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Introduction

In the past years, many risk measures have been introduced in the literature, and these have been used to determine the amount of an asset to be kept in reserve in the financial framework. The most famous of these are the Value-At-Risk (VaR) defined for a random variable X as the p´quantile Qppq :" inftx ě 0 : PpX ď xq ě pu, for p P p0, 1q, and the Conditional Tail Expectation (CTE) defined as CT E p rXs " EpX|X ą Qppqq, for p P p0, 1q.

The latter risk measure is more conservative than the VaR for a same level of degree of confidence (see [START_REF] Landsman | Tail conditional expectations for elliptical distributions[END_REF] and it also satisfies the desirable property of being a coherent risk measure as defined by [START_REF] Artzner | Coherent measures of risk[END_REF]. For all these reasons, the CTE has been extensively studied and also it has been generalized to the multivariate framework, see, e.g., [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF], [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], and Di Bernardino and Prieur (2018). More precisely, if pY p1q , Y p2q q denotes a pair of risk factors, the CTE can be extended into EpY p1q |Y p2q ą Q 2 ppqq, where Q 2 ppq is the p´quantile of the risk Y p2q . In such a multivariate context, this risk measure is well-known as the Marginal Expected Shortfall (MES). It was introduced by Acharya et al. (2010), and used to measure the contribution of a financial institution to an overall systemic risk.

The ongoing global credit crisis and other former financial crises have demonstrated the vital aspect of adequate risk measurement. For a financial firm, the MES is defined as its short-run expected equity loss conditional on the market taking a loss greater than its VaR. The MES is very simple to compute and therefore easy for regulators to consider. When estimating this risk measure, one often has the availability of additional information given by covariates, and these are important to take into account in order to obtain more precise estimates. This leads to the concept of conditional marginal expected shortfall.

Our paper is the first contribution dealing with the estimation of the conditional marginal expected shortfall when the random variables of main interest pY p1q , Y p2q q are recorded together with a random covariate X P R d . We will denote by F j p.|xq the continuous conditional distribution function of Y pjq , j " 1, 2, given X " x, and use the notation F j p.|xq for the conditional survival function and U j p.|xq for the associated tail quantile function defined as U j p.|xq " infty : F j py|xq ě 1 ´1{.u. Also, we will denote by f X the density function of the covariate X and by x 0 a reference position such that x 0 P IntpS X q, the interior of the support S X Ă R d of f X , which is assumed to be non-empty. Our aim will be to estimate the conditional marginal expected shortfall, given X " x 0 , and defined as

θ p " E " Y p1q ˇˇY p2q ě U 2 ˆ1 p ˇˇx 0 ˙; x 0  ,
where p is small. Note that in the financial and actuarial setting where risk measures and in particular MES have been introduced, one is often interested in positive risk factors. Thus, in the sequel, we consider the case where Y p1q and Y p2q are positive.

The remainder of the paper is organized as follows. In Section 2, we introduce our estimator for the conditional marginal expected shortfall and we establish its main asymptotic properties. Simulations are provided in Section 3 to illustrate the efficiency of our estimator, while in Section 4 the method is applied to a dataset of flood insurance claims. Some closing remarks are given in Section 5. All the proofs of the results are postponed to Section 6.

Estimator and asymptotic properties

We assume that Y p1q and Y p2q are both positive and follow a conditional Pareto-type model.

Assumption pDq For all x P S X , the conditional survival functions of Y pjq , j " 1, 2, satisfy F j py|xq " A j pxqy ´1{γ j pxq ˆ1 `1 γ j pxq δ j py|xq ˙,

where A j pxq ą 0, γ j pxq ą 0, and |δ j p.|xq| is normalised regularly varying with index ´βj pxq, β j pxq ą 0, i.e., δ j py|xq " B j pxq exp ˆż y 1 ε j pu|xq u du ˙, with B j pxq P R and ε j py|xq Ñ ´βj pxq as y Ñ 8. Moreover, we assume y Ñ ε j py|xq to be a continuous function.

Under Assumption pDq, F 1 p.|xq and F 2 p.|xq have density functions. Indeed, straightforward differentiation gives f j py|xq "

A j pxq γ j pxq y ´1{γ j pxq´1 " 1 `ˆ1 γ j pxq ´εj py|xq ˙δj py|xq  , j " 1, 2.

(2.1)

Now, let pY p1q i , Y p2q 
i , X i q, i " 1, . . . , n, be independent copies of pY p1q , Y p2q , Xq. We consider estimating the conditional marginal expected shortfall when p Ñ 0 at an intermediate rate, i.e., p " k{n, where k, n Ñ 8 such that k{n Ñ 0. A natural idea is then to study

p θ n :" 1 k n ÿ i"1 K h px 0 ´Xi qY p1q i 1l tY p2q i ě p U 2 pn{k|x 0 qu ,
where p U 2 p.|x 0 q is an estimator for U 2 p.|x 0 q, to be introduced later, and K h p.q :" Kp.{hq{h d , with K a joint density function on R d , h " h n a positive non-random sequence of bandwidths with h Ñ 0 if n Ñ 8, and 1l A the indicator function on the event A. We observe that in our approach the covariate X is recorded together with the dependent variables pY p1q , Y p2q q, and hence we are in the situation of a random design. This should be contrasted with the fixed design, where the x-values are determined beforehand, and where the responses are collected at these specific design points, e.g., in a designed experiment.

To simplify the situation, let us assume for the moment that U 2 p.|x 0 q is known and consider

r θ n :" 1 k n ÿ i"1 K h px 0 ´Xi qY p1q i 1l tY p2q i ěU 2 pn{k|x 0 qu .
Clearly, assuming F 1 py|x 0 q is strictly increasing in y, we have |x 0 qďk{nu du ´γ1 px 0 q , where s n puq :" n k F 1 pu ´γ1 px 0 q U 1 pn{k|x 0 q|x 0 q. Note that under pDq, we have s n puq Ñ u as n Ñ 8.

The key statistic to consider is thus, for x 0 P IntpS X q,

T n py 1 , y 2 |x 0 q :" 1 k

n ÿ i"1 K h px 0 ´Xi q1l tF 1 pY p1q i |x 0 qďpk{nq y 1 , F 2 pY p2q i |x 0 qďpk{nq y 2 u ,
where y 1 , y 2 ą 0.

regression context. The latter are though common in the extreme value framework with random covariates. As a final comment, observe that in view of assumption pRq, our key statistic T n py 1 , y 2 |x 0 q can be linked to the estimation of Rpy 1 , y 2 |x 0 q, though this is not the objective of the present paper. For what concerns the estimation of the conditional extremal dependence structure, we refer to de Carvalho ( 2016 The weak convergence of (2.2) is then established in the following theorem under the previous assumptions which are quite general, and therefore satisfied by a large class of models, some examples of them being presented in Section 3. Throughout the paper weak convergence is denoted by ' '.

Theorem 2.1. Assume pDq, pHq, pKq, pRq with x Ñ Rpy 1 , y 2 |xq being a continuous function, x 0 P Int(S X q with f X px 0 q ą 0, and y Ñ F j py|x 0 q, j " 1, 2, are strictly increasing. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d Ñ 8 and h ηγ 1 ^ηγ 2 ^ηε 1 ^ηε 2 ln n{k Ñ 0. Then for η P r0, 1{2q, we have,

?
kh d T n py 1 , y 2 |x 0 q ´EpT n py 1 , y 2 |x 0 qq

y η 1 W py 1 , y 2 q y η 1 , (2.3) 
in Dpp0, T s 2 q, for any T ą 0, where W py 1 , y 2 q is a zero centered Gaussian process with covariance function

EpW py 1 , y 2 qW pȳ 1 , ȳ2 qq " }K} 2 2 f X px 0 qRpy 1 ^ȳ 1 , y 2 ^ȳ 2 |x 0 q.

We also introduce the following weak convergence result for a related process. This process will be useful in establishing the asymptotic properties of the quantile estimator p U 2 pn{k|x 0 q. Let p f n px 0 q :" 1 n

n ÿ i"1
K h px 0 ´Xi q be a classical kernel density estimator.

Theorem 2.2. Assume pDq, pHq, pKq, and x 0 P IntpS X q with f X px 0 q ą 0. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d Ñ 8, h ηε 2 ln n{k Ñ 0, ? kh d h η f X ^ηA 2 Ñ 0, ? kh d h ηγ 2 ln n{k Ñ 0, ? kh d |δ 2 pU 2 pn{k|x 0 q|x 0 q|h η B 2 Ñ 0, and ? kh d |δ 2 pU 2 pn{k|x 0 q|x 0 q|h ηε 2 l 0. Then, we have

? kh d ˜Tn p8, y 2 |x 0 q p f n px 0 q ´y2 ¸ W p8, y 2 q f X px 0 q
in Dpp0, T sq, for any T ą 0, where W p8, y 2 q is a zero centered Gaussian process with covariance function EpW p8, y 2 qW p8, ȳ2 qq " }K} 2 2 f X px 0 qpy 2 ^ȳ 2 q.

The joint weak convergence of the above two processes can be established by showing the joint finite dimensional weak convergence of them, combined with joint tightness. The joint finite dimensional convergence can be established by using the Cramér-Wold device (van der Vaart 1998, p. 16). This is a standard but tedious calculation which is for brevity omitted from the paper. Note that the joint tightness follows from the individual tightness (similarly to Lemma 1 in Bai and Taqqu 2013).

The main result of this paper is the asymptotic normality of our final estimator for the conditional marginal expected shortfall θ k{n , defined as

θ n :" p θ n p f n px 0 q " 1 k ř n i"1 K h px 0 ´Xi qY p1q i 1l tY p2q i ě p U 2 pn{k|x 0 qu 1 n ř n i"1 K h px 0 ´Xi q . (2.4)
Intuitively, we can see this estimator as an extension of the Nadaraya-Watson estimator of mpxq :" ErY |X " x 0 s (see [START_REF] Nadaraya | On Estimating Regression[END_REF][START_REF] Watson | Smooth Regression Analysis[END_REF], defined as

p mpxq :" 1 n ř n i"1 K h px 0 ´Xi qY p1q i 1 n ř n i"1 K h px 0 ´Xi q ,
in the sense that, since in our context the conditioning is on the event tY p2q ě U 2 pn{k|x 0 qu, we need to add the indicator of the event tY

p2q i ě p U 2 pn{k|x 0 qu in (2.4
). As a result, the numerator in (2.4) needs to be normalized by the number of excesses above this estimated quantile, i.e., k, instead of n.

In order to obtain the weak convergence of θ n , we need to introduce the following second order condition.

Assumption pSq. There exist β ą γ 1 px 0 q and τ ă 0 such that, as t Ñ 8 and h Ó 0 we have 

sup xPBpx 0 ,hq sup 0ăy 1 ă8,

^1

" Opt τ q.

Note that this uniform requirement excludes the case where pY p1q , Y p2q q are asymptotically upper tail independent given X " x 0 , which corresponds to the case Rpy 1 , y 2 |x 0 q " 0. Assumption pSq is a stronger version of the second order condition in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], since the convergence must be additionally uniform in x P Bpx 0 , h) due to the regression context. Theorem 2.3. Assume pDq, pHq, pKq, pSq with x Ñ Rpy 1 , y 2 |xq being a continuous function, and y Ñ F j py|x 0 q, j " 1, 2, are strictly increasing. Let x 0 P IntpS X q such that f X px 0 q ą 0. Consider sequences k " tn α 1 pnqu and h " n ´∆ 2 pnq, where 1 and 2 are slowly varying functions at infinity, with α P p0, 1q and

max ˆα d `2γ 1 px 0 qpη A 1 ^ηγ 1 q , α d `2p1 ´γ1 px 0 qqpη A 2 ^ηγ 2 ^ηB 2 ^ηε 2 ^ηf X q , α d ´2p1 ´αqγ 2 1 px 0 qβ 1 px 0 q d `dpβ 1 px 0 q `εqγ 1 px 0 q , α ´2p1 ´αqpγ 1 px 0 q ^pβ 2 px 0 qγ 2 px 0 qq ^p´τ qq d ă ∆ ă α d .
Then, for γ 1 px 0 q ă 1{2, we have

? kh d ˆθn θ k{n ´1˙ ´p1 ´γ1 px 0 qq W p8, 1q f X px 0 q `1 f X px 0 q ş 8 0 W ps, 1qds ´γ1 px 0 q ş 8 0 Rps, 1|x 0 qds ´γ1 px 0 q .
The variance of the limiting random variable in Theorem 2.3, denoted W, is given by

VarpWq " }K} 2 2 f X px 0 q « γ 2 1 px 0 q ´1 ´ş8 0 Rps, 1|x 0 qds ´2γ 1 px 0 q `ş8
0 Rps, 1|x 0 qds ´γ1 px 0 q ˘2 ff .

