x0q|x0 ´ hvq

¯1´2η

´ T 1´2η



fXpx0 ´ hvqdv

ď CT 1´2η´κ, (6.7)

for κ ă 1´ 2η.

Concerning Q4,npT q, combining pDq with pHq gives the following bound, for n large and y ě
U1pn{pkT q|x0q,

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

F 1py|x0 ´ hvq

F 1py|x0q

˙2η

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď C1

´

hηA1 ` yC2h
ηγ1 hηγ1 ln y ` |δ1py|x0q|h

ηB1

`|δ1py|x0q|y
C3h

ηε1 hηε1 ln y
¯

. (6.8)

Each of the terms in the right-hand side of the above inequality needs now to be used in Q4,npT q,
leading to the terms Q4,j,npT q, j “ 1, . . . , 4, studied below. First

18



Q4,1,npT q :“

hηA1

´n

k

¯1´2η
ż

SK

K2pvq

ż 8

U1pn{pkT q|x0q

1

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv.

This term is clearly of smaller order than Q3,npT q studied above and hence Q4,1,npT q “ Op1q.
For the second term in the right-hand side of (6.8) we need to study

Q4,2,npT q :“

hηγ1
´n

k

¯1´2η
ż

SK

K2pvq

ż 8

tnpT q

yξ1,n ln y
1

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

where tnpT q :“ U1pn{pkT q|x0q and ξ1,n :“ C2h
ηγ1 . Let pnpyq :“ ξ1,ny

ξ1,n´1 ln y ` yξ1,n´1. Ap-
plying integration by parts on the inner integral gives, for n large enough,

Q4,2,npT q

“

´n

k

¯1´2η hηγ1 lnptnpT qqrtnpT qs
ξ1,n

1´ 2η

ż

SK

K2pvq
“

F 1ptnpT q|x0 ´ hvq
‰1´2η

fXpx0 ´ hvqdv

`

´n

k

¯1´2η hηγ1

1´ 2η

ż

SK

K2pvq

ż 8

tnpT q

pnpyq
“

F 1py|x0 ´ hvq
‰1´2η

dyfXpx0 ´ hvqdv

“: Q4,2,1,npT q `Q4,2,2,npT q.

We obtain, for n large enough

Q4,2,1,npT q ď Chηγ1 lnptnpT qqrtnpT qs
ξ1,nT 1´2η´κ

“ Op1q,

since for distributions satisfying pDq one has that

U1py|x0q “ pA1px0qq
γ1px0qyγ1px0qp1` a1py|x0qq (6.9)

where |a1p.|x0q| is regularly varying with index equal to ´γ1px0qβ1px0q, and by using the fact
that hηγ1 lnpn{kq Ñ 0 as nÑ8.
Now consider Q4,2,2,npT q. We have

Q4,2,2,npT q “
hηγ1T 1´2η

1´ 2η

ż

SK

K2pvq

ż 8

tnpT q

pnpyq

ˆ

F 1py|x0 ´ hvq

F 1py|x0q

˙1´2η ˆ
F 1py|x0q

F 1ptnpT q|x0q

˙1´2η

dy

ˆfXpx0 ´ hvqdv.

For n large and y ě tnpT q, with ξ2,n “ Chηε1 ,

ˆ

F 1py|x0 ´ hvq

F 1py|x0q

˙1´2η

ď Cyξ1,n
´

1` yξ2,nhηε1 ln y
¯

.

Substituting u “ y{tnpT q we get

Q4,2,2,npT q ď Chηγ1T 1´2ηrtnpT qs
1`ξ1,n

ˆ

ż

SK

K2pvq

ż 8

1

pnptnpT ququ
ξ1,n

`

1` ptnpT quq
ξ2,nhηε1 lnptnpT quq

˘

ˆ

F 1ptnpT qu|x0q

F 1ptnpT q|x0q

˙1´2η

du

ˆfXpx0 ´ hvqdv.
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Since F 1p.|x0q is regularly varying, we can apply the Potter bound (see, e.g., de Haan and
Ferreira 2006, Proposition B.1.9), and obtain, for n large enough and 0 ă δ ă 1{γ1px0q

Q4,2,2,npT q ď Chηγ1T 1´2ηrtnpT qs
2ξ1,n

ż

SK

K2pvqfXpx0 ´ hvqdv

ˆ

ż 8

1

`

ξ1,nu
ξ1,n´1 lnptnpT qq ` ξ1,nu

ξ1,n´1 lnu` uξ1,n´1
˘

uξ1,n´p1{γ1px0q´δqp1´2ηq

ˆ
`

1` ptnpT quq
ξ2,nhηε1 lnptnpT quq

˘

du.

After tedious computations one gets

Q4,2,2,npT q ď CT 1´2ηhηγ1 rtnpT qs
2ξ1,n

!

1` hηγ1 lnptnpT qq ` rtnpT qs
ξ2,nhηε1 lnptnpT qq

)

“ Op1q,

by (6.9) and the fact that hηγ1^ηε1 lnpn{kq Ñ 0 as nÑ8. Hence, Q4,2,npT q “ Op1q.

Finally, the two last terms Q4,3,npT q and Q4,4,npT q can be dealt with similarly as the two previous
ones since

Q4,3,npT q :“ hηB1

´n

k

¯1´2η
ż

SK

K2pvq

ż 8

tnpT q

|δ1py|x0q|

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

ď

˜

sup
yětnpT q

|δ1py|x0q|

¸

hηB1

´n

k

¯1´2η

ˆ

ż

SK

K2pvq

ż 8

tnpT q

1

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv (6.10)

and

Q4,4,npT q :“ hηε1
´n

k

¯1´2η
ż

SK

K2pvq

ż 8

tnpT q

|δ1py|x0q|y
ξ2,n ln y

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

ď

˜

sup
yětnpT q

|δ1py|x0q|

¸

hηε1
´n

k

¯1´2η

ˆ

ż

SK

K2pvq

ż 8

tnpT q

yξ2,n ln y

pF 1py|x0 ´ hvqq2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv. (6.11)

This yields Q4,3,npT q “ Op1q and Q4,4,npT q “ Op1q. Combining all these results, we get (6.2).
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Proof of condition p6.3q. To this aim, for any α P p0, 1{η ´ 2q, we have

PF 2
n1ltFnąε

?
nu ď

1

εαnα{2
PF 2`α

n

“
1

εαnα{2

ˆ

nhd

k

˙1`α2

E
ˆ

K2`α
h px0 ´Xq

1l
tF 1pY p1q|x0qďkT {nu

rpn{kqF 1pY p1q|x0qs
ηp2`αq

˙

“
1

εα
1

pkhdqα{2

´n

k

¯1´ηp2`αq
ż

SK

K2`αpvqE

˜

1l
tF 1pY p1q|x0qďkT {nu

rF 1pY p1q|x0qs
ηp2`αq

ˇ

ˇ

ˇ

ˇ

ˇ

X “ x0 ´ hv

¸

ˆfXpx0 ´ hvqdv

“
1

εα
1

pkhdqα{2

´n

k

¯1´ηp2`αq

ˆ

#

ż

SK

K2`αpvq

ż 8

tnpT q

1

pF 1py|x0 ´ hvqqηp2`αq
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

`

ż

SK

K2`αpvq

ż 8

tnpT q

1

pF 1py|x0 ´ hvqqηp2`αq

ˆ

«

ˆ

F 1py|x0 ´ hvq

F 1py|x0q

˙ηp2`αq

´ 1

ff

dF1py|x0 ´ hvqfXpx0 ´ hvqdv

+

.

The terms into brackets can be studied similarly as Qj,npT q, j “ 3, 4, and thus (6.3) is estab-
lished since khd Ñ8.

