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Abstract

In the context of bivariate random variables (Y(l)7 Y(Q))7 the marginal expected shortfall,
defined as E(Y(MV|Y?) > Qy(1 — p)) for p small, where Qo denotes the quantile function
of Y@ is an important risk measure, which finds applications in areas like, e.g., finance
and environmental science. Our paper pioneers the statistical modeling of this risk mea-
sure when the random variables of main interest (Y1), Y(?) are observed together with a
random covariate X, leading to the concept of the conditional marginal expected shortfall.
The asymptotic behavior of an estimator for this conditional marginal expected shortfall is
studied for a wide class of conditional bivariate distributions, with heavy-tailed marginal
conditional distributions, and where p tends to zero at an intermediate rate. The finite sam-
ple performance is evaluated on a small simulation experiment. The practical applicability
of the proposed estimator is illustrated on flood claim data.

1 Introduction

In the past years, many risk measures have been introduced in the literature, and these have
been used to determine the amount of an asset to be kept in reserve in the financial framework.
The most famous of these are the Value-At-Risk (VaR) defined for a random variable X as the
p—quantile

Q(p) :=inf{z > 0: P(X < z) > p}, for pe (0,1),

and the Conditional Tail Expectation (CTE) defined as
CTE,[X] =E(X|X > Q(p)), for pe (0,1).

The latter risk measure is more conservative than the VaR for a same level of degree of con-
fidence (see Landsman and Valdez 2003) and it also satisfies the desirable property of being a
coherent risk measure as defined by Artzner et al. (1999). For all these reasons, the CTE has
been extensively studied and also it has been generalized to the multivariate framework, see,
e.g., Cai and Li (2005), Cai et al. (2015), and Di Bernardino and Prieur (2018). More precisely,
if (YD, Y®?) denotes a pair of risk factors, the CTE can be extended into E(Y D[y ) > Qs (p)),
where Qo(p) is the p—quantile of the risk Y(?). In such a multivariate context, this risk measure
is well-known as the Marginal Expected Shortfall (MES). It was introduced by Acharya et al.
(2010), and used to measure the contribution of a financial institution to an overall systemic risk.
The ongoing global credit crisis and other former financial crises have demonstrated the vital



aspect of adequate risk measurement. For a financial firm, the MES is defined as its short-run
expected equity loss conditional on the market taking a loss greater than its VaR. The MES is
very simple to compute and therefore easy for regulators to consider. When estimating this risk
measure, one often has the availability of additional information given by covariates, and these
are important to take into account in order to obtain more precise estimates. This leads to the
concept of conditional marginal expected shortfall.

Our paper is the first contribution dealing with the estimation of the conditional marginal
expected shortfall when the random variables of main interest (Y1), Y(?)) are recorded to-
gether with a random covariate X € R%. We will denote by Fj(.|z) the continuous condi-
tional distribution function of Y j = 1,2, given X = z, and use the notation Fj(.|z) for
the conditional survival function and Uj(.|x) for the associated tail quantile function defined as
Uj(.|z) = inf{y : Fj(y|z) > 1 —1/.}. Also, we will denote by fx the density function of the
covariate X and by ¢ a reference position such that xy € Int(Sx), the interior of the support
Sx < R? of fx, which is assumed to be non-empty. Our aim will be to estimate the conditional
marginal expected shortfall, given X = xg, and defined as

(9p =K [Y(l)’Y(z) = U2 (11)}.%0) ;l’o} y

where p is small. Note that in the financial and actuarial setting where risk measures and in
particular MES have been introduced, one is often interested in positive risk factors. Thus, in
the sequel, we consider the case where Y1) and Y@ are positive.

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator
for the conditional marginal expected shortfall and we establish its main asymptotic properties.
Simulations are provided in Section 3 to illustrate the efficiency of our estimator, while in Section
4 the method is applied to a dataset of flood insurance claims. Some closing remarks are given
in Section 5. All the proofs of the results are postponed to Section 6.

2 Estimator and asymptotic properties

We assume that Y1) and Y®) are both positive and follow a conditional Pareto-type model.

Assumption (D) For all x € Sx, the conditional survival functions of Y@, j =1,2, satisfy

Filgle) = Aj(e)y e (1+ 6j<y\x>),

1
()
where Aj(z) > 0, vj(z) > 0, and |0;(.|z)| is normalised reqularly varying with index —f;(x),
Bj(x) >0, i.e.,

Si(ylr) = Bj@)exp <Jy€j<u|x)du>,

1 u

with Bj(x) € R and €(y|lz) — —pBj(x) as y — 0. Moreover, we assume y — €j(ylx) to be a
continuous function.



Under Assumption (D), Fi(.|z) and Fy(.|x) have density functions. Indeed, straightforward
differentiation gives

Aj(®) 1)1 1 .
Filyle) = =222y @ 4 ((—— —ei(yla) ) 85(yle) |, = 1,2. (2.1)
! ;i () vi(x) !
Now, let (Y;(l),YZ@),XZ-), i = 1,...,n, be independent copies of (Y)Y X). We consider
estimating the conditional marginal expected shortfall when p — 0 at an intermediate rate, i.e.,
p = k/n, where k,n — o such that k/n — 0. A natural idea is then to study

(1)
- Z Ky (x )Y H{YA(Q)zﬁz(n/’f\xO)}j

where Us(.|zo) is an estimator for Us(.|zg), to be introduced later, and Kj(.) := K(./h)/h?, with
K a joint density function on R%, h = h,, a positive non-random sequence of bandwidths with
h — 0if n — oo, and 14 the indicator function on the event A. We observe that in our approach
the covariate X is recorded together with the dependent variables (Y(l),Y(Q))7 and hence we
are in the situation of a random design. This should be contrasted with the fixed design, where
the z-values are determined beforehand, and where the responses are collected at these specific
design points, e.g., in a designed experiment.

To simplify the situation, let us assume for the moment that Us(.|z¢) is known and consider

n 1)
Z n(ro — X;)Y; H{Y.(2>>Uz(n/k\x0)}'

w\H

Clearly, assuming F} (y|zo) is strictly increasing in y, we have

o = J G Z Kz My 020 Ly 05 /o)
- f"o 1 Z Kp(x {y“ >s, Fa(Y; Y@ |a0)<k/n} TS
- L igKh($o = XL E (v Olao) </ /1) Fs (leo)], P o)<} P
= ~Uiln/klzo) f 2 Kn(w L, (1 o)<y (), Fa vy <ty P

where s, (u) 1= % Fy(u=1@) U, (n/k|z)|z0). Note that under (D), we have s, (u) — u asn — o.

The key statistic to consider is thus, for xg € Int(Sx),

Talys, yeleo) - Z L (v D le0)</n) w1, Pl o) <(i/m) 32}

where y1,y2 > 0.



As a first main result we study the weak convergence of the process

{\/W Tn(y1, y2|zo) —y{?(Tn(yl,?J2|1130))7 1, yp € (O,T]} ’ (2.2)

for any 7' > 0, finite, and n € [0,1/2). This will require some further assumptions.

In order to deal with the regression context, fx and the functions appearing in Fj(y|z) and
F5(y|x) are assumed to satisfy the following Holder conditions. Let ||.|| denote some norm on
R

Assumption (H) There exist positive constants My, , Ma;, M,,, Mp,, M., Ny, 14,5 M,
n; and 1, where j = 1,2, such that for all x,z € Sx:

[fx(@) = fx ()] < Myl —z["x,
4j(z) = A3 ()| < Mz — 2™,
i) = () < My flz = 2™,
|Bj(x) = Bj(2)] < Mp, |z — 2",
21;113|5j(y|$)_5j(y|z)| < Mz — 2"

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption (K) K is a bounded density function on R?, with support Sk included in the
unit ball in R,

Next, a uniform convergence result is needed for the joint conditional distribution of (Y(l), Y(2)).
This condition reflects the asymptotic behaviour of the conditional copula. Let Ri(y1,y2|z) :=
tP(F1(YW|z) < y1/t, Fo(YP|z) < yo/t|X = 2).

Assumption (R) For all x € Sx, we have as t — o0 and h | 0 that
Ri(y1, y2lz) = R(y1, yzlz),
uniformly in y1,y2 € (0,T], for any T > 0, and x € B(xo,h).

Note that Assumption (R) could also be formulated in an alternative way as follows: for all
r e Sy and (y1,y2) € [0,0]*\{(c0, 20)}, we have as t — o0 and h | 0 that

Ri(y1,y2|7) — R(y1,y2|7),

uniformly in z € B(xg, h), with  — R(y1,y2|x) being a continuous function. This would then
imply the uniformity of the convergence in (y1,y2) € (0, T]?.

Also note that Assumption (R) is a stronger version of the first order condition in Cai et al.
(2015), since in our context the convergence must be uniform in a neighborhood of z(, because
of the local estimation. We also have the additional Assumptions (#) and (K), due to the
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regression context. The latter are though common in the extreme value framework with ran-
dom covariates. As a final comment, observe that in view of assumption (R), our key statistic
T (y1,y2|xo) can be linked to the estimation of R(yi1,y2|xo), though this is not the objective of
the present paper. For what concerns the estimation of the conditional extremal dependence
structure, we refer to de Carvalho (2016), Escobar-Bach et al. (2018a, b), Castro et al. (2018)
and Mhalla et al. (2019).

The weak convergence of (2.2) is then established in the following theorem under the previous
assumptions which are quite general, and therefore satisfied by a large class of models, some
examples of them being presented in Section 3. Throughout the paper weak convergence is
denoted by ‘~’.

Theorem 2.1. Assume (D), (H), (K), (R) with x — R(y1,y2|z) being a continuous function,
xo € Int(Sx) with fx(xo) > 0, and y — Fj(ylzo), 7 = 1,2, are strictly increasing. Con-
sider sequences k — o0 and h — 0 as n — o0, in such a way that k/n — 0, kh® — o0 and
hMiAhe Aen Mz Inm [k — 0. Then for n € [0,1/2), we have,

E(Tx(y1, )
Vind Loyt y2lzo) — = (Tn(y1, y2l70)) W(yyln y2)7 (2.3)
1 1

in D((0,T)?), for any T > 0, where W (y1,y2) is a zero centered Gaussian process with covariance
Sfunction

E(W (y1,2)W (51, 52)) = | K[5fx (@0)R(y1 A §1,y2 A Fa|zo).-

We also introduce the following weak convergence result for a related process. This process
will be useful in establishing the asymptotic properties of the quantile estimator Us(n/k|xo).

Let .
Z (o —

3\’—‘

be a classical kernel density estimator.