(2.5)

The conditions on k and h in Theorem 2.3 are due to the method of proof of the auxiliary result given in Lemma 6.4 of the Appendix. Also in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF] one needed a condition on the growth of k, but in the context without covariates.

Simulation experiment

In this section we evaluate the finite sample behavior of the proposed estimator with a simulation experiment. Since the topic of estimating the marginal expected shortfall in the regression context is completely new in the literature, we cannot compare our estimator with any alternative estimator. We will compare it with the true value of the models under consideration.

We simulate from the following models:

Model 1. We consider the logistic copula model

Cpu 1 , u 2 |xq " e ´rp´ln u 1 q x `p´ln u 2 q x s 1{x , u 1 , u 2 P r0, 1s, x ě 2. ( 3.1) 
We take X " U r2, 10s, and combine this copula model with Fréchet distributions for Y p1q and Y p2q :

F j pyq " e ´y´1{γ j , y ą 0, j " 1, 2. We set γ 1 " 0.25 and γ 2 " 0.5. This model satisfies pSq with Rpy 1 , y 2 |xq " y 1 `y2 ´py x 1 `yx 2 q 1{x , τ " ´1 and β " 1 ´ε for some small ε ą 0.

Model 2. The conditional distribution of pY p1q , Y p2q q given X " x is that of

p|Z 1 | γ 1 pxq , |Z 2 | γ 2 pxq q,
where pZ 1 , Z 2 q follow a bivariate standard Cauchy distribution with density function

f pz 1 , z 2 q " 1 2π p1 `z2 1 `z2 2 q ´3{2 , pz 1 , z 2 q P R 2 .
We take X " U r0, 1s, and set Model 3. We consider the logistic copula model from (3.1), with X " U r2, 10s, combined with conditional Burr distributions for Y p1q and Y p2q :

γ 1 pxq " 0.4 r0.1 `sinpπxqs " 1.1 ´0.5e
F j py|xq " 1
´ˆβ j β j `yτ j pxq ˙λj , y ą 0; β j , λ j , τ j pxq ą 0, j " 1, 2. We set β 1 " β 2 " 1, λ 1 " 1, λ 2 " 0.5, and τ 1 pxq " 2e 0.2x , τ 2 pxq " 8{ sinp0.3xq.

Similarly to Model 1, this model satisfies pSq.

The marginal conditional distributions in the above models are standard heavy-tailed distributions that satisfy pDq, see, e.g., [START_REF] Beirlant | Second-order refined peaks-over-threshold modelling for heavy-tailed distributions[END_REF]. In Model 2, the functions γ 1 pxq and γ 2 pxq are usual functions in the extreme value framework, see, e.g., [START_REF] Dierckx | Local robust and asymptotically unbiased estimation of conditional Pareto type-tails[END_REF], [START_REF] Goegebeur | A local moment type estimator for the extreme value index in regression with random covariates[END_REF]. Note that for Model 2 the function γ 1 pxq is much more complicated than γ 2 pxq since it shows local maxima and minima, whereas γ 2 pxq is increasing. For Model 3, γ 1 pxq is decreasing while γ 2 pxq has a maximum in the interval r2, 10s. The graphs of these functions are shown in Figure 1 for Model 2 and in Figure 2 for Model 3.

Concerning the kernel function K, we take the bi-quadratic function Kpxq " 15 16 p1 ´x2 q 2 1l txPr´1,1su .

To compute our estimator θ n , the bandwidth h need to be chosen. 

h cv :" argmin hPH n ÿ i"1 n ÿ j"1 ˆ1l ! Y p2q i ďY p2q j ) ´p F n,h,2,´i ´Y p2q j ˇˇX i ¯˙2 ,
where H is the grid of values defined as R X ˆt0.05, 0.10, . . . , 0.30u, with R X the range of the covariate X, and p F n,h,2,´i py|xq :"

ř n k"1,k‰i K h px ´Xk q 1l ! Y p2q k ďy ) ř n k"1,k‰i K h px ´Xk q .
In Figure 3 we show the boxplots of θ n based on 500 replications, at different values of x 0 , for samples of size n " 500 (left) and n " 1000 (right), and for k{n " 2% (top row) and k{n " 10% (bottom row), along with the true value of θ k{n . Figures 4 and5 are constructed similarly but for Model 2 and Model 3, respectively. The values of θ k{n are computed with numerical integration.

From these figures we can draw the following conclusions:

• Overall the estimator θ n performs quite well, with the true value θ k{n typically located in the central box, but obviously the performance depends on the model and also on the position x 0 . The best results are obtained for Model 1, where the dependence structure depends on x but the marginal distributions are covariate independent. Model 2 has covariate dependent marginal distributions, but Rpy 1 , y 2 |xq does not depend on x, and for Model 3 both the margins and Rpy 1 , y 2 |xq depend on x. These models are more challenging than Model 1, but the estimator continues to perform well.

• The estimator behaves as expected in n, namely, for a fixed k{n the variance decreases with increasing sample size.

• As a function of x, the true value θ k{n follows the pattern of γ 1 pxq rather closely. Similarly, the variance of θ n tends to be larger for large values of γ 1 pxq.

• The estimator seems to be not too much sensitive on the value of the covariate x 0 in case of Model 1. On the contrary, for Model 2, it depends a lot on the value of the covariate. Note that nearby the local maxima there is a slight underestimation of θ k{n which can be explained by the fact that in the local estimation one uses Y p1q observations from conditional distributions with a smaller tail index than at the reference position x 0 . An opposite behavior is observed at the local minima. Model 3 is in between, with some improvement in the variability of the estimates when the covariate increases, which may be explained by the fact that γ 1 pxq decreases in x.

Next, in Figure 6 we provide some normal quantile plots of ? kh ln θ n {θ k{n , with k taken as 5% of n and h obtained from the above mentioned cross-validation criterion. The rows of Figure 6 correspond with Models 1-3, respectively, while the columns represent the sample sizes, n " 500 and n " 1000, respectively. For all models and sample sizes, the normal quantile plots show a quite linear pattern, confirming the validity of the normal approximation. Moreover, with increasing n the normal approximation improves slightly.

Application to flood insurance claim data 4.1 Description of the dataset

In this section we illustrate the practical applicability of the method on a dataset of flood insurance claims. Recently, the Federal Emergency Management Agency (FEMA) has released millions of records from the National Flood Insurance Program (NFIP). In particular, this database contains approximately 2.4 million damage claims dating back to 1978, where for each claim one has information on the date of the flood, location of the property (latitude and longitude), claim amount, and on insurance policy and building characteristics. As such, it provides important information for policymakers, researchers, insurers and prospective homebuyers. The dataset is publicly available on https://www.fema.gov/media-library/assets/documents/180374. For our purposes we consider the data from the year 2000 on, and define Y 1 as the sum of the amount paid on the building claim, the content claim and the increased cost of compliance claim, Y 2 is taken as the sum of the insured amount for the building and content, while the covariate X consists of X 1 : latitude, X 2 : longitude and X 3 : date of loss. Interest is in estimating the expected claim amount conditional on an insured capital that exceeds a high quantile, and for a given location and time. For (re-)insurance companies, accurate modeling and analysis of the upper tail of the claim size distribution is of crucial importance, as extreme claims may pose a major threat to their solvency. Also, the upper tail of the claim size distribution provides important information for pricing (re-)insurance contracts. By taking covariate information into account one can differentiate the risks one is exposed to and hence obtain a more competitive premium calculation.

Preliminary analysis

The estimation method was implemented with the same cross-validation criterion as in the simulation section, including the same choice for H, after standardizing the covariates to the interval r0, 1s. As for the kernel function, we used the bi-quadratic kernel, generalized to the case d " 3, as follows

K h pxq " 1 h 3 K ˆ}x} h ˙,
where x P R 3 , and }.} denotes the Euclidean norm.

In order to verify the Pareto-type behavior of Y p1q and Y p2q , we constructed the local Hill plots of the Y p1q and Y p2q data, respectively, for which the X coordinate is in a neighborhood of (latitude, longitude)=(33.84,-84.45), and date of loss equal to 2018, July, see Figure 7. The location under consideration is in the city of Atlanta. In these plots we show the local Hill estimates

H pjq k px 0 q :" 1 k ř k i"1 ln r Y pjq nx 0 ´i`1,nx 0 ´ln r Y pjq nx 0 ´k,nx 0
as a function of k, where r Y pjq i,nx 0 , i " 1, . . . , n x 0 , are the order statistics of the Y pjq data for which the X coordinate belongs to Bpx 0 , hq, and n x 0 is the number of observations in Bpx 0 , hq. For both Y p1q and Y p2q the Hill estimate is clearly positive for the smaller k values supporting the assumption of underlying conditional Pareto-type distributions. For Y p1q , total claim amount, the Hill plot shows a stable estimate for γ 1 px 0 q of about 0.3 when k is in the range 50-200. This satisfies the theoretical requirement that γ 1 px 0 q ă 0.5. For Y p2q , capital insured, the Hill plot shows some systematic pattern beyond k " 150, which is due to the occurrence of repeated values for this variable. Despite this, the local Hill plot also suggests an underlying conditional Pareto-type distribution. Similar local Hill plots were obtained at other locations and for other time points. Next, we investigate the asymptotic dependence assumption by plotting an estimate for Rp1.5, 1.5|x 0 q as a function of k, at several values of x 0 . Lemma 6.2 gives an indication that T n py 1 , y 2 |x 0 q estimates f X px 0 qRpy 1 , y 2 |x 0 q, but T n py 1 , y 2 |x 0 q is only a pseudo estimator as it depends on the unknown marginal conditional distribution functions F 1 p.|x 0 q and F 2 p.|x 0 q. To resolve this, we consider an adjustment of the estimator proposed in Escobar-Bach et al. (2018b), which is for the context of estimation of Lpy 1 , y 2 |x 0 q, to the context of estimation of Rpy 1 , y 2 |x 0 q, namely p Rpy 1 , y 2 |x 0 q "

1 k ř n i"1 K h px 0 ´Xi q 1l ! p F n,1 pY p1q i |X i qď k n y 1 , p F n,2 pY p2q i |X i qď k n y 2 ) p f n px 0 q , ( 4.1) 
where p F n,1 is a kernel estimator for F 1 , of the same form as p F n,2 . In Figure 8 we plot p Rp1.5, 1.5|x 0 q as a function of k, at x 0 corresponding to the above mentioned location, and for 2009, July 1 (left), and 2017, January 1 (right). Clearly, the displays show a positive estimate for Rp1.5, 1.5|x 0 q, which gives evidence of asymptotic dependence of Y p1q and Y p2q given X " x 0 .