Proof of condition p6.4q. Without loss of generality assume T “ 1 and consider, for a, θ, θ̃ ă 1,
the classes

F p1qn paq :“ tfn,y P Fn : y1 ď au,

F p2qn paq :“ tfn,y P Fn : y1 ą a, y2 ď au,

Fnp`,mq :“ tfn,y P Fn : θ``1 ď y1 ď θ`, θ̃m`1 ď y2 ď θ̃mu,

where ` “ 0, . . . , tln a{ ln θu and m “ 0, . . . ,
Y

ln a{ ln θ̃
]

. We start by showing that F p1qn paq is an

ε´bracket, for n sufficiently large. Clearly

0 ď fn,ypu, zq ď

c

nhd

k
Khpx0 ´ zq

1l
tF 1pu1|x0qďpk{nq y1u

rpn{kqF 1pu1|x0qs
η

ď hd{2pn{kq1{2´ηKhpx0 ´ zq
1l
tF 1pu1|x0qďpk{nq au

pF 1pu1|x0qq
η

:“ u1,npu, zq.

Then

Pu2
1,n “

´n

k

¯1´2η
ż

SK

K2pvq

ż 8

tnpaq

1

pF 1py|x0qq
2η
dF1py|x0 ´ hvqfXpx0 ´ hvqdv

“ Q3,npaq `Q4,npaq,

using the same decomposition as for PF 2
n . Thus, one can obtain the result from the above anal-

ysis of Q3,npT q and Q4,npT q, taking into account that the various constants involved in these
will not depend on a.
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Concerning Q3,npaq, according to (6.7), for n large

Q3,npaq ď Ca1´2η´κ,

where C does not depend on a. Now, taking a “ ε3{p1´2ηq, for n large enough and ε small we
have |Q3,npaq| ď ε2.

Concerning Q4,npaq, we use the same decomposition as for Q4,npT q based on (6.8), which entails
that, for n large enough, ε small and some small ζ ą 0

Q4,1,npaq ď ε2,

Q4,2,1,npaq ď Chηγ1 lnptnpaqqrtnpaqs
ξ1,na1´2η´κ

ď Cp1` | ln a|qa´ζa1´2η´κ

ď Ca1´2η´2κ,

with C a constant not depending on a, since from (6.9) and for n large,

hηγ1 ln tnpaq ď Cp1` | ln a|q.

Also, for n large, and some small ζ ą 0

Q4,2,2,npaq ď Ca1´2ηhηγ1 rtnpaqs
2ξ1,n

!

1` hηγ1 lnptnpaqq ` rtnpaqs
ξ2,nhηε1 lnptnpaqq

)

ď Ca1´2ηhηγ1a´ζp1` | ln a| ` a´ζp1` | ln a|qq

ď Ca1´2η´κ,

where C does not depend on a. Hence, for n large and ε small we obtain Q4,2,2,npaq ď ε2. Using
(6.10) and (6.11), we have also Q4,3,npaq ď ε2 and Q4,4,npaq ď ε2. Combining all the terms we
get Pu2

1,n ď ε2 for n large.

Next consider F p2qn paq. Then

0 ď fn,ypu, zq ď

c

nhd

k
Khpx0 ´ zq

1l
tF 2pu2|x0qďpk{nq au

aη
“: u2,npu, zq,

and

Pu2
2,n “

1

a2η

n

k

ż

SK

K2pvqF 2

´

U2

´ n

ka

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

fXpx0 ´ hvqdv

ď ε2,

when n is large enough and for ε small.

Finally, we consider Fnp`,mq. We obtain the following bounds

unpu, zq :“

c

nhd

k
Khpx0 ´ zq

1l
tF 1pu1|x0qďpk{nq θ``1, F 2pu2|x0qďpk{nq θ̃m`1u

θ`η
ď fn,ypu, zq ď

c

nhd

k
Khpx0 ´ zq

1l
tF 1pu1|x0qďpk{nq θ`, F 2pu2|x0qďpk{nq θ̃mu

θp``1qη
“: unpu, zq.
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Then

P pun ´ unq
2 “

nhd

k
E

«

K2
hpx0 ´Xq

˜

1l
tF 1pY p1q|x0qďpk{nq θ`, F 2pY p2q|x0qďpk{nq θ̃mu

θp``1qη

´
1l
tF 1pY p1q|x0qďpk{nq θ``1, F 2pY p2q|x0qďpk{nq θ̃m`1u

θ`η

¸2
fi

fl .

The difference of the indicator functions can be decomposed as in (6.6), and subsequent calcula-
tions follow arguments similar to those used in the verification of (6.1), Case 3. Taking θ “ 1´ε3

and θ̃ “ 1´ a, gives for n large enough and ε small that P pun ´ unq
2 ď ε2.

Combining the above, for n large and ε small one obtains that the cover number by bracketing
is of the order ε´4´3{p1´2ηq, and hence (6.4) is satisfied.

To conclude the proof, we comment on the pointwise convergence of the covariance function,
which is given by Pfn,yfn,ȳ ´ Pfn,yPfn,ȳ. We have

Pfn,yfn,ȳ “
}K}22
py1ȳ1q

η

n

k
E
„

1

}K}22h
d
K2

ˆ

x0 ´X

h

˙

1lAn,y^ȳ



Ñ }K}22fXpx0q
Rpy1 ^ ȳ1, y2 ^ ȳ2|x0q

py1ȳ1q
η

,

as nÑ8, by the arguments used in the proof of Lemma 6.2. Also

Pfn,y “

c

khd

n

1

yη1

n

k
E
“

Khpx0 ´Xq1lAn,y
‰

Ñ 0,

as nÑ8. �

6.2 Proof of Theorem 2

Recall that

Tnp8, y2|x0q “
1

k

n
ÿ

i“1

Khpx0 ´Xiq1ltF 2pY
p2q
i |x0qď

k
n
y2u
.

We follow the lines of proof of Theorem 1. We introduce the sequence of classes rFn on Rˆ Rd
as

rFn :“ tpu, zq Ñ rfn,ypu, zq, y P p0, T su

where

rfn,ypu, zq :“

c

nhd

k
Khpx0 ´ zq1ltF 2pu|x0qď

k
n
yu.
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We have to verify the conditions (6.1)-(6.4) in the proof of Theorem 1 for the new functions
rfn,y, and with ρx0py, ȳq :“ |y´ ȳ|. Without loss of generality, we may assume that y ą y. Thus,
we have

P
´

rfn,y ´ rfn,y

¯2
“

nhd

k
E
”

K2
hpx0 ´Xq

´

1l
tF 2pY p2q|x0qď

k
n
yu ´ 1l

tF 2pY p2q|x0qď
k
n
yu

¯ı

“
n

k

ż

SK

K2pvq

„

F 2

ˆ

U2

ˆ

n

ky

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ F 2

ˆ

U2

ˆ

n

ky

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

ˆfXpx0 ´ hvqdv

“ py ´ yq

ż

SK

K2pvqfXpx0 ´ hvqdv

`

ż

SK

K2pvq

„

n

k
F 2

ˆ

U2

ˆ

n

ky

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ y



fXpx0 ´ hvqdv

´

ż

SK

K2pvq

„

n

k
F 2

ˆ

U2

ˆ

n

ky

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ y



fXpx0 ´ hvqdv

ď δn

ż

SK

K2pvqfXpx0 ´ hvqdv ` op1q,

with a op1q´term which is uniform in y and y by Lemma 1. This yields (6.1).

Now, concerning (6.2) we can use the following envelope function of the class rFn

rFnpu, zq :“

c

nhd

k
Khpx0 ´ zq1ltF 2pu|x0qď

k
n
T u

from which we deduce that

P rF 2
n “

n

k

ż

SK

K2pvqF 2

´

U2

´ n

kT

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

fXpx0 ´ hvqdv “ Op1q.