Theorem 2.2. Assume (D), (H), (K), and zo € Int(Sx) with fx(xo) > 0. Consider se-
quences k — o0 and h — 0 as n — o0, in such a way that k/n — 0, kh® — o0, k"2 Inn/k — 0,
VERA W1ix N2 — 0, v/ khd W2 Inn/k — 0, Vkh4|62(Uz(n/k|zo)|z0)|R"B2 — 0, and Vkh®|62(Us(n/k|xg)|xo) | A2 |
0. Then, we have

Fal@o) fx (o)

in D((0,T1), for any T > 0, where W (o0,y2) is a zero centered Gaussian process with covariance
function

m( (00, 2l0) _y2> W)

E(W (00, y2)W (0, 72)) = [ K3 fx (x0) (32 A F2)-

The joint weak convergence of the above two processes can be established by showing the
joint finite dimensional weak convergence of them, combined with joint tightness. The joint
finite dimensional convergence can be established by using the Cramér-Wold device (van der



Vaart 1998, p. 16). This is a standard but tedious calculation which is for brevity omitted
from the paper. Note that the joint tightness follows from the individual tightness (similarly to
Lemma 1 in Bai and Taqqu 2013).

The main result of this paper is the asymptotic normality of our final estimator for the
conditional marginal expected shortfall 6} /,, defined as

~ 1\ vy R
g o en _ k Zizl Kh(ﬂfo XZ)Y; ]1{1/1_(2)2(]2(”/'%‘3;0)} (2 4)
fn(20) & iy Kn(wo — X5)

Intuitively, we can see this estimator as an extension of the Nadaraya-Watson estimator of
m(z) := E[Y|X = z¢] (see Nadaraya, 1964; Watson, 1964), defined as

1
& iy Ko — Xy
=2 Kn(xo — X))
in the sense that, since in our context the conditioning is on the event {Y'?) > Us(n/k|z¢)}, we

need to add the indicator of the event {Y;(Q) > Us(n/k|zo)} in (2.4). As a result, the numerator
in (2.4) needs to be normalized by the number of excesses above this estimated quantile, i.e., k,
instead of n.

m(x) :=

In order to obtain the weak convergence of 6,,, we need to introduce the following second
order condition.

Assumption (S). There exist B > v1(xg) and 7 < 0 such that, ast — o and h | 0 we have

R (y1, — R(y1,
sup sup | t(yl y2|$)ﬁ (yl y2‘$0)‘ _ O(tT)
zeB(z0,h) 0<y1 <00, <y2<2 y; A1

Note that this uniform requirement excludes the case where (Y(l), Y(Q)) are asymptotically
upper tail independent given X = 1z, which corresponds to the case R(y1,y2|zo) = 0. As-
sumption (S) is a stronger version of the second order condition in Cai et al. (2015), since the
convergence must be additionally uniform in x € B(zg, h) due to the regression context.

Theorem 2.3. Assume (D), (H), (K), (S) with x — R(y1, y2|x) being a continuous function,
and y — Fj(ylzo), j = 1,2, are strictly increasing. Let xo € Int(Sx) such that fx(zo) > 0.
Consider sequences k = |n®f1(n)| and h = n~"fy(n), where {1 and fy are slowly varying
functions at infinity, with o € (0,1) and
o' «
max

<d +2m(20)(nay A 1) d 4 2(1 = 71(20)) (145 A Ty A TBy A Ty A Ngx)
a  2(1—a)yf(wo)Bi(wo) a—2(1—a)(y1(xo) A (B2(20)72(%0)) A (—T))>
d  d+d(Bi(zo) +&)r1(x0)’ d

o
A< —.
<A<o

Then, for v1(xg) < 1/2, we have

VI (1) s == T §o7 W (s, 1)ds~ )

Or/n fx (o) 0) §o R(s,1]zg)ds=m(xo)”




The variance of the limiting random variable in Theorem 2.3, denoted W, is given by

|K|3 §o R(s, 1|zq)ds =21 (x0)

Var(W) = Fx (o) 71 (o) — (So (s,1|20)ds™ ’Yl(mo))2

(2.5)

The conditions on k£ and h in Theorem 2.3 are due to the method of proof of the auxiliary result
given in Lemma 6.4 of the Appendix. Also in Cai et al. (2015) one needed a condition on the
growth of &k, but in the context without covariates.

3 Simulation experiment

In this section we evaluate the finite sample behavior of the proposed estimator with a simula-
tion experiment. Since the topic of estimating the marginal expected shortfall in the regression
context is completely new in the literature, we cannot compare our estimator with any alterna-
tive estimator. We will compare it with the true value of the models under consideration.

We simulate from the following models:

Model 1. We consider the logistic copula model

1/x

C(uy, up|z) = e [(=mu)®+(=nu)= e e [0,1],z > 2. (3.1)

We take X ~ U[2,10], and combine this copula model with Fréchet distributions for Y and
Yy (@),
1/v;

Fjy)=e? 7, y>0,

j = 1,2. We set v; = 0.25 and 72 = 0.5. This model satisfies (S) with R(y1,y2|z) =
y1+yo — (Y +y5)Y*, 7= —1and B = 1 — ¢ for some small € > 0.

Model 2. The conditional distribution of (Y (1), Y®)) given X = z is that of
(|Zl\71(“3), ‘22‘72(1‘))’

where (71, Z3) follow a bivariate standard Cauchy distribution with density function

1
—(1+ 22+ 22732, (21,2) e R%

f(zl’ZQ) = o

We take X ~ UJ0, 1], and set

m(z) = 0.4[0.1 + sin(7z)] [1.1 _ 0‘56—64(90_0.5)2] ’
y2(z) = 0.1+0.1z.

This model satisfies (S) with R(y1,v2|7) = y1 +y2 — /¥ + y5, 7 = —1 and B = 2 (see, e.g., Cai

et al. 2015, in the context without covariates).



Model 3. We consider the logistic copula model from (3.1), with X ~ U[2, 10], combined with
conditional Burr distributions for Y and Y (®):

B\
Fj(y‘w)zl— (W ) Z/>0;5j7)\j;7j(37>>0;
J

J=1,2. Weset f1 =0Fo=1, A\1 =1, Ay = 0.5, and
i (z) = 2927, To(x) = 8/sin(0.3x).

Similarly to Model 1, this model satisfies (S).

The marginal conditional distributions in the above models are standard heavy-tailed distribu-
tions that satisfy (D), see, e.g., Beirlant et al. (2009). In Model 2, the functions v;(z) and y2(x)
are usual functions in the extreme value framework, see, e.g., Dierckx et al. (2014), Goegebeur
et al. (2014). Note that for Model 2 the function v;(x) is much more complicated than v2(x)
since it shows local maxima and minima, whereas v2(z) is increasing. For Model 3, () is
decreasing while () has a maximum in the interval [2,10]. The graphs of these functions are
shown in Figure 1 for Model 2 and in Figure 2 for Model 3.
Concerning the kernel function K, we take the bi-quadratic function
K(z) = %(1 — 2% ge[—1,1);-

To compute our estimator 6,,, the bandwidth h need to be chosen. To this aim, we use the cross
validation criterion introduced by Yao (1999), and used in an extreme value context by Daouia
et al. (2011, 2013) and Escobar-Bach et al. (2018a):

n n 2
hey 1= argminZ Z (H{y,(2><y.(2>} — Funo,—i <YJ-(2)‘X1‘>) )
i j

heH =1 j=1

where H is the grid of values defined as Rx x {0.05,0.10,...,0.30}, with Rx the range of the
covariate X, and
k=1 ki Kn (2 = Xi) ﬂ{yku)gy}

D=1 i K (2 — Xi)
In Figure 3 we show the boxplots of #,, based on 500 replications, at different values of xq, for
samples of size n = 500 (left) and n = 1000 (right), and for k/n = 2% (top row) and k/n = 10%

(bottom row), along with the true value of 0, ,. Figures 4 and 5 are constructed similarly but for
Model 2 and Model 3, respectively. The values of 6}, are computed with numerical integration.

Fono—i(ylz) =

From these figures we can draw the following conclusions:

e Overall the estimator 6,, performs quite well, with the true value 6, /n typically located
in the central box, but obviously the performance depends on the model and also on the
position zg. The best results are obtained for Model 1, where the dependence structure
depends on x but the marginal distributions are covariate independent. Model 2 has
covariate dependent marginal distributions, but R(y1, y2|x) does not depend on x, and for
Model 3 both the margins and R(y1, y2|x) depend on z. These models are more challenging
than Model 1, but the estimator continues to perform well.



e The estimator behaves as expected in n, namely, for a fixed k/n the variance decreases
with increasing sample size.

e As a function of z, the true value 6y ,, follows the pattern of 41 (z) rather closely. Similarly,
the variance of 8, tends to be larger for large values of v; ().

e The estimator seems to be not too much sensitive on the value of the covariate xg in case
of Model 1. On the contrary, for Model 2, it depends a lot on the value of the covariate.
Note that nearby the local maxima there is a slight underestimation of 6/, which can
be explained by the fact that in the local estimation one uses Y (1) observations from
conditional distributions with a smaller tail index than at the reference position zy. An
opposite behavior is observed at the local minima. Model 3 is in between, with some
improvement in the variability of the estimates when the covariate increases, which may
be explained by the fact that 7 (z) decreases in z.

Next, in Figure 6 we provide some normal quantile plots of \/ﬁlﬁ@n/ek/m with k£ taken
as 5% of n and h obtained from the above mentioned cross-validation criterion. The rows of
Figure 6 correspond with Models 1-3, respectively, while the columns represent the sample sizes,
n = 500 and n = 1000, respectively. For all models and sample sizes, the normal quantile plots
show a quite linear pattern, confirming the validity of the normal approximation. Moreover,
with increasing n the normal approximation improves slightly.

4 Application to flood insurance claim data

4.1 Description of the dataset

In this section we illustrate the practical applicability of the method on a dataset of flood insur-
ance claims. Recently, the Federal Emergency Management Agency (FEMA) has released mil-
lions of records from the National Flood Insurance Program (NFIP). In particular, this database
contains approximately 2.4 million damage claims dating back to 1978, where for each claim one
has information on the date of the flood, location of the property (latitude and longitude), claim
amount, and on insurance policy and building characteristics. As such, it provides important
information for policymakers, researchers, insurers and prospective homebuyers. The dataset
is publicly available on https://www.fema.gov/media-library/assets/documents/180374.
For our purposes we consider the data from the year 2000 on, and define Y7 as the sum of the
amount paid on the building claim, the content claim and the increased cost of compliance claim,
Y5 is taken as the sum of the insured amount for the building and content, while the covariate
X consists of X7 : latitude, X5 : longitude and X3 : date of loss. Interest is in estimating the
expected claim amount conditional on an insured capital that exceeds a high quantile, and for
a given location and time. For (re-)insurance companies, accurate modeling and analysis of the
upper tail of the claim size distribution is of crucial importance, as extreme claims may pose a
major threat to their solvency. Also, the upper tail of the claim size distribution provides im-
portant information for pricing (re-)insurance contracts. By taking covariate information into
account one can differentiate the risks one is exposed to and hence obtain a more competitive
premium calculation.



4.2 Preliminary analysis

The estimation method was implemented with the same cross-validation criterion as in the
simulation section, including the same choice for H, after standardizing the covariates to the
interval [0,1]. As for the kernel function, we used the bi-quadratic kernel, generalized to the
case d = 3, as follows

[Edl

Kp(z) = %K <h> ;

where z € R?, and |.| denotes the Euclidean norm.