Estimation of the conditional marginal expected shortfall

We illustrate the estimation of the conditional marginal expected shortfall at the above mentioned location, for the period 2008 till present, and using k{n " 1% (solid line) and k{n " 10% (dashed-dotted line), respectively, see Figure 9. As expected, the conditional marginal expected shortfall at quantile level k{n " 1% shows more variability than the one at level k{n " 10%, due to the smaller amount of data available to estimate the former, but otherwise they show the same pattern. The plot shows clearly the catastrophic Atlanta flood in 2009, September, resulting from multiple days of prolonged rainfall. The height of the event was on September 20-21 where 10 to 20 inches of rain occurred in less than 24 hours, which led to flash flooding, with flooded river basins remaining swollen for weeks. For this period, the difference between the two levels of the conditional marginal expected shortfall is larger than at other time points included in the analysis, which can be probably explained by the increased frequency of very large damage claims. Note that although the flood event took place at some specific time, its effect is smoothed out over a window due to the local estimation. This is in our setting also partially due to the use of a global bandwidth parameter h, i.e., a bandwidth that gives a reasonable performance over the whole covariate range. Alternatively, the bandwidth could be selected locally, for the specific x 0 where one wants to do the estimation. One can expect then that at x 0 where the parameter of interest, here θ p , changes quickly, the resulting bandwidth would be smaller. This is a topic for future investigation. Finally, we supplement Figure 9 with pointwise 95% confidence intervals, see Figure 10. The approximate confidence intervals of level 100p1 ´αq% for θ k{n are obtained from Theorem 2.3 and given by » -

θ n 1 `Φ´1 `1 ´α 2 ˘b { VarpWq kh d , θ n 1 ´Φ´1 `1 ´α 2 ˘b { VarpWq kh d fi fl ,
where Φ ´1 denotes the standard normal quantile function and { VarpWq is an estimate for the asymptotic variance given in (2.5), obtained by using a local Hill estimate for γ 1 px 0 q and (4.1) as estimate for Rpy 1 , y 2 |x 0 q. Note that the latter both require an adaptive selection of their respective k-value, which will be denoted by k to avoid confusion with the k from θ k{n . These adaptive k-values are obtained by plotting the estimates as a function of k whereafter the k is selected by a stability criterion as described in [START_REF] Goegebeur | Bias-corrected estimation for conditional Pareto-type distributions with random right censoring[END_REF]. In Figure 10 we show the approximate pointwise 95% confidence intervals for θ k{n with k{n " 1% (left) and k{n " 10% (right) as a function of time, at the above considered location. Note that the confidence intervals seem reasonable, and are, e.g., wider for θ k{n with k{n " 1% than for k{n " 10%, as expected. At a few x 0 positions we could not obtain a confidence interval, either due to a negative estimate of VarpWq or a negative value for 1 ´Φ´1 p1 ´α{2q b { VarpWq{pkh d q.

Closing remarks

This paper is a pioneering contribution to the statistical modeling of the conditional marginal expected shortfall in the asymptotic dependence framework. It also provides a series of interesting open questions which will lead to further investigations, among them:

• The extrapolation outside the Y p2q data range: due to the conditions k, n Ñ 8 with k{n Ñ 0, the Y p2q quantile is intermediate, and the estimator θ n cannot be used for extrapolation. Clearly this case where p ă 1{n will be not trivial and it will require again an elaborate analysis. A natural idea will be to use a Weissman-type construction (see, [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF]) based on the fact that under Assumptions pRq and pDq with γ 1 px 0 q ă 1, one can show (see [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], Proposition 1) that

lim pÑ0 θ p U 1 p1{p|x 0 q " ´ż 8 0
Rps, 1|x 0 qds ´γ1 px 0 q , from which the following approximation can be deduced

θ p " U 1 p1{p|x 0 q U 1 pn{k|x 0 q θ k n " ˆk np ˙γ1 px 0 q θ k n . (5.1) 
To construct an estimator based on (5.1), we need first to define an estimator for γ 1 px 0 q and then we need to establish its asymptotic theory in terms of a process, related to the process we have already studied.

• The extension to the case of a real-valued Y p1q or Y p2q . In our approach we have assumed that Y p1q and Y p2q are non-negative random variables. This was also the case in Joe and Li (2011), and Das andFasen-Hartmann (2018, 2019) where various properties of the marginal expected shortfall were studied in a framework without covariates. The problem of handling a real valued Y p1q requires an elaborate analysis, which does not fit in the current framework of our proofs.

• Study of the bias-properties of the proposed estimator. We have studied our estimator under Assumption pHq, which allowed us to obtain the order of the various bias-terms, and hence to control them. However, in this approach one cannot make the bias terms explicit.

A more precise quantification of the bias terms can be done by replacing Assumption pHq by suitable differentiability conditions on the various parameters (functions of x), along with using Taylor series expansions in the theoretical derivations. Alternatively, the estimation of the conditional marginal expected shortfall could also be studied in the framework of local polynomial maximum likelihood estimation. Such estimators are wellknown to have an attractive behaviour near the boundary of the support, as documented in Wand and Jones (1995), [START_REF] Fan | I: Local Polynomial Modelling and Its Applications[END_REF], and Aerts and Claeskens (1997). In the context of estimation of the conditional marginal expected shortfall, a local polynomial estimator could be obtained by minimisation of S :"

n ÿ i"1 K h px 0 ´Xi q ˜Y p1q i ´s ÿ j"0 β j pX i ´x0 q j ¸2 1l tY p2q i ě p U 2 pn{k|x 0 qu ,
where we have for simplicity assumed that d " 1. In particular, the estimator for the conditional marginal expected shortfall at x 0 would in this case be p θ pLP q n " p β 0 , where p β 0 is the estimator for β 0 obtained from solving the above minimisation problem. Interestingly, by taking s " 0, corresponding to a local constant estimation, one obtains as estimator θn :"

ř n i"1 K h px 0 ´Xi qY p1q i 1l tY p2q i ě p U 2 pn{k|x 0 qu ř n i"1 K h px 0 ´Xi q1l tY p2q i ě p U 2 pn{k|x 0 qu
, which is in nature close to the estimator proposed in the present paper.

• High dimensional covariates. Although our theoretical developments allow for an arbitrary dimension d of the covariate, local estimators are known to have a deteriorating practical performance in higher dimensions due to the so-called curse of dimensionality. With high dimensional covariates, the local estimation could be combined with dimension reduction techniques, e.g., [START_REF] Gardes | Tail dimension reduction for extreme quantile estimation[END_REF] and Xu et al. (2020) for dimension reduction in the context of estimation of extreme conditional quantiles.

• The extension to the asymptotic independence framework: in the absence of covariates, this topic has been very recently studied in the literature in, e.g., Das and Fasen-Hartmann (2018) and Cai and Musta (2020).

• Confidence bands. The result of Theorem 2.3 allows to construct confidence intervals for θ k{n at a specific x 0 , so pointwise, as illustrated in the real data analysis. A natural question would be to know if a result for θ n with a varying x 0 ´value in the covariate space can be obtained. This means, in that case, that we inquire about a convergence of θ n correctly normalized as a stochastic process in x 0 . However, even in the simpler case of local estimation of conditional tail index γpx 0 q of a Pareto-type tail with random covariates, it remains uncertain whether this type of result is possible. In our context this is highly more complicated than this latter framework, and thus the problem is still open.

• The development of a completely automatic data-driven way for obtaining confidence intervals, along with a study of the corresponding coverage probabilities.

6 Appendix Lemma 6.1. Assume pDq and pHq and x 0 P Int(S X q. Let pt n q ně1 and ph n q ně1 be arbitrary sequences satisfying t n Ñ 8 and h n Ñ 0 such that h ηγ j ^ηε j n ln t n Ñ 0, as n Ñ 8, and 0 ď η ă 1. Then

ˇˇˇt n F j pU j pt n {y|x 0 q|xq y η ´y1´η ˇˇˇÑ 0, as n Ñ 8,
uniformly in y P p0, T s and x P Bpx 0 , h n q. Lemma 6.2. Assume pDq, pHq, pKq and pRq with x Ñ Rpy 1 , y 2 |xq being a continuous function, and x 0 P IntpS X q such that f X px 0 q ą 0. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8 in such a way that k{n Ñ 0 and h ηγ 1 ^ηγ 2 ^ηε 1 ^ηε 2 ln n{k Ñ 0. Then, as n Ñ 8

EpT n py 1 , y 2 |x 0 qq Ñ f X px 0 qRpy 1 , y 2 |x 0 q, kh d VarpT n py 1 , y 2 |x 0 qq Ñ }K} 2 2 f X px 0 qRpy 1 , y 2 |x 0 q.
The proof of these lemmas and all the subsequent ones are given in Section 6.5.

Proof of Theorem 2.1

To prove the result we will make use of empirical process theory with changing function classes, see for instance van der Vaart and [START_REF] Van Der Vaart | Weak convergence and empirical processes, with applications to statistics[END_REF]. To this aim we start by introducing some notation. Let P be the distribution measure of pY p1q , Y p2q , Xq, and denote the expected value under P , the empirical version and empirical process as follows

P f :" ż f dP, P n f :" 1 n n ÿ i"1 f ´Y p1q i , Y p2q i , X i ¯, G n f :" ? npP n ´P qf,
for any real-valued measurable function f : R 2 ˆRd Ñ R. For a function class F, let N rs pε, F, L 2 pP qq, denote the minimal number of ε´brackets needed to cover F. The bracketing integral is then defined as

J rs pδ, F, L 2 pP qq " ż δ 0 b ln N rs pε, F, L 2 pP qqdε.
We introduce our sequence of classes F n on R 2 ˆRd as

F n :" pu, zq Ñ f n,y pu, zq, y P p0, T s 2 (
where f n,y pu, zq :"

d nh d k K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďpk{nq y 1 , F 2 pu 2 |x 0 qďpk{nq y 2u y η 1 .
Denote also by F n an envelope function of the class F n . Now, according to Theorem 19.28 in van der Vaart (1998) the weak convergence of the stochastic process (2.3) follows from the following four conditions. Let ρ x 0 be a semimetric, possibly depending on x 0 , making p0, T s 2 totally bounded. We have to prove that sup ρx 0 py,ȳqďδn P pf n,y ´fn,ȳ q 2 ÝÑ 0 for every δ n OE 0, (6.1)

P F 2 n " Op1q, (6.2) 
P F 2 n 1l tFnąε ? nu ÝÑ 0 for every ε ą 0, (

J rs pδ n , F n , L 2 pP qq ÝÑ 0 for every δ n OE 0, (

along with the pointwise convergence of the covariance function.

Proof of condition p6.1q. Let ρ x 0 py, ȳq :" |y 1 ´ȳ 1 | `|y 2 ´ȳ 2 |. Denote A n,y :" tF 1 pY p1q |x 0 q ď pk{nq y 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 u. We have then

P pf n,y ´fn,ȳ q 2 " nh d k E « K 2 h px 0 ´Xq ˆ1l An,y y η 1 ´1l An,ȳ ȳη 1 ˙2ff " nh d k E « K 2 h px 0 ´XqE « ˆ1l An,y y η 1 ´1l An,ȳ ȳη 1 ˙2ˇˇˇˇˇXffff . (6.5)
We consider now three cases.

Case 1: y 1 ^ȳ 1 ď δ n . Assume without loss of generality that y 1 ď ȳ1 . By expanding the square in the above conditional expectation and using the fact that, e.g., A n,y Ă tF 1 pY p1q |x 0 q ď pk{nq y 1 u, we obtain the following inequality

E « ˆ1l An,y y η 1 ´1l An,ȳ ȳη 1 ˙2ˇˇˇˇˇX " x ff ď 3P pF 1 pY p1q |x 0 q ď pk{nq y 1 |X " xq y 2η 1 `P pF 1 pY p1q |x 0 q ď pk{nq ȳ1 |X " xq ȳ2η 1 ,
which, after substituting in (6.5) leads to

P pf n,y ´fn,ȳ q 2 ď 3 n k ż S K K 2 pvq P pF 1 pY p1q |x 0 q ď pk{nq y 1 |X " x 0 ´hvq y 2η 1 f X px 0 ´hvqdv `n k ż S K K 2 pvq P pF 1 pY p1q |x 0 q ď pk{nq ȳ1 |X " x 0 ´hvq ȳ2η 1 f X px 0 ´hvqdv.