Next condition (6.3) is also a direct consequence of the definition of the envelope since

P rF 2
n1l
t rFnąε

?
nu

ď
1

εαnα{2
P rF 2`α

n

ď
1

εαpkhdqα{2
n

k

ż

SK

K2`αpvqF 2

´

U2

´ n

kT

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

fXpx0 ´ hvqdv “ op1q

as soon as khd Ñ8.

Finally, concerning (6.4), again without loss of generality we assume T “ 1 and divide r0, 1s
into m intervals of length 1{m. Then, for y P rpi´ 1q{m, i{ms we have the bounds

unpu, zq :“

c

nhd

k
Khpx0 ´ zq1ltF 2pu|x0qď

k
n
i´1
m
u
ď rfn,ypu, zq ď

c

nhd

k
Khpx0 ´ zq1ltF 2pu|x0qď

k
n
i
m
u
“: unpu, zq
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from which we deduce that

P pun ´ unq
2 “

1

m

ż

SK

K2pvqfXpx0 ´ hvqdv

`

ż

SK

K2pvq

„

n

k
F 2

´

U2

´n

k

m

i

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0 ´ hv

¯

´
i

m



fXpx0 ´ hvqdv

´

ż

SK

K2pvq

„

n

k
F 2

ˆ

U2

ˆ

n

k

m

i´ 1

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´
i´ 1

m



fXpx0 ´ hvqdv

ď ε3

ż

SK

K2pvqfXpx0 ´ hvqdv ` 2ε3

when m “ r 1
ε3

s. If ε is small and n large, then P pun ´ unq
2 ď ε2.

The pointwise convergence of the covariance function can be verified with arguments similar
to those used in the proof of Theorem 1.

Consequently

?
khd rTnp8, y2|x0q ´ EpTnp8, y2|x0qqs W p8, y2q,

in Dpp0, T sq.

Now, remark that

EpTnp8, y2|x0qq “ y2fXpx0q `O ph
ηfX q

`fXpx0q

ż

SK

Kpvq

„

n

k
F 2

ˆ

U2

ˆ

n

ky2

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ y2



dv

`

ż

SK

Kpvq

„

n

k
F 2

ˆ

U2

ˆ

n

ky2

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ y2



rfXpx0 ´ hvq ´ fXpx0qs dv.

Following the lines of proof of Lemma 1, we deduce that

ˇ

ˇ

ˇ

n

k
F 2

ˆ

U2

ˆ

n

ky2

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

´ y2

ˇ

ˇ

ˇ
ď C

!

hηA2 ` hηγ2 ln
n

k
` |δ2pU2pn{k|x0q|x0q|

´

hηB2 ` hηε2 ln
n

k

¯)

from which we obtain

EpTnp8, y2|x0qq “ y2fXpx0q `O ph
ηfX^ηA2 q `O

´

hηγ2 ln
n

k

¯

`O p|δ2pU2pn{k|x0q|x0q|h
ηB2 q

`O
´

|δ2pU2pn{k|x0q|x0q|h
ηε2 ln

n

k

¯

with O´terms which are uniform in y2 P p0, T s. This implies that, under the assumptions of
Theorem 2, we have

?
khd rTnp8, y2|x0q ´ y2fXpx0qs W p8, y2q, (6.12)

in Dpp0, T sq.
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Finally,

?
khd

˜

Tnp8, y2|x0q

pfnpx0q
´ y2

¸

“
?
khd

ˆ

Tnp8, y2|x0q

fXpx0q
´ y2

˙

´
Tnp8, y2|x0q

pfnpx0qfXpx0q

c

k

n

?
nhd

´

pfnpx0q ´ fXpx0q

¯

,

from which Theorem 2 follows. �

In the sequel, for convenient representation, all the limiting processes in Theorems 2.1 and 2.2
will be defined on the same probability space, via the Skorohod construction, but it should be
kept in mind that they are only in distribution equal to the original processes. The Skorohod
representation theorem gives then (with keeping the same notations)

sup
y1,y2Pp0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd rTnpy1, y2|x0q ´ EpTnpy1, y2|x0qqs ´W py1, y2q

yη1

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, a.s.

and

sup
y2Pp0,T s

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd

˜

Tnp8, y2|x0q

pfnpx0q
´ y2

¸

´
W p8, y2q

fXpx0q

ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, a.s. .

6.3 Convergence result for an auxiliary statistic

In this section we give a convergence result for an auxiliary statistic. In particular, we generalize
rθn to rθnpy2q, defined as

rθnpy2q “
1

k

n
ÿ

i“1

Khpx0 ´XiqY
p1q
i 1l

tY
p2q
i ěU2pn{pky2q|x0qu

.

Assuming F1py|x0q strictly increasing in y, we have

rθnpy2q “ ´U1

´n

k

ˇ

ˇ

ˇ
x0

¯

ż 8

0
Tnpsnpuq, y2|x0qdu

´γ1px0q.

As motivation for studying rθnpy2q, note that pθn “ rθnppenq, where pen :“ n
k F 2ppunU2p

n
k |x0q|x0q

with pun :“ pU2p
n
k |x0q{U2p

n
k |x0q. To estimate U2p.|x0q we will use pU2p.|x0q :“ infty : pFn,2py|x0q ě

1´ 1{.u with

pFn,2py|x0q :“

řn
i“1Khpx0 ´Xiq1ltY p2qi ďyu
řn
i“1Khpx0 ´Xiq

,

the empirical kernel estimator of the unknown conditional distribution function of Y p2q given
X “ x0. See for instance Daouia et al. (2011). The asymptotic behavior of the quantile
estimator is given in Lemma 6.6.

Proposition 6.1. Assume pDq, pHq, pKq, pRq with x Ñ Rpy1, y2|xq being a continuous func-
tion, x0 P Int(SXq with fXpx0q ą 0, and y Ñ Fjpy|x0q, j “ 1, 2, are strictly increasing.
Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, khd Ñ 8 and
hηγ1^ηγ2^ηε1^ηε2 lnn{k Ñ 0. Then, for γ1px0q ă 1{2, we have

sup
1
2
ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd

U1pn{k|x0q

”

rθnpy2q ´ Eprθnpy2qq

ı

`

ż 8

0
W pu, y2qdu

´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

P
ÝÑ 0.
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Proof of Proposition 6.1

We use the decomposition

sup
1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd

U1pn{k|x0q

”

rθnpy2q ´ Eprθnpy2qq

ı

`

ż 8

0

W pu, y2qdu
´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď I1pT q `
4
ÿ

i“2

Ii,npT q,

where

I1pT q :“ sup
1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ż 8

T

W pu, y2qdu
´γ1px0q

ˇ

ˇ

ˇ

ˇ

,

I2,npT q :“ sup
1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ż 8

T

?
khd rTnpsnpuq, y2|x0q ´ E pTnpsnpuq, y2|x0qqs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

,

I3,npT q :“ sup
1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

!?
khd rTnpsnpuq, y2|x0q ´ E pTnpsnpuq, y2|x0qqs ´W psnpuq, y2q

)

du´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

,

I4,npT q :“ sup
1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

rW psnpuq, y2q ´W pu, y2qs du
´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

.

Similarly to the proof of Proposition 2 in Cai et al. (2015), it is sufficient to show that for any
ε ą 0, there exists T0 “ T0pεq such that

PpI1pT0q ą εq ă ε, (6.13)

and n0 “ n0pT0q such that, for any n ą n0

PpIj,npT0q ą εq ă ε, for j “ 2, 3 and 4.

Clearly
I1pT q ď sup

uěT, 1
2
ďy2ď2

|W pu, y2q|T
´γ1px0q.

Since a rescaled version of our Gaussian process W p., .q gives the one in Cai et al. (2015),
according to their Lemma 2, we have sup0ăuă8, 1

2
ďy2ď2 |W pu, y2q| ă 8 with probability one.