In order to verify the Pareto-type behavior of Y and Y@, we constructed the local Hill
plots of the Y1) and Y@ data, respectively, for which the X coordinate is in a neighborhood
of (latitude, longitude)=(33.84,-84.45), and date of loss equal to 2018, July, see Figure 7. The
location under consideration is in the city of Atlanta. In these plots we show the local Hill
estimates H,g])(xo) = %Zleln y o) — YV as a function of k, where yu) ,

Ngy—i+1,ng, Nzy—kNa N
it =1,...,ng,, are the order statistics of the Y data for which the X coordinate belongs to
B(zo, h), and ng, is the number of observations in B(zg,h). For both Y1) and Y the Hill
estimate is clearly positive for the smaller k values supporting the assumption of underlying
conditional Pareto-type distributions. For Y1, total claim amount, the Hill plot shows a stable
estimate for v1(zp) of about 0.3 when k is in the range 50-200. This satisfies the theoretical
requirement that ~;(zo) < 0.5. For Y () capital insured, the Hill plot shows some systematic
pattern beyond k£ = 150, which is due to the occurrence of repeated values for this variable.
Despite this, the local Hill plot also suggests an underlying conditional Pareto-type distribution.
Similar local Hill plots were obtained at other locations and for other time points. Next, we
investigate the asymptotic dependence assumption by plotting an estimate for R(1.5,1.5|z)
as a function of k, at several values of zp. Lemma 6.2 gives an indication that T}, (y1, y2|z0)
estimates fx (zo)R(y1, y2|zo), but T, (y1, y2|zo) is only a pseudo estimator as it depends on the
unknown marginal conditional distribution functions Fj(.|zg) and Fy(.|xg). To resolve this, we
consider an adjustment of the estimator proposed in Escobar-Bach et al. (2018b), which is for
the context of estimation of L(y1, y2|zo), to the context of estimation of R(y1,y2|zo), namely

Lym K
- . Tro — X ]1 = =
k 2im1 K (20 i) {Fn,l(Yi“MXi)<§y1,Fn,2(Y}2>|Xi)<§yz}

Ful@o)

where ﬁ’n,l is a kernel estimator for Fj, of the same form as ﬁng. In Figure 8 we plot

~

~

R(y1,y2|z0) =

, (4.1)

R(1.5,1.5|z9) as a function of k, at xg corresponding to the above mentioned location, and
for 2009, July 1 (left), and 2017, January 1 (right). Clearly, the displays show a positive esti-
mate for R(1.5,1.5|x¢), which gives evidence of asymptotic dependence of Y and Y? given
X = Zg-

4.3 Estimation of the conditional marginal expected shortfall

We illustrate the estimation of the conditional marginal expected shortfall at the above men-
tioned location, for the period 2008 till present, and using k/n = 1% (solid line) and k/n = 10%
(dashed-dotted line), respectively, see Figure 9. As expected, the conditional marginal expected
shortfall at quantile level k/n = 1% shows more variability than the one at level k/n = 10%,
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due to the smaller amount of data available to estimate the former, but otherwise they show
the same pattern. The plot shows clearly the catastrophic Atlanta flood in 2009, September,
resulting from multiple days of prolonged rainfall. The height of the event was on September
20-21 where 10 to 20 inches of rain occurred in less than 24 hours, which led to flash flooding,
with flooded river basins remaining swollen for weeks. For this period, the difference between
the two levels of the conditional marginal expected shortfall is larger than at other time points
included in the analysis, which can be probably explained by the increased frequency of very
large damage claims. Note that although the flood event took place at some specific time, its
effect is smoothed out over a window due to the local estimation. This is in our setting also
partially due to the use of a global bandwidth parameter h, i.e., a bandwidth that gives a
reasonable performance over the whole covariate range. Alternatively, the bandwidth could be
selected locally, for the specific zg where one wants to do the estimation. One can expect then
that at xo where the parameter of interest, here 6,, changes quickly, the resulting bandwidth
would be smaller. This is a topic for future investigation. Finally, we supplement Figure 9 with
pointwise 95% confidence intervals, see Figure 10. The approximate confidence intervals of level
100(1 — )% for 0y, are obtained from Theorem 2.3 and given by

On On
o (1-5) I - (1-5) I

where ®~! denotes the standard normal quantile function and Vm) is an estimate for the
asymptotic variance given in (2.5), obtained by using a local Hill estimate for v;(z¢) and (4.1)
as estimate for R(y1,y2|xo). Note that the latter both require an adaptive selection of their
respective k-value, which will be denoted by k to avoid confusion with the k from 6, /n- These
adaptive k-values are obtained by plotting the estimates as a function of £ whereafter the £ is
selected by a stability criterion as described in Goegebeur et al. (2019). In Figure 10 we show
the approximate pointwise 95% confidence intervals for 0y, with k/n = 1% (left) and k/n = 10%
(right) as a function of time, at the above considered location. Note that the confidence intervals
seem reasonable, and are, e.g., wider for 6/, with k/n = 1% than for k/n = 10%, as expected.
At a few xg positions we could not obtain a confidence interval, either due to a negative estimate

———

of Var(W) or a negative value for 1 — ®~! (1 — a/2) 7/ Var(W)/(kh).

5 Closing remarks

This paper is a pioneering contribution to the statistical modeling of the conditional marginal ex-
pected shortfall in the asymptotic dependence framework. It also provides a series of interesting
open questions which will lead to further investigations, among them:

e The extrapolation outside the Y2 data range: due to the conditions k,n — oo with
k/n — 0, the Y@ quantile is intermediate, and the estimator 6, cannot be used for
extrapolation. Clearly this case where p < 1/n will be not trivial and it will require again
an elaborate analysis. A natural idea will be to use a Weissman-type construction (see,
Weissman 1978) based on the fact that under Assumptions (R) and (D) with v (zo) < 1,

11



one can show (see Cai et al. 2015, Proposition 1) that

9 o0
lim —2 = —J R(s, 1|z ds_“(x"),
W Tr (1 plao) , e dlwo)

from which the following approximation can be deduced

Ui (1/p|o) kT
O ~ 0. 1
Ur(n/k|zo) =  \np o (5-1)

To construct an estimator based on (5.1), we need first to define an estimator for 7, (z¢)
and then we need to establish its asymptotic theory in terms of a process, related to the
process we have already studied.

0y ~

The extension to the case of a real-valued YY) or Y2, In our approach we have assumed
that Y and Y@ are non-negative random variables. This was also the case in Joe
and Li (2011), and Das and Fasen-Hartmann (2018, 2019) where various properties of the
marginal expected shortfall were studied in a framework without covariates. The problem
of handling a real valued Y requires an elaborate analysis, which does not fit in the
current framework of our proofs.

Study of the bias-properties of the proposed estimator. We have studied our estimator
under Assumption (), which allowed us to obtain the order of the various bias-terms, and
hence to control them. However, in this approach one cannot make the bias terms explicit.
A more precise quantification of the bias terms can be done by replacing Assumption
(H) by suitable differentiability conditions on the various parameters (functions of z),
along with using Taylor series expansions in the theoretical derivations. Alternatively,
the estimation of the conditional marginal expected shortfall could also be studied in the
framework of local polynomial maximum likelihood estimation. Such estimators are well-
known to have an attractive behaviour near the boundary of the support, as documented
in Wand and Jones (1995), Fan and Gijbels (1996), and Aerts and Claeskens (1997). In
the context of estimation of the conditional marginal expected shortfall, a local polynomial
estimator could be obtained by minimisation of

" 2
L 1)
S = Z Kp (o — (Y Z Bj(Xi — o) ) ]1{1@(2’>ﬁ2(n/klro)}’

=1

where we have for simplicity assumed that d = 1. In particular, the estimator for the

conditional marginal expected shortfall at x(y would in this case be é\,(lLP) = BO, where 30 is
the estimator for 5y obtained from solving the above minimisation problem. Interestingly,
by taking s = 0, corresponding to a local constant estimation, one obtains as estimator

n (1)
0 .= izt Bnl@o = XV iy 02, (e
Zi:l Kh(x() - X; ) {Y<2 (n/k|1’0)}

which is in nature close to the estimator proposed in the present paper.
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e High dimensional covariates. Although our theoretical developments allow for an arbitrary
dimension d of the covariate, local estimators are known to have a deteriorating practical
performance in higher dimensions due to the so-called curse of dimensionality. With high
dimensional covariates, the local estimation could be combined with dimension reduction
techniques, e.g., Gardes (2018) and Xu et al. (2020) for dimension reduction in the context
of estimation of extreme conditional quantiles.

e The extension to the asymptotic independence framework: in the absence of covariates,
this topic has been very recently studied in the literature in, e.g., Das and Fasen-Hartmann
(2018) and Cai and Musta (2020).

e Confidence bands. The result of Theorem 2.3 allows to construct confidence intervals
for 0y, at a specific zg, so pointwise, as illustrated in the real data analysis. A natural
question would be to know if a result for #,, with a varying zp—value in the covariate
space can be obtained. This means, in that case, that we inquire about a convergence
of 6, correctly normalized as a stochastic process in zg. However, even in the simpler
case of local estimation of conditional tail index y(xo) of a Pareto-type tail with random
covariates, it remains uncertain whether this type of result is possible. In our context this
is highly more complicated than this latter framework, and thus the problem is still open.

e The development of a completely automatic data-driven way for obtaining confidence
intervals, along with a study of the corresponding coverage probabilities.

6 Appendix

Lemma 6.1. Assume (D) and (H) and xo € Int(Sx). Let (tn)n=1 and (hp)n=1 be arbitrary

sequences satisfying t,, — o0 and h, — 0 such that th]- M5 1n t, >0, asn — o0, and 0 <n < 1.

Then

tn 5 (U; (tn/y|mo)|z) e

-0, asn —
yn b )

uniformly in y € (0,T] and x € B(xo, hy).

Lemma 6.2. Assume (D), (H), (K) and (R) with x — R(y1,y2|x) being a continuous function,
and xg € Int(Sx) such that fx(z¢) > 0. Consider sequences k — o0 and h — 0 as n — o in
such a way that k/n — 0 and h'm1 "2 e Me2 Inn/k — 0. Then, as n — o

E(Tn(y1,y2|0)) —  fx(zo)R(y1,y2|v0),
khVar(To(y1, y2lz0)) — | K3 fx (20) R(y1, y2| 7o)

The proof of these lemmas and all the subsequent ones are given in Section 6.5.

6.1 Proof of Theorem 2.1

To prove the result we will make use of empirical process theory with changing function classes,
see for instance van der Vaart and Wellner (1996). To this aim we start by introducing some
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notation. Let P be the distribution measure of (Y(l),Y(Q),X ), and denote the expected value
under P, the empirical version and empirical process as follows

Pf = ffdp, Py f = ii f (16(1)732(2),&) o Gufi=+Vn(Pn—P)f,
1=1

for any real-valued measurable function f : R2xR? — R. For a function class F, let N n(e, F, L2(P)),
denote the minimal number of e—brackets needed to cover F. The bracketing integral is then
defined as

1
(8, F, Lo(P)) = L \/m Ny (e, F, Lo(P))de.