Now note that

P pF 1 pY p1q |x 0 q ď pk{nq y 1 |X " x 0 ´hvq " F 1 pU 1 pn{pky 1 q|x 0 q|x 0 ´hvq , which, together with the result of Lemma 6.1, motivates the following decomposition

P pf n,y ´fn,ȳ q 2 ď 3y 1´2η 1 ż S K K 2 pvqf X px 0 ´hvqdv `3 ż S K K 2 pvq « 1 y 2η 1 n k F 1 pU 1 pn{pky 1 q|x 0 q|x 0 ´hvq ´y1´2η 1 ff f X px 0 ´hvqdv `ȳ 1´2η 1 ż S K K 2 pvqf X px 0 ´hvqdv `żS K K 2 pvq « 1 ȳ2η 1 n k F 1 pU 1 pn{pk ȳ1 q|x 0 q|x 0 ´hvq ´ȳ 1´2η 1 ff f X px 0 ´hvqdv.
Using Lemma 6.1 and the fact that ρ x 0 py, ȳq ď δ n which implies ȳ1 ď 2δ n , we get

P pf n,y ´fn,ȳ q 2 ď 5δ 1´2η n ż S K K 2 pvqf X px 0 ´hvqdv `op1q,
where the op1q term does not depend on y 1 and ȳ1 .

Case 2: y 1 ^ȳ 1 ą δ n and y 2 ^ȳ 2 ď δ n . Assume without loss of generality that y 2 ď ȳ2 . Similarly to the approach followed in Case 1, we obtain

E « ˆ1l An,y y η 1 ´1l An,ȳ ȳη 1 ˙2ˇˇˇˇˇX " x ff ď 3P pF 2 pY p2q |x 0 q ď pk{nq y 2 |X " xq py 1 ^ȳ 1 q 2η
`P pF 2 pY p2q |x 0 q ď pk{nq ȳ2 |X " xq py 1 ^ȳ 1 q 2η , and thus

P pf n,y ´fn,ȳ q 2 ď 3y 2 py 1 ^ȳ 1 q 2η ż S K K 2 pvqf X px 0 ´hvqdv `3y 2η 2 py 1 ^ȳ 1 q 2η ż S K K 2 pvq « 1 y 2η 2 n k F 2 pU 2 pn{pky 2 q|x 0 q|x 0 ´hvq ´y1´2η 2 ff f X px 0 ´hvqdv `ȳ 2 py 1 ^ȳ 1 q 2η ż S K K 2 pvqf X px 0 ´hvqdv `ȳ 2η 2 py 1 ^ȳ 1 q 2η ż S K K 2 pvq « 1 ȳ2η 2 n k F 2 pU 2 pn{pk ȳ2 q|x 0 q|x 0 ´hvq ´ȳ 1´2η 2 ff f X px 0 ´hvqdv.
Again by Lemma 6.1 and using that ȳ2 ď 2δ n we have that

P pf n,y ´fn,ȳ q 2 ď 5δ 1´2η n ż S K K 2 pvqf X px 0 ´hvqdv `op1q,
where the op1q term does not depend on y 2 and ȳ2 .

Case 3: y 1 ^ȳ 1 ą δ n and y 2 ^ȳ 2 ą δ n . Let y _ ȳ denote the vector with the component-wise maxima of y and ȳ, and similarly y ^ȳ is the vector with the component-wise mimima of y and ȳ. Then

P pf n,y ´fn,ȳ q 2 ď nh d k E « K 2 h px 0 ´XqE « ˆ1l An,y_ȳ
py 1 ^ȳ 1 q η ´1l An,y^ȳ py 1 _ ȳ1 q η ˙2ˇˇˇˇˇXffff .

Note that

ˆ1l An,y_ȳ

py 1 ^ȳ 1 q η ´1l An,y^ȳ py 1 _ ȳ1 q η ˙2 " ˆ1 y η 1 ´1 ȳη 1 ˙2
1l An,y^ȳ `1 py 1 ^ȳ 1 q 2η p1l An,y_ȳ ´1l An,y^ȳ q, (6.6) which leads to

P pf n,y ´fn,ȳ q 2 ď py η 1 ´ȳ η 1 q 2 py 1 ȳ1 q 2η n k ż S K K 2 pvqP ´F 1 pY p1q |x 0 q ď pk{nq y 1 ^ȳ 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 ^ȳ 2 ˇˇX " x 0 ´hv fX px 0 ´hvqdv `1 py 1 ^ȳ 1 q 2η n k ż S K K 2 pvq " P ´F 1 pY p1q |x 0 q ď pk{nq y 1 _ ȳ1 , F 2 pY p2q |x 0 q ď pk{nq y 2 _ ȳ2 ˇˇX " x 0 ´hv P ´F 1 pY p1q |x 0 q ď pk{nq y 1 ^ȳ 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 ^ȳ 2 ˇˇX " x 0 ´hv ¯ı f X px 0 ´hvqdv ": Q 1,n `Q2,n .
As for Q 1,n , we easily obtain

Q 1,n ď py η 1 ´ȳ η 1 q 2 py 1 ȳ1 q 2η ż S K K 2 pvq n k F 1 pU 1 pn{pk y 1 ^ȳ 1 q|x 0 q|x 0 ´hvq f X px 0 ´hvqdv.
Now, by the mean value theorem, applied to py η 1 ´ȳ η 1 q 2 , and a decomposition motivated by Lemma 6.1,

Q 1,n ď py 1 ^ȳ 1 q ´1´2η py 1 ´ȳ 1 q 2 ż S K K 2 pvqf X px 0 ´hvqdv `py 1 ^ȳ 1 q ´2py 1 ´ȳ 1 q 2 ż S K K 2 pvq " 1 py 1 ^ȳ 1 q 2η n k F 1 ´U1 pn{pk y 1 ^ȳ 1 q|x 0 q ˇˇx 0 ´hv py 1 ^ȳ 1 q 1´2η ‰ ˆfX px 0 ´hvqdv.
This then gives

Q 1,n ď δ 1´2η n ż S K K 2 pvqf X px 0 ´hvqdv `op1q,
where the op1q term does not depend on y 1 and ȳ1 .

Concerning Q 2,n , we have the following inequality

Q 2,n ď 1 py 1 ^ȳ 1 q 2η n k ż S K K 2 pvqP ´pk{nq y 1 ^ȳ 1 ď F 1 pY p1q |x 0 q ď pk{nq y 1 _ ȳ1 ˇˇX " x 0 ´hv ¯fX px 0 ´hvqdv `1 py 1 ^ȳ 1 q 2η n k ż S K K 2 pvqP ´pk{nq y 2 ^ȳ 2 ď F 2 pY p2q |x 0 q ď pk{nq y 2 _ ȳ2 ˇˇX " x 0 ´hv ¯fX px 0 ´hvqdv ": Q 2,1,n `Q2,2,n .
We only give details about Q 2,1,n , the term Q 2,2,n can be handled analogously. Direct computations give

Q 2,1,n " 1 py 1 ^ȳ 1 q 2η n k ż S K K 2 pvq ż U 1 pn{pkpy 1 ^ȳ 1 qq|x 0 q U 1 pn{pkpy 1 _ȳ 1 qq|x 0 q f 1 py|x 0 ´hvqdyf X px 0 ´hvqdv,
and, after substituting u " pn{kqF 1 py|x 0 q, we have

Q 2,1,n " 1 py 1 ^ȳ 1 q 2η ż S K K 2 pvq ż y 1 _ȳ 1 y 1 ^ȳ 1 f 1 pU 1 pn{pkuq|x 0 q|x 0 ´hvq f 1 pU 1 pn{pkuq|x 0 q|x 0 q duf X px 0 ´hvqdv.
Using (2.1) and arguments similar to those used in the proof of Lemma 6.1 one obtains for n large and some small κ ą 0,

f 1 pU 1 pn{pkuq|x 0 q|x 0 ´hvq f 1 pU 1 pn{pkuq|x 0 q|x 0 q ď Cu ´κ,
where C does not depend on u. Then, for n large enough,

Q 2,1,n ď C py 1 ^ȳ 1 q 2η ż y 1 _ȳ 1 y 1 ^ȳ 1 u ´κdu ż S K K 2 pvqf X px 0 ´hvqdv ď C py 1 ^ȳ 1 q 2η py 1 ^ȳ 1 q ´κpy 1 _ ȳ1 ´y1 ^ȳ 1 q ď Cδ 1´2η´κ n " op1q,
for a small κ P p0, 1 ´2ηq. Combining all the above we have verified p6.1q.

Proof of condition p6.2q. A natural envelope function of the class F n is

F n pu, zq :" c nh d k K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďkT {nu rpn{kq F 1 pu 1 |x 0 qs η .
This yields

P F 2 n " ´n k ¯1´2η h d E ˜K2 h px 0 ´XqE « 1l tF 1pY p1q |x0qďkT {nu pF 1 pY p1q |x 0 qq 2η ˇˇˇˇX ff" ´n k ¯1´2η ż S K K 2 pvqE « 1l tF 1pY p1q |x0qďkT {nu pF 1 pY p1q |x 0 qq 2η ˇˇˇˇX " x 0 ´hv ff f X px 0 ´hvqdv " ´n k ¯1´2η ż S K K 2 pvq ż 8
U1pn{pkT q|x0q

1

pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv `´n k ¯1´2η ż S K K 2 pvq ż 8
U1pn{pkT q|x0q

1

pF 1 py|x 0 ´hvqq 2η ˆ#ˆF 1 py|x 0 ´hvq F 1 py|x 0 q ˙2η ´1+ dF 1 py|x 0 ´hvqf X px 0 ´hvqdv ": Q 3,n pT q `Q4,n pT q.
Concerning Q 3,n pT q we obtain by direct integration and a slight adjustment of Lemma 6.1, for large n

Q 3,n pT q " 1 1 ´2η ´n k ¯1´2η ż S K K 2 pvqrF 1 pU 1 pn{pkT q|x 0 q|x 0 ´hvqs 1´2η f X px 0 ´hvqdv " T 1´2η 1 ´2η ż S K K 2 pvqf X px 0 ´hvqdv `1 1 ´2η ż S K K 2 pvq " ´n k F 1 pU 1 pn{pkT q|x 0 q|x 0 ´hvq ¯1´2η ´T 1´2η  f X px 0 ´hvqdv ď CT 1´2η´κ , (6.7) 
for κ ă 1 ´2η.

Concerning Q 4,n pT q, combining pDq with pHq gives the following bound, for n large and y ě U 1 pn{pkT q|x 0 q, ˇˇˇˇˆF 1 py|x 0 ´hvq

F 1 py|x 0 q ˙2η ´1ˇˇˇˇˇď C 1 ´hη A 1 `yC 2 h ηγ 1 h ηγ 1 ln y `|δ 1 py|x 0 q|h η B 1 `|δ 1 py|x 0 q|y C 3 h ηε 1 h ηε 1 ln y ¯. (6.8)
Each of the terms in the right-hand side of the above inequality needs now to be used in Q 4,n pT q, leading to the terms Q 4,j,n pT q, j " 1, . . . , 4, studied below. First Q 4,1,n pT q :"

h η A 1 ´n k ¯1´2η ż S K K 2 pvq ż 8
U1pn{pkT q|x0q

1

pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv.
This term is clearly of smaller order than Q 3,n pT q studied above and hence Q 4,1,n pT q " Op1q.