This implies that there exists T1 “ T1pεq such that

P

˜

sup
0ăuă8, 1

2
ďy2ď2

|W pu, y2q| ą T
γ1px0q

1 ε

¸

ă ε,

from which we deduce that, for any T ą T1

P pI1pT q ą εq ď P

˜

sup
0ăuă8, 1

2
ďy2ď2

|W pu, y2q| ą T
γ1px0q

1 ε

¸

ă ε.

Consequently (6.13) holds for T0 ą T1.

We continue with the term I2,npT q. We have
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P pI2,npT q ą εq

ď P

˜

sup
y1ěT,

1
2ďy2ď2

ˇ

ˇ

ˇ

?
khd rTnpsnpy1q, y2|x0q ´ EpTnpsnpy1q, y2|x0qqs

ˇ

ˇ

ˇ
ą ε T γ1px0q

¸

“ P

˜

sup
y1ěT,

1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

„

K

}K}8

ˆ

x0 ´Xi

h

˙

1l
tF 1pY

p1q

i |x0qď
k
n snpy1q, F 2pY

p2q

i |x0qď
k
ny2u

´E
ˆ

K

}K}8

ˆ

x0 ´X

h

˙

1l
tF 1pY p1q|x0qď

k
n snpy1q, F 2pY p2q|x0qď

k
ny2u

˙
ˇ

ˇ

ˇ

ˇ

ą
ε T γ1px0q

}K}8

?
khd

˙

ď
}K}8

εT γ1px0q
?
khd

E

#

sup
y1ěT,

1
2ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

„

K

}K}8

ˆ

x0 ´Xi

h

˙

1l
tF 1pY

p1q

i |x0qď
k
n snpy1q, F 2pY

p2q

i |x0qď
k
ny2u

´E
ˆ

K

}K}8

ˆ

x0 ´X

h

˙

1l
tF 1pY p1q|x0qď

k
n snpy1q, F 2pY p2q|x0qď

k
ny2u

˙
ˇ

ˇ

ˇ

ˇ

*

.

Consider the class of functions

gn,ypu, zq :“
K

}K}8

ˆ

x0 ´ z

h

˙

1l
tF 1pu1|x0qď

k
n
snpy1q, F 2pu2|x0qď

k
n
y2u

´E
ˆ

K

}K}8

ˆ

x0 ´X

h

˙

1l
tF 1pY p1q|x0qď

k
n
snpy1q, F 2pY p2q|x0qď

k
n
y2u

˙

,

with y1 ě T and 1{2 ď y2 ď 2, and with envelope function

Gnpu, zq :“
K

}K}8

ˆ

x0 ´ z

h

˙

1l
tF 2pu2|x0qď

2k
n u
` E

ˆ

K

}K}8

ˆ

x0 ´X

h

˙

1l
tF 2pY p2q|x0qď

2k
n u

˙

.

This class of functions satisfies the conditions of Theorem 7.3 in Wellner (2005) with σ2 “

Opkhd{nq and PG2
n “ Opkhd{nq for n large, and thus, for some constant C,

P pI2,npT q ą εq ď
C

εT γ1px0q

for n large enough. We have then that for every ε there is a T “ T pεq such that for n large
enough

P pI2,npT q ą εq ď ε.

Now, to study I3,npT q, remark that for any T ą 0, Dn1 “ n1pT q : @n ą n1 : snpT q ă T ` 1.
Hence for n ą n1 and any η0 P pγ1px0q, 1{2q :

P pI3,npT q ą εq ď P

˜

sup
0ăy1ďT`1, 12ďy2ď2

ˇ

ˇ

ˇ

ˇ

ˇ

?
khdrTnpy1, y2|x0q ´ EpTnpy1, y2|x0qqs ´W py1, y2q

yη01

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ż T

0

rsnpuqs
η0du´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

.

According to Lemma 3 in Cai et al. (2015)

ˇ

ˇ

ˇ

ˇ

ż T

0
rsnpuqs

η0du´γ1px0q

ˇ

ˇ

ˇ

ˇ

ÝÑ
γ1px0q

η0 ´ γ1px0q
T η0´γ1px0q,

28



which, combining with our Theorem 2.1 and the Skorohod construction, entails that there exists
n2pT q ą n1pT q such that @n ą n2pT q, PpI3,npT q ą εq ă ε.

Finally, concerning I4,npT q, we first remark that according to Lemma 2 in Cai et al. (2015),
we have for η0 P pγ1px0q, 1{2q and any T ą 0, with probability one,

sup
0ăy1ďT,

1
2
ďy2ď2

|W py1, y2q|

yη0
1

ă 8.

Then, applying Lemma 3 in Cai et al. (2015) with S “ T, S0 “ T ` 1 and g “ W , we deduce
that there exists n3pT q such that for n ą n3pT q we have PpI4,npT q ą εq ă ε.
This achieves the proof of Proposition 6.1. �

In order to prove Theorem 2.3 we need some auxiliary results. Define for u ą 0 and v P SK

rsnpuq :“
n

k
F 1

´

u´γ1px0qU1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

,

tnpy2q :“
n

k
F 2

ˆ

U2

ˆ

n

ky2

ˇ

ˇ

ˇ
x0

˙

ˇ

ˇ

ˇ
x0 ´ hv

˙

.

Lemma 6.3. Assume pDq and pHq and x0 P IntpSXq. Consider sequences k Ñ8 and hÑ 0 as
nÑ8, in such a way that k{nÑ 0 and hηε1^ηγ1 ln n

k Ñ 0. Then, we have, for any u ď Tn Ñ8

such that kTn{nÑ 0 and 0 ă ε ă β1px0q, that
ˇ

ˇ

ˇ
rsnpuq ´ u

ˇ

ˇ

ˇ
ď Cu

!

hηA1 ` hηγ1 ln
n

k
` hηγ1 | lnu|u˘Ch

ηγ1

`

ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

”

1` u˘Ch
ηγ1 hηγ1 | lnu|

ı

ˆ

”

uγ1px0qβ1px0q
´

1` u˘γ1px0qε
¯´

hηB1 ` u´Ch
ηε1 hηε1

´

| lnu| ` ln
n

k

¯¯

` uγ1px0qpβ1px0q˘εq `

ˇ

ˇ

ˇ
uγ1px0qβ1px0q ´ 1

ˇ

ˇ

ˇ

ı)

,

where u˘‚ means u‚ if u is greater than 1, and u´‚ if u is smaller than 1.

Lemma 6.4. Assume pDq, pHq, γ1px0q ă 1 and x0 P IntpSXq. For sequences k “ tnα`1pnqu and
h “ n´∆`2pnq, where `1 and `2 are slowly varying functions at infinity, with α P p0, 1q and

max

ˆ

α

d` 2γ1px0qpηA1 ^ ηγ1q
,

α

d` 2p1´ γ1px0qqpηA2 ^ ηγ2 ^ ηB2 ^ ηε2q
,

α

d
´

2p1´ αqγ2
1px0qβ1px0q

d` dpβ1px0q ` εqγ1px0q
,
α´ 2p1´ αqγ1px0q

d

¯

ă ∆ ă
α

d
,

one has that

sup
vPSK

sup
1
2
ďy2ď2

?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

0
rR prsnpuq, tnpy2q|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

ÝÑ 0

and

sup
1
2
ďy2ď2

?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

0
rR psnpuq, y2|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

ÝÑ 0.
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Lemma 6.5. Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F2py|x0q is strictly
increasing. Consider sequences k Ñ8 and hÑ 0 as nÑ8, in such a way that k{nÑ 0, khd Ñ
8, hηε2 lnn{k Ñ 0,

?
khd hηfX^ηA2 Ñ 0,

?
khd hηγ2 lnn{k Ñ 0,

?
khd|δ2pU2pn{k|x0q|x0q|h

ηB2 Ñ

0, and?
khd|δ2pU2pn{k|x0q|x0q|h

ηε2 lnn{k Ñ 0. Then, for any sequence un satisfying

?
khd

ˆ

F 2pU2pn{k|x0q|x0q

F 2pun|x0q
´ 1

˙

Ñ c P R,

as nÑ8, we have

b

nhdF 2pun|x0q

˜

pFn,2pun|x0q

F 2pun|x0q
´ 1

¸

 
W p8, 1q

fXpx0q
.