We introduce our sequence of classes F,, on R? x R? as

Fn = {(u,z) — fay(u,2), ye (O,T]2}

where

d Iym uy|x n Foluolz n
Tny(u, z) == ﬁKh(xO ~ ) {F1(uilzo)<(k/n) y1, F2(uz|zo)<(k/ )yg}'

vl
Denote also by F,, an envelope function of the class F,,. Now, according to Theorem 19.28
in van der Vaart (1998) the weak convergence of the stochastic process (2.3) follows from the

following four conditions. Let p,, be a semimetric, possibly depending on xg, making (0,7
totally bounded. We have to prove that

sup  P(fuy — fng)? — 0 for every &, \, 0, (6.1)
Pz (Y,9)<0n
PE? = 0(1), (6.2)
PFﬁﬂ{Fn>€ﬁ} — 0 for every € > 0, (6.3)
J(6ny Fn, L2(P)) — 0 for every 6, \, 0, (6.4)

along with the pointwise convergence of the covariance function.

Proof of condition (6.1). Let py(y,7) := [y1 — 71| + [y2 — G2|. Denote A, := {F1(YV|zg) <
(k/n) y1, Fo(YP|z0) < (k/n) y2}. We have then

nh? 1a, I4,,\°
P(fn,y - fn,g)Q = T E [Kﬁ(l‘o - X) ( y7177y - y¥y>

d 1 M, \2
LS [Kﬁ(xo ~ X)E [ ("‘"*’ = AW)

k yi i

X” 69

We consider now three cases.
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Case 1: y1 A 1 < 0n. Assume without loss of generality that y; < ¢;. By expanding the
square in the above conditional expectation and using the fact that, e.g., A, , < {F1(Y(M|zq) <
(k/n) y1}, we obtain the following inequality

2 vy =
E <11AZ,y o Hfigy) X = o < 3P<F1( |$0) (/C/’I’L) y1|X $>
Yy Y1 yl
L PO Olzo) < (b/n) X =)
,277 ’
Y1

which, after substituting in (6.5) leads to

P(fn,y - fn,?j)Q

n P(F1(YWlzo) < (k/n) yi|X =z — hv)

< 33— K?(v) fx(xo — hv)dv
ke Jsi i
+E K2(’U) P(Fl( |.CE(]) (%é:) y1|X =T — hv) fX(xO - h/U)dU.
ke sy i

Now note that
P(F1(YWlxo) < (k/n) 1] X = 20 — hv) = Fy (Ur(n/(kys)|z0) |20 — ho) ,
which, together with the result of Lemma 6.1, motivates the following decomposition
P(fn,y - fn,y)2

< 3y1 21 K%(v) fx(zo — hv)dv

Sk
+3 | K*(v) [én o E1 (U(n/ (kya) o) zo — hv) — ] fx(zo — hv)dv
Sk U1
+g " . K?(v) fx(zo — hv)dv
+ ; K*(v) [ ;, kFl (U1 (n/ (kg o) |0 — hw) — 5y n] fx(zo — hv)dv.

Using Lemma 6.1 and the fact that p,,(y,y) <, which implies g1 < 24,,, we get
P(foy = fag)® < 50,72 | K*(v)fx(zo — hw)dv + o(1),
Sk

where the o(1) term does not depend on y; and 7.

Case 2: y1 A g1 > 6p and yo A Yo < 0y. Assume without loss of generality that yo < 7s.
Similarly to the approach followed in Case 1, we obtain

Ta,, Ta,\?| o 3P(Fa(Y Pxo) < (k/n) y2|X = )
EK v 5717) X_xl - (Y1 A 42)%"
P(Fy(YP|ag) < (k/n) g2 X = )

(y1 A G1)*n

+

i
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and thus

P(fn,y - fn,gj)Q

3y2 2
< —F K=(v xg — hv)dv
(yl /\y1)2’7 S ( )fX( 0 )

T y1 (y1 A1) J K [ 2 kFQ (Usa(n/(ky2)|zo) o — hw) — 5~ 2”] fx (xg — hv)dv

i (1 /%/2@1)277 S K2(v) fx(zo — hv)d
7" s [ L0 -
(n g™ L B 7k F2 (Ua(n/(kg2)|2o) 2o — hv) — fx (zo — hv)dv.

Again by Lemma 6.1 and using that 7» < 24,, we have that

P(foy — fn,g)Q < 55711_277 KQ(U)fX(xO — hv)dv + o(1),
Sk

where the o(1) term does not depend on yo and ¥s.

Case 3: y1 AY1 > Oy, and y2 A J2 > dy,. Let y v § denote the vector with the component-wise
maxima of y and g, and similarly y A g is the vector with the component-wise mimima of y and

9. Then
X” |
Note that
((y]iA/Tgly)n o (y]llA\n/Zly>n>2 = <y1717 — y117>2 A, g T W(ﬂAn,M — Ay yns)s (6.6)

Plfy— fon)? < "B | K200 - X)E <HA"’yvy R >2
ny = Ing)” S nE (y1 A G (g1 v )"

which leads to

< yl — yén J K?(v 1)|xo) < (k/n) y1 A yl,FQ(Y(2)|ZL'0) < (k/n) ya A gjg‘X =x9 — hv)
(191)2" &
X fx (xo — hv)dv
1

+7
(yi A51)2 k Jg
-P (F1(Y(1)|$0) < (k/n) y1 A g1, Fa(YP|zg) < (k/n) yo A 2| X = 20 — hv)] Ix(xo — hv)dv
= QLTL + Q2,n~

ﬁf K2(0) [P (Fa(YOlao) < (k/m) wn v 51, FalY Do) < (k/n) 2 v 2| X = 20— o)

As for @Q1,,, we easily obtain

Qi < yél;lyén j K*(v F1 (Ur(n/(k y1 A §1)|zo)|xo — hv) fx (zo — hv)dv.
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Now, by the mean value theorem, applied to (y] — g?)Z, and a decomposition motivated by
Lemma 6.1,

Ql,n
< (i Am) Py — )P . K2(v) fx(zo — hv)dv
Hon ) =) | K [W}jﬂ (T3 1 5)o) o — o)

—(y1 A7) 2] x fx(zo — hv)do.

This then gives

Qin < 6y K2(v) fx(zo — hv)dv + o(1),
Sk

where the o(1) term does not depend on y; and ;.

Concerning ()2, we have the following inequality

QQ,n
1 n _
< fzfj K2(U)P ((k/”) Y1 AL S Fl(Y(1)|$o) < (k/n) y1 v 371’X =Tg — h’U) fx(xo — hv)dv
(y1 A91)*1 k g,
1 n _
+7,2*J K?(v)P ((k/n) Yo A Po < FQ(Y(Q)\xO) < (k/n) ya v QQ‘X =x9 — hv) fx(zo — hv)dv
(1 A1)*k gy
= Q21n+ Q220

We only give details about (2,1, the term ()22, can be handled analogously. Direct compu-
tations give

1 n ) Ur(n/(k(y1 Ag1))lzo)
Q2,10 = 277]{:[ K (U)f f1(y|lzo — hv)dy fx (xo — hv)dv,
(1 A 91)*Tk gy UL (n/(k(s vin)) o)

and, after substituting u = (n/k)F1(y|zo), we have

0 oty [ AUl ),
Qi = G o, KO | R G e = e

Using (2.1) and arguments similar to those used in the proof of Lemma 6.1 one obtains for n
large and some small k > 0,
fiU(n/ (ku)|xo)|xo — hv)
SiUr(n/ (ku)|zo) o)

where C does not depend on u. Then, for n large enough,

< Cu™",

c v 2
Q210 < WLlAyl u “du SKK (v) fx(xo — hv)dv
< (yl/\Cgl)Qn(yl A1) (Y1 v I — Y1 A )
Cop2nn
o(1),
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for a small k € (0,1 — 27n).
Combining all the above we have verified (6.1).

Proof of condition (6.2). A natural envelope function of the class F,, is

d 1—
Fn(u, z) = \/WK}L(IL’O _ Z) {F1(u17|:c0)<kT/n} ‘
k [(n/k) F'1(u1]xo)]"

)

X =x9— hv} fx(zo — hv)dv

This yields

L7, (v w0y <kT/n}
(F1(Y Mlag))2n

PF? = heE (K,%(xo — X)E

Sk (F1(YM]xg))n

)1—2n K2(0)E lﬂ{Fl(Y(l)xo)SkT/7n}

Il
/N / /

172nJ 9 oo 1
K (v)f — dFy (ylzo — hv) fx (o — hv)dv
Sk U (n/(kT) o) (F1(y]mo — hv))?1

n\ 1—2n © 1
— K3(v —
- (k) Sk ( )JUl(n/wT)xo) (F1(ylzo — hv))2n
— 2n
X <F1(y|sro—hv)> — 13 dFi(y|lxzg — h) fx (zg — hv)dv
F1(ylzo)
=: QS,n(T) + Q4,n(T)

Concerning Q3. (1) we obtain by direct integration and a slight adjustment of Lemma 6.1, for
large n

G0 = 5 (5) ] FROFOG Do~ )l = et~ iy
T17277 )
e BRI er
7 _12,7 LK K?(v) [(ZFl(Ul(n/(kT)|$0)|$0 - hv))l_m7 - T1277] Fx (o — ho)dv
< ot (6.7)

for k <1 —2n.

Concerning Q4. (7T"), combining (D) with (#) gives the following bound, for n large and y >
Ur(n/(KT)|zo),

‘(Fl@m - hv))Q" .

s < O (hTIAl + yCQh"’Yl h™Milny + ‘51(y’$0)’hn31
Fi(ylzo)

101 (o) [y h7 Iy ) (6.8)

Each of the terms in the right-hand side of the above inequality needs now to be used in Q4 (T),
leading to the terms Qu4,(T), j = 1,...,4, studied below. First

18



Qu1n(T) :=

o ()7 e [ Ryl — ho)fx (w0 — ho)d
1 — v — 1W|xo — ) Jx (o — nv)av.
k Sk Ui(n/(kT)|wo) (F1(ylzo — hv))?n

This term is clearly of smaller order than @3, (7") studied above and hence Q4,1,(T) = O(1).
For the second term in the right-hand side of (6.8) we need to study

Q4,2,n(T) =

o ()7 [ [ ey dR g — ) xo — o
k Sx £ (T) (F1(ylzo — hw))n

n

where t,(T) := Uy(n/(kT)|zo) and &1, := Coh™1. Let pp(y) = & nysntiny + yStn—l Ap-
plying integration by parts on the inner integral gives, for n large enough,

Q4,2,n(T)
n\ =2 AT In(ty, n(T)]50m —= 1-2¢
- (E) w fnid fj;);[; @) . K*(v) [F1 (tn(T)]x0 — hv)] fx(zo — hv)dv
* (%)172” 1h—m;77 L Kz(v)ﬁ (1) Pa®) [F1(ylzo — ho)]"™" dy fx (w0 — hv)dv

= Qu21.n(T) + Qa22n(T).
We obtain, for n large enough
Quo1.(T) < Ch™ In(t,(T))[tn(T)]S T 207"
o(1),
since for distributions satisfying (D) one has that
Ui(ylwo) = (A(w)) "y 0 (1 + ay (ylao)) (6.9)

where |ai(.|zo)| is regularly varying with index equal to —vi(x0)S1(xo), and by using the fact
that A" In(n/k) — 0 as n — .
Now consider Q422,(T"). We have

i 12 & Fulylzo — hv))lz” ( Fi(ylzo) >

W) = 2 k2 nW) | Tt (T ) d

Qu2,2n(T) 1-27 Js. (v) Ln(T)p ) ( F1(y|zo) Fi1(tn(T)|z0) g
X fx(xo — hv)dv.