For the second term in the right-hand side of (6.8) we need to study

Q 4,2,n pT q :" h ηγ 1 ´n k ¯1´2η ż S K K 2 pvq ż 8
tnpT q y ξ1,n ln y 1

pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv
where t n pT q :" U 1 pn{pkT q|x 0 q and ξ 1,n :" C 2 h ηγ 1 . Let p n pyq :" ξ 1,n y ξ 1,n ´1 ln y `yξ 1,n ´1. Applying integration by parts on the inner integral gives, for n large enough,

Q 4,2,n pT q " ´n k ¯1´2η h ηγ 1 lnpt n pT qqrt n pT qs ξ1,n 1 ´2η ż S K K 2 pvq " F 1 pt n pT q|x 0 ´hvq ‰ 1´2η f X px 0 ´hvqdv `´n k ¯1´2η h ηγ 1 1 ´2η ż S K K 2 pvq ż 8 tnpT q p n pyq " F 1 py|x 0 ´hvq ‰ 1´2η dyf X px 0 ´hvqdv ": Q 4,2,1,n pT q `Q4,2,2,n pT q.
We obtain, for n large enough Q 4,2,1,n pT q ď Ch ηγ 1 lnpt n pT qqrt n pT qs ξ 1,n T 1´2η´κ " Op1q, since for distributions satisfying pDq one has that U 1 py|x 0 q " pA 1 px 0 qq γ 1 px 0 q y γ 1 px 0 q p1 `a1 py|x 0 qq (6.9)

where |a 1 p.|x 0 q| is regularly varying with index equal to ´γ1 px 0 qβ 1 px 0 q, and by using the fact that h ηγ 1 lnpn{kq Ñ 0 as n Ñ 8. Now consider Q 4,2,2,n pT q. We have

Q 4,2,2,n pT q " h ηγ 1 T 1´2η 1 ´2η ż S K K 2 pvq ż 8 tnpT q p n pyq ˆF 1 py|x 0 ´hvq F 1 py|x 0 q ˙1´2η ˆF 1 py|x 0 q F 1 pt n pT q|x 0 q ˙1´2η dy ˆfX px 0 ´hvqdv.
For n large and y ě t n pT q, with ξ 2,n " Ch ηε 1 , ˆF 1 py|x 0 ´hvq

F 1 py|x 0 q ˙1´2η ď Cy ξ 1,n ´1 `yξ 2,n h ηε 1 ln y ¯.
Substituting u " y{t n pT q we get

Q 4,2,2,n pT q ď Ch ηγ 1 T 1´2η rt n pT qs 1`ξ1,n ˆżS K K 2 pvq ż 8 1
p n pt n pT ququ ξ1,n `1 `pt n pT quq ξ2,n h ηε 1 lnpt n pT quq ˘ˆF 1 pt n pT qu|x 0 q F 1 pt n pT q|x 0 q ˙1´2η du ˆfX px 0 ´hvqdv.

Since F 1 p.|x 0 q is regularly varying, we can apply the Potter bound (see, e.g., de Haan and Ferreira 2006, Proposition B.1.9), and obtain, for n large enough and 0 ă δ ă 1{γ 1 px 0 q

Q 4,2,2,n pT q ď Ch ηγ 1 T 1´2η rt n pT qs 2ξ1,n ż S K K 2 pvqf X px 0 ´hvqdv ˆż 8 1
`ξ1,n u ξ1,n´1 lnpt n pT qq `ξ1,n u ξ1,n´1 ln u `uξ1,n´1 ˘uξ1,n´p1{γ1px0q´δqp1´2ηq ˆ`1 `pt n pT quq ξ2,n h ηε 1 lnpt n pT quq ˘du.

After tedious computations one gets

Q 4,2,2,n pT q ď CT 1´2η h ηγ 1 rt n pT qs 2ξ 1,n ! 1 `hηγ 1 lnpt n pT qq `rt n pT qs ξ 2,n h ηε 1 lnpt n pT qq
) " Op1q, by (6.9) and the fact that h ηγ 1 ^ηε 1 lnpn{kq Ñ 0 as n Ñ 8. Hence, Q 4,2,n pT q " Op1q.

Finally, the two last terms Q 4,3,n pT q and Q 4,4,n pT q can be dealt with similarly as the two previous ones since

Q 4,3,n pT q :" h η B 1 ´n k ¯1´2η ż S K K 2 pvq ż 8 tnpT q |δ 1 py|x 0 q| pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv ď ˜sup yětnpT q |δ 1 py|x 0 q| ¸hη B 1 ´n k ¯1´2η ˆżS K K 2 pvq ż 8 tnpT q
1 pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv (6.10) and Q 4,4,n pT q :" h ηε 1 ´n k ¯1´2η ż

S K K 2 pvq ż 8 tnpT q
|δ 1 py|x 0 q|y ξ2,n ln y pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv ď ˜sup

yětnpT q |δ 1 py|x 0 q| ¸hηε 1 ´n k ¯1´2η ˆżS K K 2 pvq ż 8
tnpT q y ξ2,n ln y pF 1 py|x 0 ´hvqq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv. (6.11) This yields Q 4,3,n pT q " Op1q and Q 4,4,n pT q " Op1q. Combining all these results, we get (6.2).

Proof of condition p6.3q. To this aim, for any α P p0, 1{η ´2q, we have

P F 2 n 1l tFnąε ? nu ď 1 ε α n α{2 P F 2`α n " 1 ε α n α{2 ˆnh d k ˙1`α 2 E ˆK2`α h px 0 ´Xq 1l tF 1pY p1q |x0qďkT {nu rpn{kq F 1 pY p1q |x 0 qs ηp2`αq " 1 ε α 1 pkh d q α{2 ´n k ¯1´ηp2`αq ż S K K 2`α pvqE ˜1l tF 1 pY p1q |x0qďkT {nu rF 1 pY p1q |x 0 qs ηp2`αq ˇˇˇˇX " x 0 ´hv fX px 0 ´hvqdv " 1 ε α 1 pkh d q α{2 ´n k ¯1´ηp2`αq ˆ#ż S K K 2`α pvq ż 8 tnpT q 1 pF 1 py|x 0 ´hvqq ηp2`αq dF 1 py|x 0 ´hvqf X px 0 ´hvqdv `żS K K 2`α pvq ż 8 tnpT q 1 pF 1 py|x 0 ´hvqq ηp2`αq ˆ«ˆF 1 py|x 0 ´hvq F 1 py|x 0 q ˙ηp2`αq ´1ff dF 1 py|x 0 ´hvqf X px 0 ´hvqdv + .
The terms into brackets can be studied similarly as Q j,n pT q, j " 3, 4, and thus (6.3) is established since kh d Ñ 8.

Proof of condition p6.4q. Without loss of generality assume T " 1 and consider, for a, θ, θ ă 1, the classes F p1q n paq :" tf n,y P F n : y 1 ď au, F p2q n paq :" tf n,y P F n : y 1 ą a, y 2 ď au, F n p , mq :" tf n,y P F n : θ `1 ď y 1 ď θ , θm`1 ď y 2 ď θm u, where " 0, . . . , tln a{ ln θu and m " 0, . . . ,

Y ln a{ ln θ]

. We start by showing that F p1q n paq is an ε´bracket, for n sufficiently large. Clearly

0 ď f n,y pu, zq ď c nh d k K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďpk{nq y 1 u rpn{kq F 1 pu 1 |x 0 qs η ď h d{2 pn{kq 1{2´η K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďpk{nq au pF 1 pu 1 |x 0 qq η :" u 1,n pu, zq. Then P u 2 1,n " ´n k ¯1´2η ż S K K 2 pvq ż 8 tnpaq 1
pF 1 py|x 0 qq 2η dF 1 py|x 0 ´hvqf X px 0 ´hvqdv " Q 3,n paq `Q4,n paq, using the same decomposition as for P F 2 n . Thus, one can obtain the result from the above analysis of Q 3,n pT q and Q 4,n pT q, taking into account that the various constants involved in these will not depend on a.

Concerning Q 3,n paq, according to (6.7), for n large

Q 3,n paq ď Ca 1´2η´κ ,
where C does not depend on a. Now, taking a " ε 3{p1´2ηq , for n large enough and ε small we have |Q 3,n paq| ď ε 2 .

Concerning Q 4,n paq, we use the same decomposition as for Q 4,n pT q based on (6.8), which entails that, for n large enough, ε small and some small ζ ą 0

Q 4,1,n paq ď ε 2 , Q 4,2,1,n paq ď Ch ηγ 1 lnpt n paqqrt n paqs ξ 1,n a 1´2η´κ ď Cp1 `| ln a|qa ´ζ a 1´2η´κ ď Ca 1´2η´2κ ,
with C a constant not depending on a, since from (6.9) and for n large,

h ηγ 1 ln t n paq ď Cp1 `| ln a|q.
Also, for n large, and some small ζ ą 0 

Q 4,2,2,n paq ď Ca 1´2η h ηγ 1 rt n paqs 2ξ 1,n ! 1 `hηγ 1 lnpt n paqq `rt n paqs ξ 2,n h ηε 1 lnpt n paqq ) ď Ca 1´2η h ηγ 1 a ´ζ p1 `|
1 a 2η n k ż S K K 2 pvqF 2 ´U2 ´n ka ˇˇx 0 ¯ˇˇx 0 ´hv ¯fX px 0 ´hvqdv ď ε 2 ,
when n is large enough and for ε small.

Finally, we consider F n p , mq. We obtain the following bounds u n pu, zq :"

c nh d k K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďpk{nq θ `1, F 2 pu 2 |x 0 qďpk{nq θm`1 u θ η ď f n,y pu, zq ď c nh d k K h px 0 ´zq 1l tF 1 pu 1 |x 0 qďpk{nq θ , F 2 pu 2 |x 0 qďpk{nq θm u θ p `1qη
": u n pu, zq.

Then

P pu n ´un q 2 " nh d k E « K 2 h px 0 ´Xq ˜1l tF 1 pY p1q |x 0 qďpk{nq θ , F 2 pY p2q |x 0 qďpk{nq θm u θ p `1qη
´1l tF 1 pY p1q |x 0 qďpk{nq θ `1, F 2 pY p2q |x 0 qďpk{nq θm`1 u θ η ¸2fi fl .

The difference of the indicator functions can be decomposed as in (6.6), and subsequent calculations follow arguments similar to those used in the verification of (6.1), Case 3. Taking θ " 1´ε 3 and θ " 1 ´a, gives for n large enough and ε small that P pu n ´un q 2 ď ε 2 .

Combining the above, for n large and ε small one obtains that the cover number by bracketing is of the order ε ´4´3{p1´2ηq , and hence (6.4) is satisfied.

To conclude the proof, we comment on the pointwise convergence of the covariance function, which is given by P f n,y f n,ȳ ´P f n,y P f n,ȳ . We have

P f n,y f n,ȳ " }K} 2 2 py 1 ȳ1 q η n k E " 1 }K} 2 2 h d K 2 ˆx0 ´X h ˙1l An,y^ȳ  Ñ }K} 2 2 f X px 0 q Rpy 1 ^ȳ 1 , y 2 ^ȳ 2 |x 0 q py 1 ȳ1 q η ,
as n Ñ 8, by the arguments used in the proof of Lemma 6.2. Also P f n,y "

c kh d n 1 y η 1 n k E " K h px 0 ´Xq1l An,y ‰ Ñ 0,
as n Ñ 8.

Proof of Theorem 2

Recall that

T n p8, y 2 |x 0 q " 1 k n ÿ i"1 K h px 0 ´Xi q1l tF 2 pY p2q i |x 0 qď k n y 2 u .
We follow the lines of proof of Theorem 1. We introduce the sequence of classes r F n on R ˆRd as r F n :" tpu, zq Ñ r f n,y pu, zq, y P p0, T su where r f n,y pu, zq :"

c nh d k K h px 0 ´zq1l tF 2 pu|x 0 qď k n yu .
We have to verify the conditions (6.1)-(6.4) in the proof of Theorem 1 for the new functions r f n,y , and with ρ x 0 py, ȳq :" |y ´ȳ|. Without loss of generality, we may assume that y ą y. Thus, we have

P ´r f n,y ´r f n,y ¯2 " nh d k E " K 2 h px 0 ´Xq ´1l tF 2 pY p2q |x 0 qď k n yu ´1l tF 2 pY p2q |x 0 qď k n yu ¯ı " n k ż S K K 2 pvq " F 2 ˆU2 ˆn ky ˇˇx 0 ˙ˇˇx 0 ´hv ˙´F 2 ˆU2 ˆn ky ˇˇx 0 ˙ˇˇx 0 ´hv ˙ ˆfX px 0 ´hvqdv " py ´yq ż S K K 2 pvqf X px 0 ´hvqdv `żS K K 2 pvq " n k F 2 ˆU2 ˆn ky ˇˇx 0 ˙ˇˇx 0 ´hv ˙´y  f X px 0 ´hvqdv ´żS K K 2 pvq " n k F 2 ˆU2 ˆn ky ˇˇx 0 ˙ˇˇx 0 ´hv ˙´y  f X px 0 ´hvqdv ď δ n ż S K K 2 pvqf X px 0 ´hvqdv `op1q,
with a op1q´term which is uniform in y and y by Lemma 1. This yields (6.1). Now, concerning (6.2) we can use the following envelope function of the class r F n r F n pu, zq :"

c nh d k K h px 0 ´zq1l tF 2 pu|x 0 qď k n T u
from which we deduce that

P r F 2 n " n k ż S K K 2 pvqF 2 ´U2
´n kT ˇˇx 0 ¯ˇˇx 0 ´hv ¯fX px 0 ´hvqdv " Op1q.