Lemma 6.6. Assume pDq, pHq, pKq, x0 P IntpSXq with fXpx0q ą 0 and y Ñ F2py|x0q is strictly
increasing. Consider sequences k Ñ8 and hÑ 0 as nÑ8, in such a way that k{nÑ 0, khd Ñ
8, hηε2 lnn{k Ñ 0,

?
khd hηfX^ηA2 Ñ 0,

?
khd hηγ2 lnn{k Ñ 0,

?
khd|δ2pU2pn{k|x0q|x0q| Ñ 0.

Then, as nÑ8, we have

?
khd ppun ´ 1q 

γ2px0qW p8, 1q

fXpx0q
.

6.4 Proof of Theorem 2.3

Let Enpyq :“ Eprθnpyq{U1pn{k|x0qq. We have the following decomposition:

?
khd

˜

pθn
fXpx0qθk{n

´ 1

¸

“
U1pn{k|x0q

θk{n

?
khd

fXpx0q

˜

pθn
U1pn{k|x0q

´ Enp1q

¸

`
U1pn{k|x0q

θk{n

?
khd

fXpx0q

ˆ

Enp1q ´
fXpx0qθk{n

U1pn{k|x0q

˙

“
U1pn{k|x0q

θk{n

?
khd

fXpx0q

˜

rθnppenq

U1pn{k|x0q
´ Enppenq

¸

`
U1pn{k|x0q

θk{n

?
khd

fXpx0q
pEnppenq ´ Enp1qq

`
U1pn{k|x0q

θk{n

?
khd

fXpx0q

ˆ

Enp1q ´
fXpx0qθk{n

U1pn{k|x0q

˙

“: T1 ` T2 ` T3.

First, remark that the common factor of the three terms, U1pn{k|x0q{θk{n can be handled in a
similar way as in Proposition 1 in Cai et al. (2015), i.e., as nÑ8

U1pn{k|x0q

θk{n
ÝÑ

´1
ş8

0 Rps, 1|x0qds´γ1px0q
.

Thus the three terms without this factor need to be studied.
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We start with T1. Note that

?
khdppen ´ 1q “ ´

f2pũnU2pn{k|x0q|x0qU2pn{k|x0q

F 2pU2pn{k|x0q|x0q

?
khdppun ´ 1q,

where ũn is a random value between pun and 1. By the continuous mapping theorem we have
then

f2pũnU2pn{k|x0q|x0qU2pn{k|x0q

F 2pU2pn{k|x0q|x0q

P
Ñ

1

γ2px0q
,

and hence by Lemma 6.6

?
khdppen ´ 1q ´W p8, 1q{fXpx0q. (6.14)

This implies that

P
´

|pen ´ 1| ą pkhdq´1{4
¯

Ñ 0.

Hence, with probability tending to one,

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd

fXpx0q

˜

rθnppenq

U1pn{k|x0q
´ Enppenq

¸

`
1

fXpx0q

ż 8

0
W ps, 1qds´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
|y´1|ďpkhdq´1{4

ˇ

ˇ

ˇ

ˇ

ˇ

?
khd

fXpx0q

˜

rθnpyq

U1pn{k|x0q
´ Enpyq

¸

`
1

fXpx0q

ż 8

0
W ps, yqds´γ1px0q

ˇ

ˇ

ˇ

ˇ

ˇ

`
1

fXpx0q
sup

|y´1|ďpkhdq´1{4

ˇ

ˇ

ˇ

ˇ

ż 8

0
rW ps, yq ´W ps, 1qsds´γ1px0q

ˇ

ˇ

ˇ

ˇ

.

The first term of the right-hand side tends to 0 in probability by our Proposition 6.1, whereas
the second term can be handled similarly as in the proof of Proposition 3 in Cai et al. (2015).
Consequently

T1  
1

ş8

0 Rps, 1|x0qds´γ1px0q

1

fXpx0q

ż 8

0
W ps, 1qds´γ1px0q. (6.15)

Next step consists to look at T2. To this aim, remark that for y equal either to 1 or pen, we
have
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ż 8

0

E pTnpsnpuq, y|x0qq du
´γ1px0q

“

ż 8

0

ż

SK

KpvqRn
k
prsnpuq, tnpyq|x0 ´ hvq fXpx0 ´ hvqdvdu

´γ1px0q

“

ż 8

0

ż

SK

KpvqR prsnpuq, tnpyq|x0q fXpx0 ´ hvqdvdu
´γ1px0q

`

ż 8

0

ż

SK

Kpvq
“

Rn
k
prsnpuq, tnpyq|x0 ´ hvq ´R prsnpuq, tnpyq|x0q

‰

fXpx0 ´ hvqdvdu
´γ1px0q

“

ż 8

0

R pu, y|x0q du
´γ1px0q

ż

SK

KpvqfXpx0 ´ hvqdv

`

ż

SK

Kpvq

ż 8

0

rR prsnpuq, tnpyq|x0q ´Rpu, y|x0qs du
´γ1px0qfXpx0 ´ hvqdv

`

ż 8

0

ż

SK

Kpvq
“

Rn
k
prsnpuq, tnpyq|x0 ´ hvq ´R prsnpuq, tnpyq|x0q

‰

fXpx0 ´ hvqdvdu
´γ1px0q

“: rT2,1 ` rT2,2 ` rT2,3.

By Lemma 6.4, Assumptions pSq and pHq we obtain

rT2,1 “ fXpx0q

ż 8

0
R pu, y|x0q du

´γ1px0q `OP ph
ηfX q ,

rT2,2 “ oP

ˆ

1
?
khd

˙

,

| rT2,3| ď ´ sup
xPBpx0,hq

sup
0ăy1ă8,

1
2
ďy2ď2

|Rn{kpy1, y2|xq ´Rpy1, y2|x0q|

yβ1 ^ 1

ˆ

ż

SK

Kpvq

ż 8

0

´

rrsnpuqs
β ^ 1

¯

du´γ1px0qfXpx0 ´ hvqdv

“ OP

´´n

k

¯τ¯

.

Note that the integral appearing in the bound for | rT2,3| is finite for n large, as rsnpuq ď Cu1´ξ

for u P p0, 1{2s, ξ P p0, pβ ´ γ1px0qq{βq and n large. Consequently, under our assumptions and
using the homogeneity of the R´function and the mean value theorem combining with (6.14),
we have

?
khd

fXpx0q
pEnppenq ´ Enp1qq

“

?
khd

fXpx0q

ˆ
ż 8

0
E pTnpsnpuq, 1|x0qq du

´γ1px0q ´

ż 8

0
E pTnpsnpuq, pen|x0qq du

´γ1px0q

˙

“
?
khd

ˆ
ż 8

0
R pu, 1|x0q du

´γ1px0q ´

ż 8

0
R pu, pen|x0q du

´γ1px0q

˙

` oPp1q

“
?
khd

´

1´ pe1´γ1px0q
n

¯

ż 8

0
R pu, 1|x0q du

´γ1px0q ` oPp1q

 p1´ γ1px0qq
W p8, 1q

fXpx0q

ż 8

0
R pu, 1|x0q du

´γ1px0q.
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This implies that

T2  ´p1´ γ1px0qq
W p8, 1q

fXpx0q
. (6.16)

Finally, for T3 we have,

?
khd

fXpx0q

ˆ

Enp1q ´
fXpx0qθk{n

U1pn{k|x0q

˙

“

?
khd

fXpx0q

ˆ

´

ż 8

0
EpTnpsnpuq, 1|x0qqdu

´γ1px0q ´
fXpx0qθk{n

U1pn{k|x0q

˙

“
?
khd

ż 8

0

“

Rn{kpsnpuq, 1|x0q ´Rpu, 1|x0q
‰

du´γ1px0q ` op1q

“
?
khd

ż 8

0

“

Rn{kpsnpuq, 1|x0q ´Rpsnpuq, 1|x0q
‰

du´γ1px0q

`
?
khd

ż 8

0
rRpsnpuq, 1|x0q ´Rpu, 1|x0qs du

´γ1px0q ` op1q

“: rT3,1 ` rT3,2 ` op1q,

where

| rT3,1| ď
?
khd sup

xPBpx0,hq
sup

0ăy1ă8,
1
2
ďy2ď2

|Rn{kpy1, y2|xq ´Rpy1, y2|x0q|

yβ1 ^ 1

ˆ

ˇ

ˇ

ˇ

ˇ

ż 8

0

´

rsnpuqs
β ^ 1

¯

du´γ1px0q

ˇ

ˇ

ˇ

ˇ

“ O
´?

khd
´n

k

¯τ¯

,

rT3,2 “ op1q.