For n large and y > t,(T'), with &, = Ch'F1,

— 1-2n
(Fl(ym)_hz})) < Cygl»n (1 + y&’"hnsl In y) .
F1(y|xo)

Substituting u = y/t,,(T") we get

Quoon(T) < Ch™T=21[t, (T)] '+

X 2 v * U ugl,n U &2,n 1 Neq n u M =2 u
SKK ( )L P (o (T)u)ust (1 + (tn(T)u)*> k1 In(t, (T)u)) <F1(tn(T)x0)) d
X fx (xo — hv)dv.
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Since F1(.]zo) is regularly varying, we can apply the Potter bound (see, e.g., de Haan and
Ferreira 2006, Proposition B.1.9), and obtain, for n large enough and 0 < é < 1/v1(x0)

Q4’2’2’n(T) < Ch'm Tl—QW[tn(T)]Qfl,n K2(v)fx (1‘0 — hv)dv
Sk

o]
X J (flmugl’"_l I (t,(T)) + & pust» " nu + u&*"_l) ufton = (/7 (z0)=8)(1=2n)
1
< (14 (to(T)w)*> k" In(t, (T)u)) du.

After tedious computations one gets

Quzan(T) < CT' 2R [ty (NP {14 W70 (e (T) + [ (T)]52 05 In(tn (7))
= 0(1)7
by (6.9) and the fact that A1 In(n/k) — 0 as n — . Hence, Q4,2,(T) = O(1).
Finally, the two last terms Q4.3 (7T") and Q4,4,,(T) can be dealt with similarly as the two previous

ones since

n

o 5y (T2 2 * 161 (y|wo)] B B
Quan(T) = A7 (k) LKK(U)Lm (fl(ylxofhv))Q"dFl(Wo ro) e = e

n\ 1—2n
< ( sup 51(y|x0)|> B (E)

thn(T)

0
1
X . K2(U)L ) (Fr (gl — ho))2 dF (y|zo — hv) fx (zo — hv)dv (6.10)
K n
and
ny1-2n 81 (y|xo)|ys2m In
Q4747n(T) = RQll=a (E) J\S KQ(U)J o i;f?lﬁ;)?y hv))deFl(y‘xo — h’U)fx<l‘0 — h,’U)dU
K tn -
n\ 1—2n
< sup |41 (y|x R —
(y}tnl(?TJ 10 o>|> (%)
2 [ y*r lny
X . K (’U)J o (Fr(ylo hv))2ndF1(y|I0 — hv) fx (zo — hv)dv. (6.11)
K tn -

This yields Q4,3,(T) = O(1) and Q4,4.,(T) = O(1). Combining all these results, we get (6.2).
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Proof of condition (6.3). To this aim, for any o € (0,1/n — 2), we have

1 2+a
g /2 n

1+2 _
o e T e ey
gone/2 \ k h [(n/k) Fp (Y D]ag)]n2+e)
L7 (v eg) <t
K2+a E 7{F1(Y lzo)<KkT/n} X = _
®>(VMWW%WWM’ rom b
X fx(xo — hv)dv

PF,fn{ Foseym} S

_ 1 1 (n)lfn(2+a)
e (khd)a/Z k

Sk

_ 1 1 (n)lfn(QJra)
e (khd)o/2 \k

© 1
X K2+O‘vJ — dFy1(ylzg — ) fx(zg — hv)dv
{LK ) ta(1) (F1(ylwo — ho))nte) 1 i :

Q0
+J KQM(U)J _ 1
S ta(1) (F1(ylwo — hv))nZ+e)

Fi(ylzo — ho) n(2+a)
X l(ﬂ[(jﬂ%)) — 11 dFy (ylzo — hv) fx (zo — hv)dv} .

The terms into brackets can be studied similarly as Q;,(T),j = 3,4, and thus (6.3) is estab-
lished since kh?® — co.

Proof of condition (6.4). Without loss of generality assume 7" = 1 and consider, for a, 6,0 <1,
the classes

FV(@) = {fuy€Fn:m <al,
FP) = {fayeFniy >a,y2 <a},
Fullim) = {fay€Fn: 07 <yn <05,0™ <yp <™,

where £ = 0,...,|lna/Inf| and m = 0,..., lln a/ln 5J We start by showing that ]-}(Ll)(a) is an
e—bracket, for n sufficiently large. Clearly

nhd LF, (urfeo)<(k/m) 11}
0< foylu,2) < \/7Kh To— 2 LIRS u
y(t:2) B R0 2 k) B (o)

]17 (AREA n)a
Then
1-2n ®© 1
Puzn - (2 szf ——dFi(y|lzg — hv) fx (xg — hv)dv
b= (1)), K0V, gl P00 ) (o — ko
= Q3,n(a) + Q4,n(a)7

using the same decomposition as for PF2. Thus, one can obtain the result from the above anal-
ysis of Q3. (T) and Q4 (T"), taking into account that the various constants involved in these
will not depend on a.
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Concerning Q3 ,(a), according to (6.7), for n large
Qsn(a) < Ca'?77",

where C does not depend on a. Now, taking a = ¢%/(1=27) for n large enough and e small we
have |Q3,(a)| < €2

Concerning Q4 ,(a), we use the same decomposition as for Q4,,(7) based on (6.8), which entails
that, for n large enough, ¢ small and some small { > 0

Quin(a) < €2
Quoin(a) < Ch™MIn(t,(a))[tn(a)]mal=277"
< O(1+ |Ina|)aCa'=217"
< Cal=2728,

with C' a constant not depending on a, since from (6.9) and for n large,
R Inty(a) < C(1+ |Inal).
Also, for n large, and some small { > 0

Qu22n(a) < Ca'~21pm [tn(a)]2fl,n {1 + b In(ty,(a)) + [tn(a)]&’"hnfl ln(tn(a))}

Ca'™hma (1 4 |Ina| +a (1 + |Inal))
C«alanf/{7

NN

where C does not depend on a. Hence, for n large and e small we obtain Q422 (a) < 2. Using
(6.10) and (6.11), we have also Q43 (a) < €% and Q44 (a) < 2. Combining all the terms we
get Pu%’n < €2 for n large.

Next consider F.2) (a). Then

nhd 1 Fa(uslzo)<(k/n) a
0< fay(u,2) < TKh(iUO —2) {F2( 2';7)7<( /ma} _. ugn(u, 2),
and
1n — n
i = gt [ Rm (e ) o
U n 21 % fSK (v)F'9 (Us a xo | |xo — hv) fx(zo — hv)dv
< €2
when n is large enough and for € small.
Finally, we consider F, (¢, m). We obtain the following bounds
nh? LF (uafeo)<(b/m) 041, Fa(ualao)<(k/m) 61
(1, 2) = A o Ky g — ) Aealeo) <) O Pt < < fugln,2) <
k g‘n
nhd ]lfuxsknﬂ,fuxskném _
TKh(l’O—Z) {F1 (ur]zo)<( /;(£+1)2n( 2lzo)<(k/n) O} T (1, 2).
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Then

_ nh? WLz, (v ) zo) < (k/m) 08, Fa (¥ @ fw0) < (/) G

2
U 0 )< (/) 0441, Fy (YO w) <(k/m) 641
6

The difference of the indicator functions can be decomposed as in (6.6), and subsequent calcula-
tions follow arguments similar to those used in the verification of (6.1), Case 3. Taking 6 = 1 —&8
and § = 1 — a, gives for n large enough and ¢ small that P(u, — u,,)? < &2.

Combining the above, for n large and € small one obtains that the cover number by bracketing
is of the order e=473/(1=21) "and hence (6.4) is satisfied.

To conclude the proof, we comment on the pointwise convergence of the covariance function,
which is given by Pf, , fng — PfayP fny. We have

HKH% n { 1 2<x0—X> }
Pfoyfng = ——2'F K Ia,
Fnufng (ig)" k- L[ K[3h4 h Ao
R(y1 A 91,y2 A §2|x0)
— |K|3fx(z
H HZfX( 0) (ylgl)n

Y

as n — o0, by the arguments used in the proof of Lemma 6.2. Also

[khd 1 n
an7y = 7@2}}3 [Kh($0 _X)]lAn,y]

— 0,
as n — 0. |
6.2 Proof of Theorem 2
Recall that
T (00, y2|xo) = 112”] o (v ®(ag)< o}

We follow the lines of proof of Theorem 1. We introduce the sequence of classes .7?” on R x R¢
as

~

Foi={(u,2) = fry(u,2),y € (0,T]}

where

~ nhd
Ty (s 2) =\ 5= K@ = 2) i, o)<y
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We have to verify the conditions (6.1)-(6.4) in the proof of Theorem 1 for the new functions
fn » and with pg(y,9) := |y — y|. Without loss of generality, we may assume that y > 7. Thus,
we have

P(J?n,y_fn@)Z = nkth[Kh( - X) (ﬂ@(w%o)s%y}_ﬂ{m Y @ao)< %@)]

_ % . K2(v) |:F2 <U2 <IZJ‘$0> xo — hv> — ( %‘ )‘azo - hv)}
X fx(xg — hv)dv

= (y—7) . K*(v) fx (xg — hv)dv

+ Si KZ(U) |:ZF2 (UQ <]Zy‘l’0> ‘:L’o - hv) - y} fx(lro - hv)dv

s K*(v) |:ZF2 (Ug <:y‘xo> ‘xo - hv) y} fx (@0 — hv)dv

< oy K2(v) fx(zo — hv)dv + o(1),
Sk

with a o(1)—term which is uniform in y and ¥ by Lemma 1. This yields (6.1).

Now, concerning (6.2) we can use the following envelope function of the class ]T"n

- nhd
Falu,2) 1= A Fm Kn(@o = 2y ujag)< 1)

from which we deduce that
2o 2()\F i ‘ _ _ _
PF; = ’ LK K*(v)Fy <U2 (kT‘m) xo hv) fx(zo — hv)dv = O(1).

Next condition (6.3) is also a direct consequence of the definition of the envelope since
1
Eanoc/Q

Wz L KT (v)Fy <U2 (%‘xo) ‘l‘o - hv) Ix(xg — hv)dv = o(1)

72 72
PR G . m < [t

as soon as kh® — oo.