Next condition (6.3) is also a direct consequence of the definition of the envelope since

P r F 2 n 1l t r Fnąε ? nu ď 1 ε α n α{2 P r F 2`α n ď 1 ε α pkh d q α{2 n k ż S K K 2`α pvqF 2 ´U2
´n kT ˇˇx 0 ¯ˇˇx 0 ´hv ¯fX px 0 ´hvqdv " op1q as soon as kh d Ñ 8.

Finally, concerning (6.4), again without loss of generality we assume T " 1 and divide r0, 1s into m intervals of length 1{m. Then, for y P rpi ´1q{m, i{ms we have the bounds u n pu, zq :"

c nh d k K h px 0 ´zq1l tF 2 pu|x 0 qď k n i´1 m u ď r f n,y pu, zq ď c nh d k K h px 0 ´zq1l tF 2 pu|x 0 qď k n i m u ": u n pu, zq
from which we deduce that

P pu n ´un q 2 " 1 m ż S K K 2 pvqf X px 0 ´hvqdv `żS K K 2 pvq " n k F 2 ´U2 ´n k m i ˇˇx 0 ¯ˇˇx 0 ´hv ¯´i m  f X px 0 ´hvqdv ´żS K K 2 pvq " n k F 2 ˆU2 ˆn k m i ´1 ˇˇx 0 ˙ˇˇx 0 ´hv ˙´i ´1 m  f X px 0 ´hvqdv ď ε 3 ż S K K 2 pvqf X px 0 ´hvqdv `2ε 3
when m " r 1 ε 3 s. If ε is small and n large, then P pu n ´un q 2 ď ε 2 .

The pointwise convergence of the covariance function can be verified with arguments similar to those used in the proof of Theorem 1.

Consequently

? kh d rT n p8, y 2 |x 0 q ´EpT n p8, y 2 |x 0 qqs W p8, y 2 q, in Dpp0, T sq.

Now, remark that

EpT n p8, y 2 |x 0 qq " y 2 f X px 0 q `O ph η f X q `fX px 0 q

ż S K Kpvq " n k F 2 ˆU2 ˆn ky 2 ˇˇx 0 ˙ˇˇx 0 ´hv ˙´y 2  dv `żS K Kpvq " n k F 2 ˆU2
ˆn ky 2 ˇˇx 0 ˙ˇˇx 0 ´hv ˙´y 2  rf X px 0 ´hvq ´fX px 0 qs dv.

Following the lines of proof of Lemma 1, we deduce that

ˇˇn k F 2 ˆU2 ˆn ky 2 ˇˇx 0 ˙ˇˇx 0 ´hv ˙´y 2 ˇˇď C ! h η A 2 `hηγ 2 ln n k `|δ 2 pU 2 pn{k|x 0 q|x 0 q| ´hη B 2 `hηε 2 ln n k ¯)
from which we obtain

EpT n p8, y 2 |x 0 qq " y 2 f X px 0 q `O ph η f X ^ηA 2 q `O ´hηγ 2 ln n k ¯`O p|δ 2 pU 2 pn{k|x 0 q|x 0 q|h η B 2 q `O ´|δ 2 pU 2 pn{k|x 0 q|x 0 q|h ηε 2 ln n k
with O´terms which are uniform in y 2 P p0, T s. This implies that, under the assumptions of Theorem 2, we have ? kh d rT n p8, y 2 |x 0 q ´y2 f X px 0 qs W p8, y 2 q, (6.12) in Dpp0, T sq.

Finally, ? kh d ˜Tn p8, y 2 |x 0 q p f n px 0 q ´y2

¸" ? kh d ˆTn p8, y 2 |x 0 q f X px 0 q ´y2 ˙´T n p8, y 2 |x 0 q p f n px 0 qf X px 0 q c k n ? nh d ´p f n px 0 q ´fX px 0 q ¯, from which Theorem 2 follows.

In the sequel, for convenient representation, all the limiting processes in Theorems 2.1 and 2.2 will be defined on the same probability space, via the Skorohod construction, but it should be kept in mind that they are only in distribution equal to the original processes. ˇˇˇˇ? kh d ˜Tn p8, y 2 |x 0 q p f n px 0 q ´y2 ¸´W p8, y 2 q f X px 0 q ˇˇˇˇÑ 0, a.s. .

Convergence result for an auxiliary statistic

In this section we give a convergence result for an auxiliary statistic. In particular, we generalize r θ n to r θ n py 2 q, defined as

r θ n py 2 q " 1 k n ÿ i"1 K h px 0 ´Xi qY p1q i 1l tY p2q i ěU 2 pn{pky 2 q|x 0 qu .
Assuming F 1 py|x 0 q strictly increasing in y, we have r θ n py 2 q " ´U1 ´n k ˇˇx 0 ¯ż 8

0

T n ps n puq, y 2 |x 0 qdu ´γ1 px 0 q .

As motivation for studying r θ n py 2 q, note that p θ n " r θ n pp e n q, where p e n :" n k F 2 pp u n U 2 p n k |x 0 q|x 0 q with p u n :" p U 2 p n k |x 0 q{U 2 p n k |x 0 q. To estimate U 2 p.|x 0 q we will use p U 2 p.|x 0 q :" infty : p F n,2 py|x 0 q ě 1 ´1{.u with p F n,2 py|x 0 q :"

ř n i"1 K h px 0 ´Xi q1l tY p2q i ďyu ř n i"1 K h px 0 ´Xi q ,
the empirical kernel estimator of the unknown conditional distribution function of Y p2q given X " x 0 . See for instance [START_REF] Daouia | Kernel estimators of extreme level curves[END_REF]. The asymptotic behavior of the quantile estimator is given in Lemma 6.6.

Proposition 6.1. Assume pDq, pHq, pKq, pRq with x Ñ Rpy 1 , y 2 |xq being a continuous function, x 0 P Int(S X q with f X px 0 q ą 0, and y Ñ F j py|x 0 q, j " 1, 2, are strictly increasing. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d Ñ 8 and h ηγ 1 ^ηγ 2 ^ηε 1 ^ηε 2 ln n{k Ñ 0. Then, for γ 1 px 0 q ă 1{2, we have

sup 1 2 ďy 2 ď2
ˇˇˇˇ? kh d U 1 pn{k|x 0 q " r θ n py 2 q ´Ep r θ n py 2 qq ı `ż 8 0 W pu, y 2 qdu ´γ1 px 0 q ˇˇˇˇP ÝÑ 0.

Proof of Proposition 6.1

We use the decomposition ˇˇˇˇ? kh d U 1 pn{k|x 0 q " r θ n py 2 q ´Ep r θ n py 2 qq ı `ż 8 0 W pu, y 2 qdu ´γ1px0q ˇˇˇˇď I 1 pT q `4 ÿ i"2 I i,n pT q, where I 1 pT q :" sup Similarly to the proof of Proposition 2 in Cai et al. (2015), it is sufficient to show that for any ε ą 0, there exists T 0 " T 0 pεq such that

PpI 1 pT 0 q ą εq ă ε, (6.13) 
and n 0 " n 0 pT 0 q such that, for any n ą n 0 PpI j,n pT 0 q ą εq ă ε, for j " 2, 3 and 4.

Clearly

I 1 pT q ď sup uěT, 1 2 ďy 2 ď2
|W pu, y 2 q|T ´γ1 px 0 q .

Since a rescaled version of our Gaussian process W p., .q gives the one in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], according to their Lemma 2, we have sup 0ăuă8, 1 2 ďy 2 ď2 |W pu, y 2 q| ă 8 with probability one. This implies that there exists T 1 " T 1 pεq such that

P ˜sup 0ăuă8, 1 2 ďy 2 ď2
|W pu, y 2 q| ą T

γ 1 px 0 q 1 ε ¸ă ε,
from which we deduce that, for any T ą T 1

P pI 1 pT q ą εq ď P ˜sup 0ăuă8, 1 2 ďy 2 ď2
|W pu, y 2 q| ą T

γ 1 px 0 q 1 ε ¸ă ε.
Consequently (6.13) holds for T 0 ą T 1 .

We continue with the term I 2,n pT q. We have

P pI 2,n pT q ą εq ď P ˜sup y1ěT, 1 2 ďy2ď2
ˇˇ?kh d rT n ps n py 1 q, y 2 |x 0 q ´EpT n ps n py 1 q, y 2 |x 0 qqs ˇˇą ε T γ1px0q

" P ˜sup y1ěT, 1 2 ďy2ď2 ˇˇˇˇn ÿ i"1 " K }K} 8 ˆx0 ´Xi h ˙1l tF 1pY p1q i |x0qď k n snpy1q, F 2pY p2q i |x0qď k n y2u ´E ˆK }K} 8 ˆx0 ´X h ˙1l tF 1 pY p1q |x0qď k n snpy1q, F 2pY p2q |x0qď k n y2u ˙ˇˇˇˇą ε T γ1px0q }K} 8 ? kh d ď }K} 8 εT γ1px0q ? kh d E # sup y1ěT, 1 2 ďy2ď2 ˇˇˇˇn ÿ i"1 " K }K} 8 ˆx0 ´Xi h ˙1l tF 1pY p1q i |x0qď k n snpy1q, F 2 pY p2q i |x0qď k n y2u ´E ˆK }K} 8 ˆx0 ´X h ˙1l tF 1 pY p1q |x0qď k n snpy1q, F 2pY p2q |x0qď k n y2u
˙ˇˇˇˇ* .

Consider the class of functions g n,y pu, zq :"

K }K} 8 ˆx0 ´z h ˙1l tF 1 pu 1 |x 0 qď k n snpy 1 q, F 2 pu 2 |x 0 qď k n y 2 u ´E ˆK }K} 8 ˆx0 ´X h ˙1l tF 1 pY p1q |x 0 qď k n snpy 1 q, F 2 pY p2q |x 0 qď k n y 2 u ˙,
with y 1 ě T and 1{2 ď y 2 ď 2, and with envelope function

G n pu, zq :" K }K} 8 ˆx0 ´z h ˙1l tF 2pu2|x0qď 2k n u `E ˆK }K} 8 ˆx0 ´X h ˙1l tF 2 pY p2q |x0qď 2k n u ˙.
This class of functions satisfies the conditions of Theorem 7.3 in Wellner (2005) with σ 2 " Opkh d {nq and P G 2 n " Opkh d {nq for n large, and thus, for some constant C, P pI 2,n pT q ą εq ď C εT γ 1 px 0 q for n large enough. We have then that for every ε there is a T " T pεq such that for n large enough P pI 2,n pT q ą εq ď ε. Now, to study I 3,n pT q, remark that for any T ą 0, D n 1 " n 1 pT q : @n ą n 1 : s n pT q ă T `1. Hence for n ą n 1 and any η 0 P pγ 1 px 0 q, 1{2q :

P pI 3,n pT q ą εq ď P ˜sup 0ăy1ďT `1, 1 2 ďy2ď2
ˇˇˇˇ? kh d rT n py 1 , y 2 |x 0 q ´EpT n py 1 , y 2 |x 0 qqs ´W py 1 , y 2 q rs n puqs η 0 du ´γ1 px 0 q ˇˇˇÝ Ñ γ 1 px 0 q η 0 ´γ1 px 0 q T η 0 ´γ1 px 0 q , which, combining with our Theorem 2.1 and the Skorohod construction, entails that there exists n 2 pT q ą n 1 pT q such that @n ą n 2 pT q, PpI 3,n pT q ą εq ă ε.

y η0
Finally, concerning I 4,n pT q, we first remark that according to Lemma 2 in Cai et al. ( 2015), we have for η 0 P pγ 1 px 0 q, 1{2q and any T ą 0, with probability one, sup 0ăy 1 ďT, 1 2 ďy 2 ď2

|W py 1 , y 2 q| y η 0 1 ă 8.