Overall, we have then

T3 “ op1q. (6.17)

Combining (6.15), (6.16) and (6.17), and following the argument as at the end of the proof of
Theorem 2.2, we can establish the result of Theorem 2.3. �

6.5 Proofs of the auxiliary results

Proof of Lemma 1
First note that, by continuity of y Ñ Fjpy|xq,

tnF jpUjptn{y|x0q|xq “ y
F jpUjptn{y|x0q|xq

F jpUjptn{y|x0q|x0q
.
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Then, from condition pDq, and a straightforward decomposition,

ˇ

ˇ

ˇ

ˇ

tnF jpUjptn{y|x0q|xq

yη
´ y1´η

ˇ

ˇ

ˇ

ˇ

ď y1´η

#

ˇ

ˇ

ˇ

ˇ

Ajpxq

Ajpx0q
´ 1

ˇ

ˇ

ˇ

ˇ

pUjptn{y|x0qq
1{γjpx0q´1{γjpxq

1` 1
γjpxq

δjpUjptn{y|x0q|xq

1` 1
γjpx0q

δjpUjptn{y|x0q|x0q

`

ˇ

ˇ

ˇ
pUjptn{y|x0qq

1{γjpx0q´1{γjpxq ´ 1
ˇ

ˇ

ˇ

1` 1
γjpxq

δjpUjptn{y|x0q|xq

1` 1
γjpx0q

δjpUjptn{y|x0q|x0q

`

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γjpxq

δjpUjptn{y|x0q|xq

1` 1
γjpx0q

δjpUjptn{y|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

+

.

Each of the absolute differences in the right-hand side of the above display can be handled by
condition pHq. Obviously, for some constant C,

ˇ

ˇ

ˇ

ˇ

Ajpxq

Ajpx0q
´ 1

ˇ

ˇ

ˇ

ˇ

ď Ch
ηAj
n , for x P Bpx0, hnq.

Next, using the inequality |ez ´ 1| ď e|z||z|, we have, for some constant C (not necessarily equal
to the one introduced above), and x P Bpx0, hnq,

ˇ

ˇ

ˇ
pUjptn{y|x0qq

1{γjpx0q´1{γjpxq ´ 1
ˇ

ˇ

ˇ
ď eCh

ηγj
n lnUjptn{y|x0qCh

ηγj
n lnUjptn{y|x0q.

For distributions satisfying pDq, one easily verifies that

Ujptn|x0q “ pAjpx0qq
γjpx0qt

γjpx0q
n p1` ajptn|x0qq

where |ajp.|x0q| is regularly varying with index equal to ´γjpx0qβjpx0q. Hence, for some con-
stants C1 and C2, not depending on y, one gets for x P Bpx0, hnq and n large,

ˇ

ˇ

ˇ
pUjptn{y|x0qq

1{γjpx0q´1{γjpxq ´ 1
ˇ

ˇ

ˇ
ď C1t

C2h
ηγj
n

n y´C2h
ηγj
n

´

h
ηγj
n ln tn ´ h

ηγj
n ln y

¯

.

Finally, for n large,

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γjpxq

δjpUjptn{y|x0q|xq

1` 1
γjpx0q

δjpUjptn{y|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď C|δjpUjptn{y|x0q|x0q|

"ˇ

ˇ

ˇ

ˇ

δjpUjptn{y|x0q|xq

δjpUjptn{y|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

1

γjpxq
´

1

γjpx0q

ˇ

ˇ

ˇ

ˇ

*

.

By the assumptions on δj we obtain

ˇ

ˇ

ˇ

ˇ

δjpUjptn{y|x0q|xq

δjpUjptn{y|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Bjpxq

Bjpx0q
´ 1

ˇ

ˇ

ˇ

ˇ

e
şUjptn{y|x0q

1

εjpu|xq´εjpu|x0q

u
du

`

ˇ

ˇ

ˇ

ˇ

e
şUjptn{y|x0q

1

εjpu|xq´εjpu|x0q

u
du ´ 1

ˇ

ˇ

ˇ

ˇ

,
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and, hence, using pHq, for x P Bpx0, hnq and n large,

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γjpxq

δjpUjptn{y|x0q|xq

1` 1
γjpx0q

δjpUjptn{y|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď C1

„

h
ηγj^ηBj
n ` tC2h

ηεj
n

n y´C2h
ηεj
n

´

h
ηεj
n ln tn ´ h

ηεj
n ln y

¯



.

Combining the above results establishes the lemma. �

Proof of Lemma 2
We have

EpTnpy1, y2|x0qq

“
n

k
E
”

Khpx0 ´Xq1ltF 1pY p1q|x0qďpk{nq y1, F 2pY p2q|x0qďpk{nq y2u

ı

“
n

k

ż

SK

KpvqPpF 1pY
p1q|x0q ď pk{nq y1, F 2pY

p2q|x0q ď pk{nq y2|X “ x0 ´ hvq

ˆfXpx0 ´ hvqdv

“

ż

SK

KpvqRpy1, y2|x0 ´ hvqfXpx0 ´ hvqdv

`

ż

SK

Kpvq
”n

k
PpF 1pY

p1q|x0q ď pk{nq y1, F 2pY
p2q|x0q ď pk{nq y2|X “ x0 ´ hvq

´Rpy1, y2|x0 ´ hvq
ı

fXpx0 ´ hvqdv

“: T1,n ` T2,n.

Concerning T1,n, by the continuity of fXpxq and Rpy1, y2|xq at x0, we have that fX and R are
bounded in a neighborhood of x0, and hence, by Lebesgue’s dominated convergence theorem

T1,n Ñ fXpx0qRpy1, y2|x0q, as nÑ8.

As for T2,n,

|T2,n| ď sup
vPSK

ˇ

ˇ

ˇ

n

k
PpF 1pY

p1q|x0q ď pk{nq y1, F 2pY
p2q|x0q ď pk{nq y2|X “ x0 ´ hvq

´Rpy1, y2|x0 ´ hvq
ˇ

ˇ

ˇ

ż

SK

KpvqfXpx0 ´ hvqdv,

and note that

PpF 1pY
p1q|x0q ď pk{nq y1, F 2pY

p2q|x0q ď pk{nq y2|X “ x0 ´ hvq

“ P
ˆ

F 1pY
p1q|x0 ´ hvq ď

k

n

n

k
F 1pU1pn{pky1q|x0q|x0 ´ hvq,

F 2pY
p2q|x0 ´ hvq ď

k

n

n

k
F 2pU2pn{pky2q|x0q|x0 ´ hvq|X “ x0 ´ hv

˙

.

Then, by the result of Lemma 1 and the uniformity of the convergence in Assumption pRq, we
have that T2,n Ñ 0 as nÑ8.