Finally, concerning (6.4), again without loss of generality we assume 7" = 1 and divide [0, 1]
into m intervals of length 1/m. Then, for y € [(i — 1)/m,i/m] we have the bounds

nh ~ nh

d d
u, (u, z) := TKh(wO - Z)H{Fz(ulmo)éﬁi;l < fayl(u, 2) < TKh(wO - Z)H{Fz(u\wo)égi} =: TUp(u, 2)
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from which we deduce that

Plu, ) = | K(0)fx(wo — ho)du

J K2 [ (U2 (E% xo) ‘zo - hv) - 7;] Fx (o — ho)do

[ e [ (o (o o) -t

< & K*(v)fx(xo — hv)dv + 26°
Sk

when m = [6%] If ¢ is small and n large, then P(u,, —u,)? < 2.

The pointwise convergence of the covariance function can be verified with arguments similar
to those used in the proof of Theorem 1.

Consequently
VEh? [T(00, yalwo) — E(To (20, ya|0))] ~ W (o0, 92),
in D((0,T1).
Now, remark that

E(Tn(0,y2|w0)) = y2fx(wo) + O (R"x)
+fx (o) o K(v) {: <U2 <k‘y2‘ 0) ‘xo — hv) — yQ} dv
+ . K(v) [k <U2 <ky2\ 0> \xo - hv) - yz] [fx (2o — hv) — fx(z0)] dv.

Following the lines of proof of Lemma 1, we deduce that

n n
‘kFg (UQ <‘x0> ‘1‘0 — fw) — yg‘ C {hnA? + h'2 In E + |(52(U2(n/k‘$0)‘$0)‘ (hnB? + A2 1n E)}
from which we obtain
E(Tn(%0,y2|20)) = v2fx(z0) + O (Rx"12) 4+ O (h% In %) + O (|62(Uz(n/kl|zo)|zo) |n72)

+0 (|52(U2(n/k‘370)‘370)‘hn52 In %)

with O—terms which are uniform in yo € (0,7]. This implies that, under the assumptions of
Theorem 2, we have

VIR [T, (00, yo|z0) — yo.fx (z0)] ~ W (o0, 32), (6.12)

in D((0,T7).
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Finally,

Vkhd (OO”"”O)—> iend [ In(90,y2l70) Tn(90, y2lwo) Vb (Fufa N
kh( fn(@o) ’ kh( fx (o) y2> (o) fx( 960\/> f 0) = fx( 0))

from which Theorem 2 follows. |

In the sequel, for convenient representation, all the limiting processes in Theorems 2.1 and 2.2
will be defined on the same probability space, via the Skorohod construction, but it should be
kept in mind that they are only in distribution equal to the original processes. The Skorohod
representation theorem gives then (with keeping the same notations)

VER [T (y1, y2lw0) — B(Th(y1, y2]w0))] — Wy, y2)
y17y2€(07T] yl
and
sup |Wihd [ Tl@g2lzo) N WL0.80) |
42€(0,T fn(xo) Ix (o)

6.3 Convergence result for an auxiliary statistic

In this section we give a convergence result for an auxiliary statistic. In particular, we generalize

5n to gn(yg), defined as

S y
Z n(@o — Xi)Y; ﬂ{Yl.(2>>U2(n/(ky2)\fco)}'

w\»a

Assuming F(y|zg) strictly increasing in y, we have
~ n 0
One) = ~Ur (o) [ Tusul), yofao)du )
0

As motivation for studying gn(yg), note that é\n = gn(é\n), where €, := %FQ(anUQ(%|l'O)|l'O)
with u, := 172(%|:1:0)/U2(%|1:0). To estimate Us(.|zo) we will use Us(.|zo) := inf{y : ﬁn’g(y|$0) >
1-1/.} with
2ima Kn(zo = X)Ly oy

i1 Kn(vo — Xi) 7

the empirical kernel estimator of the unknown conditional distribution function of Y2 given
X = zg. See for instance Daouia et al. (2011). The asymptotic behavior of the quantile
estimator is given in Lemma 6.6.

Foa(ylwo) :=

Proposition 6.1. Assume (D), (H), (K), (R) with x — R(y1,y2|x) being a continuous func-
tion, xo € Int(Sx) with fx(zo) > 0, and y — Fj(y|lzo), j = 1,2, are strictly increasing.
Consider sequences k — o0 and h — 0 as n — 00, in such a way that k/n — 0, kh? — o and
hMiAhe Aen Az Inm [k — 0. Then, for v1(xo) < 1/2, we have

vV Ekhd ~ ~ © P
sup |————— [On(y2) — E(0,(y —i—J W (u, yo )du~71(#0)| = 0.
5 Gt ) [On(w2) = BGalwa))| + | W p2)
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Proof of Proposition 6.1

We use the decomposition

NI N o 1
Sup_ |y | On(¥2) — E(On(y +f W (1, y2)du= 0| < L(T) + Y L;o(T),
5 i) [P 2) ~E@a )] + | W e (D) + 2, B )
where
e ¢]
L(T) := sup f W(u7y2)du—’71(zo)7
T<y.<2 T
Q0
B(T) = sup | [ VR [T (50 ), o) — B (T s ) elo)) = 0
5 SY2<2 T
T
I3 (T) = _sup _[){W[Tn(sn(“>792|$0)—E(Tn(Sn(U%yzlaﬁo))]—W(sn(u)7y2)}du—%($o)7
3 SY2<2
T
Lin(T) == lsuP f [W(Sn(u)a?JQ)_W(U,yg)]du_’“(%).
1<ya<2|Jo

Similarly to the proof of Proposition 2 in Cai et al. (2015), it is sufficient to show that for any
e > 0, there exists Ty = Ty(¢) such that

P([1(Ty) > ¢) <e, (6.13)
and ng = ny(Tp) such that, for any n > ng
P(I;n(To) > €) <e¢, for j = 2,3 and 4.
Clearly

L(T)<  sup  [W(u,yo)|T (=0,

u=T, 5 <y2<2

Since a rescaled version of our Gaussian process W(.,.) gives the one in Cai et al. (2015),
according to their Lemma 2, we have sup;_, ., 1<, <o |[W (u,y2)| < oo with probability one.
IR x

This implies that there exists 77 = T1(e) such that

P ( sup W (u,y2)| > Tf’l(%)e) <e,

0<u<00,i<y2<2

from which we deduce that, for any T' > T

P((T)>e)<P ( sup |W (u, y2)| > Tfl(x0)5> <e.

0<u<oo,%<y2<2

Consequently (6.13) holds for Ty > T3.

We continue with the term Iy ,(7"). We have
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P(IQ,TL(T) > 5)

N

P( sup Q‘M[ n(sn (Y1), y2lzo) — E(Tn(sn(yﬁ,yzmo))]‘>5T71(”’0)>

12T, 1<y

2 K i) X
P (yl>TsuI<)y2 - Zl [|K|oc ( h> ll{fl(yi(l)‘mg)S%Sn(yl),Fz(Yi@)|w0)<%y2}
27 7

K o — X eTnxo)
—E (|Koo ( h >ﬂ{Fl(YU)lwo)sﬁsn(yl),Fz(Y<2)|wo)<Zyz}>]’ = 1Ko kh

B LS E sup i o —Xi 1= o Foy® -
eT7(zo)\/khd T, h<ya<2 |2 ‘KHoc h {F1 (Y |z0)<Esn (1), F2 (Y, |zo) < Eyo}

K SC()*X
ERL T ) Mmoo, Far@lan <t ) || -

Consider the class of functions

o K 0— 2 1
gn,y(u, Z) = HKHOO h {Fl(ul|x0)<§sn(y1),FQ(U2|I0)<%ZJ2}
E K o — X 1
N h {Fr(YD]zo)<Esn(y1), Fa(Y P |zo)<Eya} |
with y3 > T and 1/2 < y, < 2, and with envelope function

. K To— 2 K g — X
Gin(u, 2) = 1Ko (h) 1P sz <22y T B (|Koo (h) Il{Fz(Y@)Iro)s%?}) :

This class of functions satisfies the conditions of Theorem 7.3 in Wellner (2005) with 0% =
O(kh?/n) and PG2 = O(kh?/n) for n large, and thus, for some constant C,

C

Pl2nlT) > ¢) < ey

for n large enough. We have then that for every e there is a T' = T'(¢) such that for n large
enough

P(Ion(T) >¢) <e.

Now, to study I3, (7"), remark that for any 7" > 0,3n; = ny(T) : Vn > ny : s,(T) < T + 1.
Hence for n > n; and any 79 € (y1(z0),1/2) :

\/ﬁ[ n (Y1, y2lz0) — E(T (y1, y2lz0))] — Wy, yo)
Yy’

4! (930) T”Ofﬁﬂ(xo),
no — Y1(zo)

P(I3,(T)>¢e) < P ( sup

0<y1 <T+1,5<y2<2

X

| [ odu

0

According to Lemma 3 in Cai et al. (2015)

T

0
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which, combining with our Theorem 2.1 and the Skorohod construction, entails that there exists
na(T) > ny(T') such that Vn > no(T'), P(I3,(T) > ¢) <e.

Finally, concerning Iy ,,(T"), we first remark that according to Lemma 2 in Cai et al. (2015),
we have for ng € (y1(zp),1/2) and any T > 0, with probability one,

w
ap WOl o)
0<y1 ST, 3 \yQSQ yl

Then, applying Lemma 3 in Cai et al. (2015) with S =T,Sy =T + 1 and g = W, we deduce
that there exists n3(7") such that for n > n3(T") we have P(I4,(T) > ¢) < e.
This achieves the proof of Proposition 6.1. |

In order to prove Theorem 2.3 we need some auxiliary results. Define for u > 0 and v € Sk

Sp(u) = —F (u o)y, (k:’ )‘mo — hv) ,

<U2 (knz xo) (:no - hv> .

Lemma 6.3. Assume (D) and (H) and zo € Int(Sx). Consider sequences k — o and h — 0 as
n — o0, in such a way that k/n — 0 and h’1 "1 In & — 0. Then, we have, for any u < T, — ©
such that kT, /n — 0 and 0 < e < B1(xo), that

tn(y2) =

’gn(u) - U‘ < Cu {hm‘l + h'Mm ln% + A1 In u|uiChW1
+ [0 (U (oo o) | [1 w1 1

[u'“(wo f1(@o) < + g (@0) ) (h”Bl O e <| Inuf +In %))
te

+ i @o)(Bi(zo)te) 4 ‘le(m)ﬁl(m 1”}

where ut* means u® if u is greater than 1, and u™* if v is smaller than 1.

Lemma 6.4. Assume (D), (H), v1(x0) <1 and xg € Int(Sx). For sequences k = |[n*¢1(n)| and
h = n=2ly(n), where {1 and ly are slowly varying functions at infinity, with o € (0,1) and

(e} (0]
max , ,
<d + 271 (z0)(May A 1y )" d A+ 2(1 = 71(20)) (NAy A Mo A By A Ney)

a 201 —ani(@)bi(z) a—2(1- a)%(mo)> aa
d d+d(Bi(xo) +e)yi(xo)’ d 7’
one has that
sup khd [R (gn('LL), tn(y2)|$()) — R(U, y2|x0)] du*'n(xo) —50
vESK 1<y<2

and

khd [R (sn(u), yQ‘l'o) — R(u’ y2’1‘0)] du~ " (z0)

— 0.