Then, applying Lemma 3 in Cai et al. ( 2015) with S " T, S 0 " T `1 and g " W , we deduce that there exists n 3 pT q such that for n ą n 3 pT q we have PpI 4,n pT q ą εq ă ε. This achieves the proof of Proposition 6.1.

In order to prove Theorem 2.3 we need some auxiliary results. Define for u ą 0 and v P S K r s n puq :"

n k F 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv ¯, t n py 2 q :" n k F 2 ˆU2 ˆn ky 2 ˇˇx 0 ˙ˇˇx 0 ´hv ˙.
Lemma 6.3. Assume pDq and pHq and x 0 P IntpS X q. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0 and h ηε 1 ^ηγ 1 ln n k Ñ 0. Then, we have, for any u ď T n Ñ 8 such that kT n {n Ñ 0 and 0 ă ε ă β 1 px 0 q, that ˇˇr s n puq ´uˇˇˇď Cu

! h η A 1 `hηγ 1 ln n k `hηγ 1 | ln u|u ˘Ch ηγ 1 `ˇˇδ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇ" 1 `u˘Ch ηγ 1 h ηγ 1 | ln u| ı ˆ"u γ 1 px 0 qβ 1 px 0 q ´1 `u˘γ 1 px 0 qε ¯´h η B 1 `u´Ch ηε 1 h ηε 1 ´| ln u| `ln n k ¯ū γ 1 px 0 qpβ 1 px 0 q˘εq `ˇˇu γ 1 px 0 qβ 1 px 0 q ´1ˇˇˇı) ,
where u ˘' means u ' if u is greater than 1, and u ´' if u is smaller than 1.

Lemma 6.4. Assume pDq, pHq, γ 1 px 0 q ă 1 and x 0 P IntpS X q. For sequences k " tn α 1 pnqu and h " n ´∆ 2 pnq, where 1 and 2 are slowly varying functions at infinity, with α P p0, 1q and rR ps n puq, y 2 |x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇˇÝ Ñ 0. Lemma 6.5. Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F 2 py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d Ñ 8, h ηε 2 ln n{k Ñ 0, 

max ˆα d `2γ 1 px 0 qpη A 1 ^ηγ 1 q , α d `2p1 ´γ1 px 0 qqpη A 2 ^ηγ 2 ^ηB 2 ^ηε 2 q , α d ´2p1 ´αqγ 2 1 px 0 qβ 1 px 0 q d `dpβ 1 px 0 q `εqγ 1 px 0 q , α ´2p1 ´αqγ 1 px 0 q d ¯ă ∆ ă α d ,
? kh d h η f X ^ηA 2 Ñ
? kh d ˆF 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q ´1˙Ñ c P R, as n Ñ 8, we have b nh d F 2 pu n |x 0 q ˜p F n,2 pu n |x 0 q F 2 pu n |x 0 q ´1¸ W p8, 1q f X px 0 q .
Lemma 6.6. Assume pDq, pHq, pKq, x 0 P IntpS X q with f X px 0 q ą 0 and y Ñ F 2 py|x 0 q is strictly increasing. Consider sequences k Ñ 8 and h Ñ 0 as n Ñ 8, in such a way that k{n Ñ 0, kh d Ñ 8, h ηε 2 ln n{k Ñ 0,

? kh d h η f X ^ηA 2 Ñ 0, ? kh d h ηγ 2 ln n{k Ñ 0, ? kh d |δ 2 pU 2 pn{k|x 0 q|x 0 q| Ñ 0. Then, as n Ñ 8, we have ? kh d pp u n ´1q γ 2 px 0 qW p8, 1q f X px 0 q .

Proof of Theorem 2.3

Let E n pyq :" Ep r θ n pyq{U 1 pn{k|x 0 qq. We have the following decomposition:

? kh d ˜p θ n f X px 0 qθ k{n ´1¸" U 1 pn{k|x 0 q θ k{n ? kh d f X px 0 q ˜p θ n U 1 pn{k|x 0 q ´En p1q U1 pn{k|x 0 q θ k{n ? kh d f X px 0 q ˆEn p1q ´fX px 0 qθ k{n U 1 pn{k|x 0 q " U 1 pn{k|x 0 q θ k{n ? kh d f X px 0 q ˜r θ n pp e n q U 1 pn{k|x 0 q
´En pp e n q U1 pn{k|x 0 q θ k{n ? kh d f X px 0 q pE n pp e n q ´En p1qq `U1 pn{k|x 0 q θ k{n ? kh d f X px 0 q ˆEn p1q ´fX px 0 qθ k{n U 1 pn{k|x 0 q ":

T 1 `T2 `T3 .
First, remark that the common factor of the three terms, U 1 pn{k|x 0 q{θ k{n can be handled in a similar way as in Proposition 1 in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF], i.e., as n Ñ 8

U 1 pn{k|x 0 q θ k{n ÝÑ ´1 ş 8
0 Rps, 1|x 0 qds ´γ1 px 0 q .

Thus the three terms without this factor need to be studied.

We start with T 1 . Note that

? kh d pp e n ´1q " ´f2 pũ n U 2 pn{k|x 0 q|x 0 qU 2 pn{k|x 0 q F 2 pU 2 pn{k|x 0 q|x 0 q ? kh d pp u n ´1q,
where ũn is a random value between p u n and 1. By the continuous mapping theorem we have then

f 2 pũ n U 2 pn{k|x 0 q|x 0 qU 2 pn{k|x 0 q F 2 pU 2 pn{k|x 0 q|x 0 q P Ñ 1 γ 2 px 0 q ,
and hence by Lemma 6.6 ? kh d pp e n ´1q ´W p8, 1q{f X px 0 q. (6.14) This implies that P ´|p e n ´1| ą pkh d q ´1{4 ¯Ñ 0.

Hence, with probability tending to one, ˇˇˇˇ? kh d f X px 0 q ˜r θ n pp e n q U 1 pn{k|x 0 q ´En pp e n q ¸`1

f X px 0 q ż 8 0 W ps, 1qds ´γ1 px 0 q ˇˇˇď sup |y´1|ďpkh d q ´1{4 ˇˇˇˇ? kh d f X px 0 q ˜r θ n pyq U 1 pn{k|x 0 q ´En pyq ¸`1 f X px 0 q ż 8 0 W ps, yqds ´γ1 px 0 q ˇˇˇ1 f X px 0 q sup |y´1|ďpkh d q ´1{4 ˇˇˇż 8 0
rW ps, yq ´W ps, 1qsds ´γ1 px 0 q ˇˇˇ.

The first term of the right-hand side tends to 0 in probability by our Proposition 6.1, whereas the second term can be handled similarly as in the proof of Proposition 3 in [START_REF] Cai | Estimation of the marginal expected shortfall: the mean when a related variable is extreme[END_REF]. Consequently

T 1 1 ş 8 0 Rps, 1|x 0 qds ´γ1 px 0 q 1 f X px 0 q ż 8 0 W ps, 1qds ´γ1 px 0 q . ( 6.15) 
Next step consists to look at T 2 . To this aim, remark that for y equal either to 1 or p e n , we have

ż 8 0 E pT n ps n puq, y|x 0 qq du ´γ1px0q " ż 8 0 ż S K KpvqR n k pr s n puq, t n pyq|x 0 ´hvq f X px 0 ´hvqdvdu ´γ1px0q " ż 8 0 ż S K KpvqR pr s n puq, t n pyq|x 0 q f X px 0 ´hvqdvdu ´γ1px0q `ż 8 0 ż S K Kpvq " R n k pr s n puq, t n pyq|x 0 ´hvq ´R pr s n puq, t n pyq|x 0 q ‰ f X px 0 ´hvqdvdu ´γ1px0q " ż 8 0 R pu, y|x 0 q du ´γ1px0q ż S K Kpvqf X px 0 ´hvqdv `żS K Kpvq ż 8 0 rR pr s n puq, t n pyq|x 0 q ´Rpu, y|x 0 qs du ´γ1px0q f X px 0 ´hvqdv `ż 8 0 ż S K Kpvq " R n k pr s n puq, t n pyq|x 0 ´hvq ´R pr s n puq, t n pyq|x 0 q ‰ f X px 0 ´hvqdvdu ´γ1px0q ": r T 2,1 `r T 2,2 `r T 2,3 .
By Lemma 6.4, Assumptions pSq and pHq we obtain

r T 2,1 " f X px 0 q ż 8 0 R pu, y|x 0 q du ´γ1 px 0 q `OP ph η f X q , r T 2,2 " o P ˆ1 ? kh d ˙, | r T 2,3 | ď ´sup xPBpx 0 ,hq sup 0ăy 1 ă8, 1 2 ďy 2 ď2
|R n{k py 1 , y 2 |xq ´Rpy 1 , y 2 |x 0 q|

y β 1 ^1 ˆżS K Kpvq ż 8 0 ´rr s n puqs β ^1¯d u ´γ1 px 0 q f X px 0 ´hvqdv " O P ´´n k ¯τ ¯.
Note that the integral appearing in the bound for | r T 2,3 | is finite for n large, as r s n puq ď Cu 1´ξ for u P p0, 1{2s, ξ P p0, pβ ´γ1 px 0 qq{βq and n large. Consequently, under our assumptions and using the homogeneity of the R´function and the mean value theorem combining with (6.14), we have ? kh d f X px 0 q pE n pp e n q ´En p1qq " ? kh d f X px 0 q ˆż 8 0 E pT n ps n puq, 1|x 0 qq du ´γ1 px 0 q ´ż 8 0 E pT n ps n puq, p e n |x 0 qq du ´γ1 px 0 q " ? kh d ˆż 8 0 R pu, 1|x 0 q du ´γ1 px 0 q ´ż 8 0 R pu, p e n |x 0 q du ´γ1 px 0 q ˙`o P p1q " ? kh d ´1 ´p e 1´γ 1 px 0 q n ¯ż 8 0 R pu, 1|x 0 q du ´γ1 px 0 q `oP p1q

p1 ´γ1 px 0 qq W p8, 1q f X px 0 q ż 8 0 R pu, 1|x 0 q du ´γ1 px 0 q .
This implies that

T 2 ´p1 ´γ1 px 0 qq W p8, 1q f X px 0 q . ( 6.16) 
Finally, for T 3 we have, ?

kh d f X px 0 q ˆEn p1q ´fX px 0 qθ k{n U 1 pn{k|x 0 q " ? kh d f X px 0 q ˆ´ż 8 0
EpT n ps n puq, 1|x 0 qqdu ´γ1 px 0 q ´fX px 0 qθ k{n U 1 pn{k|x 0 q

" ? kh d ż 8 0 " R n{k ps n puq, 1|x 0 q ´Rpu, 1|x 0 q ‰ du ´γ1 px 0 q `op1q " ? kh d ż 8 0 "
R n{k ps n puq, 1|x 0 q ´Rps n puq, 1|x 0 q ‰ du ´γ1 px 0 q `?kh d ż 8 0 rRps n puq, 1|x 0 q ´Rpu, 1|x 0 qs du ´γ1 px 0 q `op1q ": r

T 3,1 `r T 3,2 `op1q,
where

| r T 3,1 | ď ? kh d sup xPBpx 0 ,hq sup 0ăy 1 ă8, 1 2 ďy 2 ď2
|R n{k py 1 , y 2 |xq ´Rpy 1 , y 2 |x 0 q|

y β 1 ^1 ˆˇˇˇż 8 0 ´rs n puqs β ^1¯d u ´γ1 px 0 q ˇˇ" O ´?kh d ´n k ¯τ ¯, r T 3,2 " op1q. 
Overall, we have then

T 3 " op1q. (6.17) 
Combining (6.15), (6.16) and (6.17), and following the argument as at the end of the proof of Theorem 2.2, we can establish the result of Theorem 2.3.