35



Now, consider the variance. We have

khdVarpTnpy1, y2|x0qq

“
nhdVarpKhpx0 ´Xq1ltF 1pY p1q|x0qďpk{nq y1, F 2pY p2q|x0qďpk{nq y2u

q

k

“ }K}22
n

k
E
„

1

hd}K}22
K2

ˆ

x0 ´X

h

˙

1l
tF 1pY p1q|x0qďpk{nq y1, F 2pY p2q|x0qďpk{nq y2u



´
khd

n

!n

k
E
”

Khpx0 ´Xq1ltF 1pY p1q|x0qďpk{nq y1, F 2pY p2q|x0qďpk{nq y2u

ı)2
,

from which the result follows. �

Proof of Lemma 3
Using Assumption pDq, we have

rsnpuq “

F 1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

F 1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

“
A1px0 ´ hvq

A1px0q

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯¯
1

γ1px0q
´ 1
γ1px0´hvq u

γ1px0q
γ1px0´hvq

ˆ

1` 1
γ1px0´hvq

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

1` 1
γ1px0q

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ .

This implies that

ˇ

ˇ

ˇ
rsnpuq ´ u

γ1px0q
γ1px0´hvq

ˇ

ˇ

ˇ

ď u
γ1px0q

γ1px0´hvq

"ˇ

ˇ

ˇ

ˇ

A1px0 ´ hvq

A1px0q
´ 1

ˇ

ˇ

ˇ

ˇ

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯¯
1

γ1px0q
´ 1
γ1px0´hvq

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γ1px0´hvq

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

1` 1
γ1px0q

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯¯
1

γ1px0q
´ 1
γ1px0´hvq ´ 1

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γ1px0´hvq

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

1` 1
γ1px0q

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1` 1
γ1px0´hvq

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

1` 1
γ1px0q

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

.

-

“: u
γ1px0q

γ1px0´hvq tT1 ` T2 ` T3u.

36



Using Assumption pHq and the inequality |ex ´ 1| ď |x| e|x|, we deduce that, for n large,

ˇ

ˇ

ˇ

ˇ

A1px0 ´ hvq

A1px0q
´ 1

ˇ

ˇ

ˇ

ˇ

ď C hηA1 (6.18)

ˇ

ˇ

ˇ

ˇ

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯¯
1

γ1px0q
´ 1
γ1px0´hvq ´ 1

ˇ

ˇ

ˇ

ˇ

ď C hηγ1 ln
n

k
. (6.19)

Now, direct computations yield, for n large,

T3 ď C
ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

"ˇ

ˇ

ˇ

ˇ

γ1px0q

γ1px0 ´ hvq
´ 1

ˇ

ˇ

ˇ

ˇ

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0 ´ hv

¯

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(6.20)

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0 ´ hv

¯

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

δ1

´

u´γ1px0qU1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯

δ1

´

U1

´

n
k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

.

-

.

Using the assumed form for δ1py|xq, pHq, and the uniform bound from Proposition B.1.10 in de
Haan and Ferreira (2006) with 0 ă ε ă β1px0q, we obtain, for n large, that

T3 ď C
ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ

!

hηγ1 ` uγ1px0qβ1px0q
´

1` u˘γ1px0qε
¯

ˆ

”

hηB1 ` u´Ch
ηε1 hηε1

´

| lnu| ` ln
n

k

¯ı

`uγ1px0qpβ1px0q˘εq `

ˇ

ˇ

ˇ
uγ1px0qβ1px0q ´ 1

ˇ

ˇ

ˇ

)

. (6.21)

Since

ˇ

ˇ

ˇ
rsnpuq ´ u

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
rsnpuq ´ u

γ1px0q
γ1px0´hvq

ˇ

ˇ

ˇ
` u

ˇ

ˇ

ˇ
u
γ1px0q´γ1px0´hvq

γ1px0´hvq ´ 1
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
rsnpuq ´ u

γ1px0q
γ1px0´hvq

ˇ

ˇ

ˇ
` Cu1˘Chηγ1 hηγ1 | lnu|, (6.22)

combining (6.18), (6.19), (6.21) with (6.22), Lemma 3 is established. �

Proof of Lemma 4
We use the following decomposition along with the Lipschitz property of the function R:
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?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

0
rR prsnpuq, tnpy2q|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

ď
?
khd

ˇ

ˇ

ˇ

ˇ

ż δn

0
rR prsnpuq, tnpy2q|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

`
?
khd

ˇ

ˇ

ˇ

ˇ

ż Tn

δn

rR prsnpuq, tnpy2q|x0q ´Rpu, y2|x0qs du
´γ1px0q

ˇ

ˇ

ˇ

ˇ

`
?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

Tn

rR prsnpuq, tnpy2q|x0q ´Rpu, y2|x0qs du
´γ1px0q

ˇ

ˇ

ˇ

ˇ

ď
?
khd

ˇ

ˇ

ˇ

ˇ

ż δn

0
R prsnpuq, tnpy2q|x0q du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

`
?
khd

ˇ

ˇ

ˇ

ˇ

ż δn

0
Rpu, y2|x0qdu

´γ1px0q

ˇ

ˇ

ˇ

ˇ

´
?
khd

ż Tn

δn

r|rsnpuq ´ u| ` |tnpy2q ´ y2|s du
´γ1px0q

`2 sup
uě0, 1

2
´ζďy2ď2`ζ

Rpu, y2|x0q
?
khd T´γ1px0q

n

“: T1 ` T2 ` T3 ` T4,

for ζ ą 0 small and where δn Ñ 0 and Tn Ñ8, as nÑ8.

Now, since Rpy1, y2|x0q ď y1 ^ y2, using Lemma 3, and assuming hηε1^ηγ1 | ln δn| Ñ 0, we
obtain after tedious calculations, for n large,

T1 ` T2 ď ´2
?
khd

ż δn

0
u du´γ1px0q ´

?
khd

ż δn

0
|rsnpuq ´ u| du

´γ1px0q

ď C
?
khdδ1´γ1px0q

n . (6.23)

As for T3, using again Lemma 3 and following the lines of proof of Lemma 1, we have, for n
large,

T3 ď ´
?
khd

ż Tn

0
|rsnpuq ´ u| du

´γ1px0q ´
?
khd

ż Tn

δn

|tnpy2q ´ y2| du
´γ1px0q

ď C
?
khd T 1´γ1px0q

n

!

hηA1 ` hηγ1 ln
n

k
` hηγ1 lnTn

`

ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
T pβ1px0q`εqγ1px0q
n

)

`C
?
khd δ´γ1px0q

n

!

hηA2 ` hηγ2 ln
n

k
`

ˇ

ˇ

ˇ
δ2

´

U2

´n

k

ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ
x0

¯
ˇ

ˇ

ˇ

ˆ

”

hηB2 ` hηε2 ln
n

k

ı)

(6.24)

assuming hηε1^ηγ1 lnTn Ñ 0.

Finally

T4 ď C
?
khd T´γ1px0q

n . (6.25)
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Take δn “ hξ and Tn “ nκ, with ξ and κ positive numbers, and 0 ă ε ă β1px0q. Combining
(6.23), (6.24) and (6.25), the first part of Lemma 4 follows if the sequences δn and Tn are chosen
such that

α´∆ rd´ 2ξγ1px0q ` 2pξ ^ ηA2 ^ ηB2 ^ ηγ2 ^ ηε2qs ă 0,

α´∆d´ 2κγ1px0q ă 0,

α´∆d` 2κp1´ γ1px0qq ´ 2∆pηA1 ^ ηγ1q ă 0,

α´∆d´ 2p1´ αqγ1px0qβ1px0q ` 2κr1` pβ1px0q ` εqγ1px0q ´ γ1px0qs ă 0.