5<y2<2
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Lemma 6.5. Assume (D), (H), (K), zg € Int(Sx) with fx(xo) > 0 and y — Fa(y|xo) is strictly
increasing. Consider sequences k — 00 and h — 0 asn — o, in such a way that k/n — 0, kh® —
0, b2 Inn/k — 0, VEh4 R x "2 — 0, \khd k2 Inn/k — 0, Vkh®|62(Us(n/k|zo)|xo)|AB2 —
0, and

Vkhe|62(Us(n/k|zo)|To)|h"2 Inn/k — 0. Then, for any sequence u, satisfying

i <F2(Ug(n/k¢|$o)|$0) _ 1) —ceR
FQ(Unng) ’

as n — o0, we have

Foa(tn|zo) W (0, 1)
hdFQ(un|(L‘()) (Fz(unyajo) — 1) ~o m

Lemma 6.6. Assume (D), (H), (K), zo € Int(Sx) with fx(xo) > 0 and y — Fa(y|zo) is strictly
increasing. Consider sequences k — o0 and h — 0 asn — o0, in such a way that k/n — 0, kh® —
0, Kz Inn/k — 0, Vkhd hx "142 — 0, vkhd ke Inn/k — 0, VEh?|8y(Us(n/k|zo)|z0)| — O.
Then, as n — 00, we have

ViR (@, — 1)~ 2@ (0, 1)
! Ix(zo)

6.4 Proof of Theorem 2.3
Let E,(y) := E(6,(y)/UL(n/k|z0)). We have the following decomposition:

é\n . _ U1(TL/]€|CCO) \/W é\n _
W(fmo)ek/n 1) T hgn Ix@) <U1<n/k|azo E“”)

)

Uy (n/k|zo) VEkhe  Ix(@0)bi/m
e Tx() (E"“) Loy
Oum  fx(o0) Ul(n/k‘|$0) .
Uy (n/k|zo) VEkhe o

" Ocm  fx(xo0) (En(En) = En(1))
Uy (n/k|zo) Vkhd (E 1 - fX(fUO)‘gk/n>

Opm  Jx(0) Ur(n/k|xo)
= Ty + 15+ T;.

First, remark that the common factor of the three terms, Uy (n/k|xo)/0)/,, can be handled in a
similar way as in Proposition 1 in Cai et al. (2015), i.e., as n — o

U1<n/k)|x0) -1
Qk/n SO S 1|x0 dS 7i(wo)

Thus the three terms without this factor need to be studied.
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We start with 7T7. Note that

ViR (@, — 1) = _f2(%(]2(”/k|96‘())|96‘0)U2(7”L//’<?|f'30)\/W(a _
! Fy(Us(n/k|zo)|zo) no )

where 4, is a random value between u, and 1. By the continuous mapping theorem we have
then

fa(unUs(n/k|zo)|x0)Us(n/klxo) & 1

Fo(Ua(n/k|zo)|z0) Yo(xo)’
and hence by Lemma 6.6
VEhd(&, — 1) ~ =W (00,1)/fx (o). (6.14)

This implies that
P (|@n 1> (khd)_1/4) -0

Hence, with probability tending to one,

VEhd ( 0,(e0)

—En(e L —1(z0)
Fx (z0) \ UL (n/k|zo) En<en)> * (o) L W (s, 1)ds

VEkhd b (y) 1 )
h —En y)ds 1 (x0)
) ‘y_”j(lgd)fl/‘l Fx (o) < Ui (n/k|xo) (y)) ’ fx(zo) (s, y)ds

1 o
—-Ww ds— (o) |
(o) |y71|$s(111£d)—1/4 f [W(s,y) — W(s,1)]ds

The first term of the right-hand side tends to 0 in probability by our Proposition 6.1, whereas
the second term can be handled similarly as in the proof of Proposition 3 in Cai et al. (2015).
Consequently

1
Ty ~ W (s, 1)ds™71@0), 6.15
' So (s, 1]xg)ds—1(x0) fX o) f (5 1)ds (6:15)

Next step consists to look at T5. To this aim, remark that for y equal either to 1 or €,, we
have
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Loo E (T, (sn(u), ylzo)) du~1(%0)

2 (S (u), tn(y)|zo — hv) fx (0 — hv)dvduiﬁ(‘r(’)

ﬁfSKff@oRk<
fw . K(v

R (3n(w), tn(y)|z0) fx (xo — hv)dvdu=71(0)

+f . K(v) [R% (3n(w), tn(y)|mo — hv) — R (3, (u), t(y)]20)] fx (zo — hv)dvdu =7 (@0)

0
= J R (u,yl|zo) du=71(x0) K(v) fx(zo — hv)dv
0 Sk

+ KUJ (R (3 (@), taWlz0) — R(u, ylao)] du~ ) fc (g — ho)do

J . K(v) [Re (3a(w), ta(y)|zo — hv) = R (3,(w), ta(y)]0)] fx (w0 — hv)dvdu=71(70)
=: T2,1 + TQ,Q + T2,3.

By Lemma 6.4, Assumptions (S) and (#) we obtain

0
Ty, = fX(JUO)J R(U,y|$o)du_'ﬂ(z°)—i—Op(hnfx),
0

- 1
Tao = op < )
7 \/khd>
| Ry (y1, y2lz) — R(y1, y2|20)|

Ths] < — sup sup 3
z€B(z0,h) 0<y) <00, <y2<2 yp A1
oe}
< | K@) f <[§n(u)]'8 A 1) du~"1@0) fy (20 — ho)dv
Sk 0

- o ((3))

Note that the integral appearing in the bound for |T2,3| is finite for n large, as 3, (u) < Cu'~¢
for uw € (0,1/2],€ € (0, (8 — 71(x0))/B) and n large. Consequently, under our assumptions and
using the homogeneity of the R—function and the mean value theorem combining with (6.14),

we have
f\/ﬁ (B, (5.) — Eo (1)
X $0
- OO T w1 (@o) _ . s (w). 6. |z G
= <0 E (T, (u), 1|zo)) du™ L E (T (5n(1), €n|z0)) du™ )

= (J R (u, 1|zo) du~71(0) f R (u,e,|xg) du™ 71(10)) + op(1)
0

o0
- thd(1—€};%(w0>)f R (u, |z) du="@) 4 op(1)
0
W (o0, 1) JOO _
(11— ——= | R(u,1|z) du@0),
(1 =7(z0)) @) Js (u, Hzo) du
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This implies that

Finally, for T3 we have,

where

T30 =

Ty~ —(1— 'yl(:co))m.
khd ~ Ix(@0)Okym
Feton) (B0~ T

U

il — B sn(u), 1|zq))du @) — fX(xO)ek/",
fx(xo>< L E(Tn(sn(w), Lzo))du™ U1<n/k|xo>>

Vkhd JO B [Roui(8n(w), 1|zo) — R(u, 1]ag)] du="0) + o(1)

\/WJ:O [Rn/k(sn(u)a 1|l‘0) — R(sn(u), 1|;p0)] du—h(xo)

+\/WLOO [R(sn(u), 1|zo) — R(u, 1|z)] du"(0) 4 (1)

f’371 + Tgyg + 0(1),

Rn 5 - R y T
VEhd sup sup Bl sza:; (91, veleo)|
2€B(0,h) 0<y1<o0, 5 <y2<2 yp Al

Q0
X j ([sn(u)]ﬁ A 1) du 11 (w0)

0

a(m™\"

o(vint (7))
o(1).

Overall, we have then

(6.16)

(6.17)

Combining (6.15), (6.16) and (6.17), and following the argument as at the end of the proof of

Theorem 2.2, we can

establish the result of Theorem 2.3.

6.5 Proofs of the auxiliary results

Proof of Lemma 1

First note that, by continuity of y — F}j(y|z),

WES Ut leolle) =y I
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Then, from condition (D), and a straightforward decomposition,

tnF(Uj(ta/ylzo)|z) A
y77

<y {‘ e 1) (Uj(tn fylag)) /o) =1 e )

Q

5@ 93 (Uj(tn/ylzo) )

i (tn/y|7o)|20)

Aj(zo)

QQ

7 (x J(
1+ % (;5)(S (U. (tn/y|$0)
T+ —350,(U; (tn/yle0)

L 05U byl ) 4}

x)

|
. L/ (zo)=1/v; () _
+ (Ut ylo)) e g o

_|_

L+ 50305 (U (tn/ylao) |z0)

Each of the absolute differences in the right-hand side of the above display can be handled by
condition (H). Obviously, for some constant C,

- 1‘ < ChyV, for x € B(zo, hy).

Next, using the inequality |e* — 1| < el?l|z|, we have, for some constant C' (not necessarily equal
to the one introduced above), and x € B(xq, hy,),

(Uj(tn/y\:no))l/"’f(f”o) /v (= 1‘ <e Chn? U (tn/ylwo) p, i In Uj (tn/yl0)-
For distributions satisfying (D), one easily verifies that
Uj(talao) = (A;(x0)) VG ™) (1 + aj(ta|x0)

where |a;(.|zo)| is regularly varying with index equal to —v;(z0)B;(xo). Hence, for some con-
stants C1 and Co, not depending on y, one gets for x € B(zg, hy,) and n large,

Ny 4 Ny
)(Uj(tn/y|x0))1/w(930)*1/71(1) _ 1‘ < Cltgzhn” y—cmﬁ (hzwj Int, — b’ In y) '

Finally, for n large,

L+ 595 Uit ylwo)lw)
1+ 50705 (Uj (ta/ylzo) o)

< C@@M%MWM%N{

1 1

vi(@) (o)

6 (Uj(tn/ylz0)|)
85 (Uj(tn/ylzo)|zo)

_1l+

By the assumptions on d; we obtain

m@wmmmm_d‘g‘ﬁ%w_

(s tnfal0) <52 wlzo)

6;(Uj (tn/ylzo)|z0) Bj(wo)
esiJ (tn/y|x0) €j (u]z) uE (u\xo)d _ 7
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and, hence, using (H), for x € B(x, hy,) and n large,
1+%@MW%M%W)_‘

L+ o305 (Uj (tn/ylao) o)

) . Ne ; Ne 5 . .
< Cl |:hZ’Y] ANB; + thhn 7 y—Czhn J <hz i ln ty — hz I 1n y>:| .
Combining the above results establishes the lemma. |

Proof of Lemma 2
We have

E(T(y1, y2|20))

n
= B [Kh( 20 = X)UF, (v ) o) <(h/m) g1, Fa (Y @ [0) <(h/m) yg}]

_ % ) K@)PFL(YOlzo) < (k/n) y1, Fo(YP|z0) < (k/n) ya| X = x0 — hv)
X fx(zog — hv)dv
= p K(v)R(y1, y2|z0 — hv) fx (zo — hv)dv
+ s K(v) [%P(Fl( ’xO) (k/n) 1, FQ( |l’o) (k/n) y2| X = z¢ — hv)
—R(y1, yelo — hv) | Fx (w0 — ho)do
=: Tl,n + TZ,n.

Concerning T ,,, by the continuity of fx(z) and R(y1,y2|x) at zo, we have that fx and R are
bounded in a neighborhood of zy, and hence, by Lebesgue’s dominated convergence theorem

Tin — fx(zo)R(y1,y2|z0), as n — oo.

As for Tp

Ton| < sup kP(Fl(Y(l)\wo) (k/n) y1, Fo(YP|zo) < (k/n) y2|X = zo — hv)

’UESK

=Rl ko = ho)| | K () fx (o — ho)dv.
K

and note that
P(FL (Y M]ag) < (k/n) g1, Fa(Y P |z0) < (k/n) yo| X = x0 — hv)
— k n
= P (FI(Y(1)|x0 = hv) < = S Fu(U(n/(kyn)|wo) o — ho),

Fo(Y @)z — ho) < %

??‘\3

<U§0u«kyzﬂxonxo-hanf-xo-hv).

Then, by the result of Lemma 1 and the uniformity of the convergence in Assumption (R), we
have that 75, — 0 as n — o0.
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Now, consider the variance. We have

kh*Var (T, (y1, y2|zo))

nh®Var (Ko — X)Wz, (v ) ag)<(k/n) g1, Fa(y @ feo)<(k/n) y2))

k

= HKHSEE L M & @)
hd| K3 h L, (v ) o)< (k/m) g1, Fa(Y @ fo0) < (/) y2}
khd 2
n { kE [Kh( )ﬂ{f1(Y(1>|xo)<(k/n) y1, Fa(Y @) |zg)<(k/n) yQ}]} )

from which the result follows.

Proof of Lemma 3
Using Assumption (D), we have

Sp(u) =

A — Ll (=)
_ Au(zo — ) (U1 (ﬁ‘m»m RN DI T
A (z0) k

st (2 )

ot (0 (R

This implies that

71(=0)
gn(u> — un (zg—hv)

ey [ Axzo — hw) ‘ n CEn e e )
< unlo—hy) | —— 21 (Ul (7’1.0))71 o) m(=zo
{’ Ai(zo) k

1+W(51 <U ’“(xo)U1< ’wo)‘xo—hv)
L <>51(U1 (¥[z0) o)
oy

1+ mél <u m(zo)ry < ’ )‘xo — hv)

U sttt (U1 (o) o)

1+ m(ﬁ (u 71(“;0)U1 ( ‘930) ‘xg — hv)

I CACTIE
)

=: qumzo—hv) {T1 + T5 + T3}

X

X

_|_

-1
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Using Assumption (#) and the inequality |e® — 1] < |z|el*l, we deduce that, for n large,

|

‘W—l‘ < Ch'™ (6.18)
’(U1 (Z‘xo))m(oh) - 1’ < Ch™ ln%. (6.19)
Now, direct computations yield, for n large,
= ol (0 (2o {5
. 01 (u_’h(:t:o)Ul (%‘xo) Ty — hU) (6.20)
5 (0 el
[ 0, () (00, ()
R ) A G Y

Using the assumed form for 01 (y|z), (H), and the uniform bound from Proposition B.1.10 in de
Haan and Ferreira (2006) with 0 < ¢ < f1(zo), we obtain, for n large, that

x[))‘ {hml + 71 (F0)B1 (o) (1 + ui%(lo)a)

5= ol (o (G
X [hnBl O e (|lnu| +In %)]

1 (@) (Bi(zo)te) ‘uvl(wo)ﬁl(ﬂvo) _ 1‘} ) (6.21)
Since
N - 71 (=g) 71 (=) =71 (zg—hv)
Sn(u) — u’ < ’sn(u) —umn@o=h) | 4 qly o=k —1]
71 (=g)
< ’gn(u) — G0 | 4 CyECP i | In ), (6.22)
[ |

combining (6.18), (6.19), (6.21) with (6.22), Lemma 3 is established.

Proof of Lemma 4
We use the following decomposition along with the Lipschitz property of the function R:
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Vkhd

LOO [R (gn(u)v tn(?ﬂ)!ﬂfo) - R(u, y2|x0)] du—n (wo)

< Vknd fn [R (3n(u), tn(y2)]70) — R(u, ya|z0)] du~7(0)
+Vkhi LT” LR (o), tn (1)) — Rty o)) du=7@
Vi | [ (R G, i) hro) = R el du 0
< vk fn R (30 (1)t (1) o) du~ @)

on
—i—thdf R(u, ya|ao)du71@0)
0

Tn
V[ [0 =l + ) — gl du )
On
+2 sup R(u, yo|zo)Vkhd T;771(@0)
uZO,%7C<y2<2+C

=: Ty + T +T5+ Ty,

for ¢ > 0 small and where 4,, — 0 and 7}, — o0, as n — 0.

Now, since R(y1,y2|z0) < y1 A Y2, using Lemma 3, and assuming h"s1""1|Ind,| — 0, we
obtain after tedious calculations, for n large,

677, 677,
Ti+T, < —2VEh f wdu 0 _ ki f 30 (1) — ] du~ 10
0 0
< CVRRsE), oo

As for T3, using again Lemma 3 and following the lines of proof of Lemma 1, we have, for n
large,

Tn Tn
T, < Vi f 30 () — u du ) — VERd f [ (y2) — | du=7 )
0 on

< CVERITITE) fpias o In 2 +h7 T,

o (0 (o) o)

k
+C\/m5571($0) {hm‘2 + h'he2 ln% + ’52 (UQ <%’$0)‘x0>’

Téﬁl (wo)+e)v1(wo) }

x [h”Bz + W2 In %]} (6.24)
assuming A1 "1 InT;, — 0.

Finally
T, < CVkhdT;7@0), (6.25)
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Take 0, = h¢ and T}, = n*, with £ and & positive numbers, and 0 < ¢ < B1(zg). Combining
(6.23), (6.24) and (6.25), the first part of Lemma 4 follows if the sequences d,, and T}, are chosen
such that

— Afd = 2671(wo) +2(§ A nay ANBy ATy ANy)] <0,
a— Ad—2ky1(z9) < 0,
a—Ad+ 26(1 = n(z0)) — 2804, A1y,) < 0,
a—Ad—2(1—a)yi(xo)B1(xo) + 26[1 + (B1(z0) + )71 (x0) — 11 (20)] < 0.
Note that this is possible if we proceed as follows:
e o and A are chosen as stated in Lemma 4;
e k is chosen such that
a— Ad e
271(20)
. < 2A(na, Any) — (00— Ad) 2(1 — o)y (20)Bi(20) — (o — Ad) > _
min ( 1 — a, ,
2(1 — y1(zo)) 2[1 = mi(zo) + (B1(zo) + €)1 (wo)]

e ¢ is chosen such that

Oé_—Ad < é’ < A A A
2A(1 — " (CUO)) NAs A Tlya AN 1By A Teg-

Note that the choices of k and & only depend on those of a and A.

The second part of Lemma 4 is similar, although simpler. Indeed, a decomposition of the
quantity of interest this time into two parts yields

Vkhd

fooo [R (sn(w), ya|2z0) — R(u,ys|z0)] du~ 710

Tn
< \/W f [R (sn(u), yglwo) — R(u,y2|:cg)] duiﬂﬂ(zo)
0
o
VEhd f [R (50 (1), ya]0) — R(w, yoliro)] du~")
T’VL
Tn
< —Wf s (1) — u’du*’h(xo) +2 sup R(u,yﬂx@@Tﬁl(Io)
0 u>07%§y2<2
Tn T
< —Vkhd |61(U1( [0)|0)| 51 (u il O)Ul( |z0)|xo) — 1| du~ 71 (0)
71 (z0) + 01 (V1% |zo)lzo)| Jo 51 (Ur(%o)xo)
+CVEhd T 71 (@0)

< OV |5y (U (B o) | a0+ Grteorsemen) 1 o ),

This achieves the proof of Lemma, 4. |
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Proof of Lemma 5
In this proof, as mentioned above, we will use the Skorohod representation with keeping the

same notation. First remark that

7 i Kn(zo — Xy,

FQ(un"xO)
_ Fa(Us(n/k|xo)|xo) n
— Fa(up|zo) T, (oo, sz(un]xg)‘xg) , a.s. .

We have, with r,, := y/nh9F(u,|xg),

[Fz(Uz(n/klﬂco)lﬂCo) n
" Fo(un|zo) k

< )\/W [Tn (oo, %Fg(un|xo)‘xo) - %E(unm)fx(xo)] —w (oo, QFQ(UWU))‘

k
\/ Fa(unlzo)
Fo(Us(n/k|zo)|x0)
+ ‘W (oo, %E(unm)) — W (e, 1)]

F(Us(n/kl|zo)|z0)
FQ(UMZL‘(])

T, (oo, Fg(un\xo)‘x0> - fX(xo)] — W(eo, 1)‘

+Vkhd

Lo (o0, 3 Falunlao) o) = 1 Fa(unlz0) fx(20)

T, (oo, %Fg(un|xo)’xo) — %Fz(unm) fx(xo)‘ . (6.26)

n

_1‘

From (6.12) combined with the Skorohod construction, we have

1\m _ Y.
w 2im1 Kn(@o XZ)]]{Yiwwn} — fx(zo) | ~ W(e0,1)

T —
Fa(up|zo)
Finally
el 1 n
Fl@,Q(un’xO) _ _ n Zi:LKh(wo - Xi)ﬂ{Y,L-(Q)>un} .
"\ Fa(un|zo) " Fa(un|xo) fx (x0)
Fx(@0) = fulao) 7 Zimt Knlwo = Xy, )
" fx(@o) (o) Fa(up|zo)
W(o0,1)
Ix(xo)

Proof of Lemma 6
To prove the lemma we will use the idea of Wretman (1978), applied to our situation. We have,
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for z € R, and u,, from Lemma 5 taken as Us(n/k|zo)(1 + z/Vkh?), that

P(\/W(an—mgz)

=P ( nhaFo(uy|xo) (Fm — 1)

< ) (P blin) ).

We have that in the present context

o T ) (B Y

Y2(20)

~

Let H,, denote the distribution function of 4/nh@Fy(u,|zo)(Fn2(un|To)/F2(us|ze) — 1), and H
is the distribution function of W (c0,1)/fx(x¢). Then by Lemma 5 and by continuity of H one
has that Hy(a,) — H(z/v2(z0)), as n — o0, hence the result of the lemma. [ |
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Figure 1: Model 2: 1 (x) (left) and ~2(x) (right) as a function of z.
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Figure 2: Model 3: ~;(x) (left) and ~2(x) (right) as a function of z.
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Figure 6: Normal quantile plots of vkh lnén/ﬂk/n. Top: Model 1, zp = 3, middle: Model 2,
o = 0.3, and bottom: Model 3, g = 5. The quantile plots are constructed with k taken as 5%
of n, with n = 500 (left) and n = 1000 (right).
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Hill estimate
Hill estimate

Figure 7: FEMA claim data: local Hill plots for Y1, total claim amount (left), and Y@, capital
insured (right).
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Figure 8: FEMA claim data: R(1.5,1.5|zg) as a function of k, for location (latitude,
longitude)=(33.84,-84.45) on 2009, July 1 (left), and 2017, January 1 (right).
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