Note that this is possible if we proceed as follows:
‚ α and ∆ are chosen as stated in Lemma 4;
‚ κ is chosen such that

α´∆d

2γ1px0q
ă κ ă

min

ˆ

1´ α,
2∆pηA1 ^ ηγ1q ´ pα´∆dq

2p1´ γ1px0qq
,

2p1´ αqγ1px0qβ1px0q ´ pα´∆dq

2r1´ γ1px0q ` pβ1px0q ` εqγ1px0qs

˙

;

‚ ξ is chosen such that

α´∆d

2∆p1´ γ1px0qq
ă ξ ă ηA2 ^ ηγ2 ^ ηB2 ^ ηε2 .

Note that the choices of κ and ξ only depend on those of α and ∆.

The second part of Lemma 4 is similar, although simpler. Indeed, a decomposition of the
quantity of interest this time into two parts yields

?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

0
rR psnpuq, y2|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

ď
?
khd

ˇ

ˇ

ˇ

ˇ

ż Tn

0
rR psnpuq, y2|x0q ´Rpu, y2|x0qs du

´γ1px0q

ˇ

ˇ

ˇ

ˇ

`
?
khd

ˇ

ˇ

ˇ

ˇ

ż 8

Tn

rR psnpuq, y2|x0q ´Rpu, y2|x0qs du
´γ1px0q

ˇ

ˇ

ˇ

ˇ

ď ´
?
khd

ż Tn

0
|snpuq ´ u| du

´γ1px0q ` 2 sup
uě0, 1

2
ďy2ď2

Rpu, y2|x0q
?
khd T´γ1px0q

n

ď ´
?
khd

|δ1pU1p
n
k |x0q|x0q|

|γ1px0q ` δ1pU1p
n
k |x0q|x0q|

ż Tn

0
u

ˇ

ˇ

ˇ

ˇ

ˇ

δ1pu
´γ1px0qU1p

n
k |x0q|x0q

δ1pU1p
n
k |x0q|x0q

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

du´γ1px0q

`C
?
khd T´γ1px0q

n

ď C
?
khd

ˇ

ˇ

ˇ
δ1

´

U1

´n

k

ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
x0

¯ˇ

ˇ

ˇ
T 1´γ1px0q`pβ1px0q`εqγ1px0q
n ` C

?
khd T´γ1px0q

n .

This achieves the proof of Lemma 4. �
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Proof of Lemma 5
In this proof, as mentioned above, we will use the Skorohod representation with keeping the
same notation. First remark that

1
n

řn
i“1Khpx0 ´Xiq1ltY p2qi ąunu

F 2pun|x0q

“
F 2pU2pn{k|x0q|x0q

F 2pun|x0q
Tn

´

8,
n

k
F 2pun|x0q

ˇ

ˇ

ˇ
x0

¯

, a.s. .

We have, with rn :“
b

nhdF 2pun|x0q,

ˇ

ˇ

ˇ

ˇ

rn

„

F 2pU2pn{k|x0q|x0q

F 2pun|x0q
Tn

´

8,
n

k
F 2pun|x0q

ˇ

ˇ

ˇ
x0

¯

´ fXpx0q



´W p8, 1q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

?
khd

”

Tn

´

8,
n

k
F 2pun|x0q

ˇ

ˇ

ˇ
x0

¯

´
n

k
F 2pun|x0qfXpx0q

ı

´W
´

8,
n

k
F 2pun|x0q

¯ˇ

ˇ

ˇ

`
?
khd

ˇ

ˇ

ˇ

ˇ

ˇ

d

F 2pun|x0q

F 2pU2pn{k|x0q|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Tn

´

8,
n

k
F 2pun|x0q

ˇ

ˇ

ˇ
x0

¯

´
n

k
F 2pun|x0qfXpx0q

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
W

´

8,
n

k
F 2pun|x0q

¯

´W p8, 1q
ˇ

ˇ

ˇ

`rn

ˇ

ˇ

ˇ

ˇ

F 2pU2pn{k|x0q|x0q

F 2pun|x0q
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
Tn

´

8,
n

k
F 2pun|x0q

ˇ

ˇ

ˇ
x0

¯

´
n

k
F 2pun|x0qfXpx0q

ˇ

ˇ

ˇ
. (6.26)

From (6.12) combined with the Skorohod construction, we have

rn

¨

˝

1
n

řn
i“1Khpx0 ´Xiq1ltY p2qi ąunu

F 2pun|x0q
´ fXpx0q

˛

‚ W p8, 1q.

Finally

rn

˜

pFn,2pun|x0q

F 2pun|x0q
´ 1

¸

“ rn

¨

˝

1
n

řn
i“1Khpx0 ´Xiq1ltY p2qi ąunu

F 2pun|x0qfXpx0q
´ 1

˛

‚

`rn
fXpx0q ´ f̂npx0q

fXpx0qf̂npx0q

1
n

řn
i“1Khpx0 ´Xiq1ltY p2qi ąunu

F 2pun|x0q

 
W p8, 1q

fXpx0q
.

�

Proof of Lemma 6
To prove the lemma we will use the idea of Wretman (1978), applied to our situation. We have,
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for z P R, and un from Lemma 5 taken as U2pn{k|x0qp1` z{
?
khdq, that

P
´?

khd ppun ´ 1q ď z
¯

“ P

˜

b

nhdF 2pun|x0q

˜

pFn,2pun|x0q

F 2pun|x0q
´ 1

¸

ď

b

nhdF 2pun|x0q

ˆ

F 2pU2pn{k|x0q|x0q

F 2pun|x0q
´ 1

˙˙

.

We have that in the present context

an :“

b

nhdF 2pun|x0q

ˆ

F 2pU2pn{k|x0q|x0q

F 2pun|x0q
´ 1

˙

Ñ
z

γ2px0q
.

Let Hn denote the distribution function of
b

nhdF 2pun|x0qp
pFn,2pun|x0q{F 2pun|x0q ´ 1q, and H

is the distribution function of W p8, 1q{fXpx0q. Then by Lemma 5 and by continuity of H one
has that Hnpanq Ñ Hpz{γ2px0qq, as nÑ8, hence the result of the lemma. �
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Figure 1: Model 2: γ1pxq (left) and γ2pxq (right) as a function of x.
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Figure 2: Model 3: γ1pxq (left) and γ2pxq (right) as a function of x.
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Figure 3: Model 1, boxplots of θn for 500 simulations of size n “ 500 (left) and n “ 1000 (right)
for k{n “ 2% (top row) and k{n “ 10% (bottom row). The red curve shows the true value of
θk{n.
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Figure 4: Model 2, boxplots of θn for 500 simulations of size n “ 500 (left) and n “ 1000 (right)
for k{n “ 2% (top row) and k{n “ 10% (bottom row). The red curve shows the true value of
θk{n.
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Figure 5: Model 3, boxplots of θn for 500 simulations of size n “ 500 (left) and n “ 1000 (right)
for k{n “ 2% (top row) and k{n “ 10% (bottom row). The red curve shows the true value of
θk{n.
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Figure 6: Normal quantile plots of
?
kh ln θn{θk{n. Top: Model 1, x0 “ 3, middle: Model 2,

x0 “ 0.3, and bottom: Model 3, x0 “ 5. The quantile plots are constructed with k taken as 5%
of n, with n “ 500 (left) and n “ 1000 (right).
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Figure 7: FEMA claim data: local Hill plots for Y p1q, total claim amount (left), and Y p2q, capital
insured (right).
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Figure 8: FEMA claim data: pRp1.5, 1.5|x0q as a function of k, for location (latitude,
longitude)=(33.84,-84.45) on 2009, July 1 (left), and 2017, January 1 (right).
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Figure 9: FEMA claim data: θn with k{n “ 1% (solid line) and k{n “ 10% (dashed-dotted
line), as a function of time, for location (latitude, longitude)=(33.84,-84.45).
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Figure 10: FEMA claim data: θn with k{n “ 1% (left) and k{n “ 10% (right), with pointwise
95% confidence intervals, as a function of time, for location (latitude, longitude)=(33.84,-84.45).
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