Proofs of the auxiliary results

Proof of Lemma 1

First note that, by continuity of y Ñ F j py|xq, t n F j pU j pt n {y|x 0 q|xq " y F j pU j pt n {y|x 0 q|xq F j pU j pt n {y|x 0 q|x 0 q .

Then, from condition pDq, and a straightforward decomposition, ˇˇˇt n F j pU j pt n {y|x 0 q|xq y η ´y1´η ˇˇď y 1´η # ˇˇˇA j pxq A j px 0 q ´1ˇˇˇˇp U j pt n {y|x 0 qq 1{γ j px 0 q´1{γ j pxq 1 `1 γ j pxq δ j pU j pt n {y|x 0 q|xq 1 `1 γ j px 0 q δ j pU j pt n {y|x 0 q|x 0 q `ˇˇp U j pt n {y|x 0 qq 1{γ j px 0 q´1{γ j pxq ´1ˇˇˇ1 `1 γ j pxq δ j pU j pt n {y|x 0 q|xq 1 `1 γ j px 0 q δ j pU j pt n {y|x 0 q|x 0 q `ˇˇˇˇ1 `1 γ j pxq δ j pU j pt n {y|x 0 q|xq 1 `1 γ j px 0 q δ j pU j pt n {y|x 0 q|x 0 q ´1ˇˇˇˇˇ+ .

Each of the absolute differences in the right-hand side of the above display can be handled by condition pHq. Obviously, for some constant C,

ˇˇˇA j pxq A j px 0 q ´1ˇˇˇˇď Ch η A j
n , for x P Bpx 0 , h n q.

Next, using the inequality |e z ´1| ď e |z| |z|, we have, for some constant C (not necessarily equal to the one introduced above), and x P Bpx 0 , h n q, ˇˇpU j pt n {y|x 0 qq 1{γ j px 0 q´1{γ j pxq ´1ˇˇˇď e Ch ηγ j n ln U j ptn{y|x 0 q Ch ηγ j n ln U j pt n {y|x 0 q.

For distributions satisfying pDq, one easily verifies that U j pt n |x 0 q " pA j px 0 qq γ j px 0 q t γ j px 0 q n p1 `aj pt n |x 0 qq where |a j p.|x 0 q| is regularly varying with index equal to ´γj px 0 qβ j px 0 q. Hence, for some constants C 1 and C 2 , not depending on y, one gets for x P Bpx 0 , h n q and n large,

ˇˇpU j pt n {y|x 0 qq 1{γ j px 0 q´1{γ j pxq ´1ˇˇˇď C 1 t C 2 h ηγ j n n y ´C2 h ηγ j n ´hηγ j n ln t n ´hηγ j n ln y ¯.
Finally, for n large, ˇˇˇˇ1 `1 γ j pxq δ j pU j pt n {y|x 0 q|xq 1 `1 γ j px 0 q δ j pU j pt n {y|x 0 q|x 0 q ´1ˇˇˇˇď

C|δ j pU j pt n {y|x 0 q|x 0 q| "ˇˇˇˇδ j pU j pt n {y|x 0 q|xq δ j pU j pt n {y|x 0 q|x 0 q ´1ˇˇˇˇ`ˇˇˇˇ1 γ j pxq ´1 γ j px 0 q ˇˇˇ* .

By the assumptions on δ j we obtain ˇˇˇδ j pU j pt n {y|x 0 q|xq δ j pU j pt n {y|x 0 q|x 0 q ´1ˇˇˇˇď ˇˇˇB j pxq B j px 0 q ´1ˇˇˇˇe şU j ptn{y|x 0 q 1 ε j pu|xq´ε j pu|x 0 q u du `ˇˇˇe şU j ptn{y|x 0 q 1 ε j pu|xq´ε j pu|x 0 q u du ´1ˇˇˇˇ, and, hence, using pHq, for x P Bpx 0 , h n q and n large, ˇˇˇˇ1 `1 γ j pxq δ j pU j pt n {y|x 0 q|xq 1 `1 γ j px 0 q δ j pU j pt n {y|x 0 q|x 0 q ´1ˇˇˇˇď

C 1 " h ηγ j ^ηB j n `tC 2 h ηε j n n y ´C2 h ηε j n
´hηε j n ln t n ´hηε j n ln y ¯ .

Combining the above results establishes the lemma.

Proof of Lemma 2

We have

EpT n py 1 , y 2 |x 0 qq " n k E " K h px 0 ´Xq1l tF 1 pY p1q |x 0 qďpk{nq y 1 , F 2 pY p2q |x 0 qďpk{nq y 2 u ı " n k ż S K KpvqPpF 1 pY p1q |x 0 q ď pk{nq y 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 |X " x 0 ´hvq ˆfX px 0 ´hvqdv " ż S K KpvqRpy 1 , y 2 |x 0 ´hvqf X px 0 ´hvqdv `żS K Kpvq " n k PpF 1 pY p1q |x 0 q ď pk{nq y 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 |X " x 0 ´hvq ´Rpy 1 , y 2 |x 0 ´hvq ı f X px 0 ´hvqdv ": T 1,n `T2,n .
Concerning T 1,n , by the continuity of f X pxq and Rpy 1 , y 2 |xq at x 0 , we have that f X and R are bounded in a neighborhood of x 0 , and hence, by Lebesgue's dominated convergence theorem

T 1,n Ñ f X px 0 qRpy 1 , y 2 |x 0 q, as n Ñ 8.
As for T 2,n ,

|T 2,n | ď sup vPS K ˇˇn k PpF 1 pY p1q |x 0 q ď pk{nq y 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 |X " x 0 ´hvq ´Rpy 1 , y 2 |x 0 ´hvq ˇˇż S K Kpvqf X px 0 ´hvqdv,

and note that

PpF 1 pY p1q |x 0 q ď pk{nq y 1 , F 2 pY p2q |x 0 q ď pk{nq y 2 |X " x 0 ´hvq

" P ˆF 1 pY p1q |x 0 ´hvq ď k n n k F 1 pU 1 pn{pky 1 q|x 0 q|x 0 ´hvq, F 2 pY p2q |x 0 ´hvq ď k n n k F 2 pU 2 pn{pky 2 q|x 0 q|x 0 ´hvq|X " x 0 ´hv ˙.
Then, by the result of Lemma 1 and the uniformity of the convergence in Assumption pRq, we have that T 2,n Ñ 0 as n Ñ 8. Now, consider the variance. We have

kh d VarpT n py 1 , y 2 |x 0 qq " nh d VarpK h px 0 ´Xq1l tF 1 pY p1q |x 0 qďpk{nq y 1 , F 2 pY p2q |x 0 qďpk{nq y 2 u q k " }K} 2 2 n k E " 1 h d }K} 2 2 K 2 ˆx0 ´X h ˙1l tF 1 pY p1q |x 0 qďpk{nq y 1 , F 2 pY p2q |x 0 qďpk{nq y 2 u  ´kh d n ! n k E " K h px 0 ´Xq1l tF 1 pY p1q |x 0 qďpk{nq y 1 , F 2 pY p2q |x 0 qďpk{nq y 2 u ı) 2 ,
from which the result follows.

Proof of Lemma 3

Using Assumption pDq, we have r s n puq "

F 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv F 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 " A 1 px 0 ´hvq A 1 px 0 q ´U1 ´n k ˇˇx 0 ¯¯1 γ 1 px 0 q ´1 γ 1 px 0 ´hvq u γ 1 px 0 q γ 1 px 0 ´hvq ˆ1 `1 γ 1 px 0 ´hvq δ 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv 1 `1 γ 1 px 0 q δ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯.
This implies that ˇˇr s n puq ´u γ 1 px 0 q γ 1 px 0 ´hvq ˇď

u γ 1 px 0 q γ 1 px 0 ´hvq "ˇˇˇˇA 1 px 0 ´hvq A 1 px 0 q ´1ˇˇˇˇ´U 1 ´n k ˇˇx 0 ¯¯1 γ 1 px 0 q ´1 γ 1 px 0 ´hvq ˆˇˇˇˇˇ1 `1 γ 1 px 0 ´hvq δ 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv 1 `1 γ 1 px 0 q δ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇˇˇǓ 1 ´n k ˇˇx 0 ¯¯1 γ 1 px 0 q ´1 γ 1 px 0 ´hvq ´1ˇˇˇ1 `1 γ 1 px 0 ´hvq δ 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv 1 `1 γ 1 px 0 q δ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇˇˇ1 `1 γ 1 px 0 ´hvq δ 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv 1 `1 γ 1 px 0 q δ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯´1 ˇˇˇˇˇ, .
-

": u γ 1 px 0 q γ 1 px 0 ´hvq tT 1 `T2 `T3 u.
Using Assumption pHq and the inequality |e x ´1| ď |x| e |x| , we deduce that, for n large,

ˇˇˇA 1 px 0 ´hvq A 1 px 0 q ´1ˇˇˇˇď C h η A 1 (6.18) ˇˇˇ´U 1 ´n k ˇˇx 0 ¯¯1 γ 1 px 0 q ´1 γ 1 px 0 ´hvq ´1ˇˇˇˇď C h ηγ 1 ln n k . (6.19) 
Now, direct computations yield, for n large,

T 3 ď C ˇˇδ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇ" ˇˇˇγ 1 px 0 q γ 1 px 0 ´hvq ´1ˇˇˇδ 1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv δ1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇˇˇˇ( 6 .20) 
`ˇˇˇˇˇδ

1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ´hv δ1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯δ1 ´u´γ 1 px 0 q U 1 ´n k ˇˇx 0 ¯ˇˇx 0 δ1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯´1 ˇˇˇˇˇ, .
-.

Using the assumed form for δ 1 py|xq, pHq, and the uniform bound from Proposition B.1.10 in de Haan and Ferreira (2006) with 0 ă ε ă β 1 px 0 q, we obtain, for n large, that

T 3 ď C ˇˇδ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇ! h ηγ 1 `uγ 1 px 0 qβ 1 px 0 q ´1 `u˘γ 1 px 0 qε "h η B 1 `u´Ch ηε 1 h ηε 1 ´| ln u| `ln n k ¯ı `uγ 1 px 0 qpβ 1 px 0 q˘εq `ˇˇu γ 1 px 0 qβ 1 px 0 q ´1ˇˇˇ) . (6.21) 
Since ˇˇr s n puq ´uˇˇˇď ˇˇr s n puq ´u γ 1 px 0 q γ 1 px 0 ´hvq ˇˇ`u ˇˇu γ 1 px 0 q´γ 1 px 0 ´hvq γ 1 px 0 ´hvq ´1ˇˇď ˇˇr s n puq ´u γ 1 px 0 q γ 1 px 0 ´hvq ˇˇ`Cu 1˘Ch ηγ 1 h ηγ 1 | ln u|, (

combining (6.18), (6.19), (6.21) with (6.22), Lemma 3 is established.

Proof of Lemma 4

We use the following decomposition along with the Lipschitz property of the function R:

? kh d ˇˇˇż 8 0
rR pr s n puq, t n py 2 q|x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇď ? kh d ˇˇˇż δn 0 rR pr s n puq, t n py 2 q|x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇ? kh d ˇˇˇż Tn δn rR pr s n puq, t n py 2 q|x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇ? kh d ˇˇˇż 8 Tn rR pr s n puq, t n py 2 q|x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇď ? kh d ˇˇˇż δn 0 R pr s n puq, t n py 2 q|x 0 q du ´γ1 px 0 q ˇˇ?

kh d ˇˇˇż δn 0
Rpu, y 2 |x 0 qdu ´γ1 px 0 q ˇˇ?

kh d
ż Tn δn r|r s n puq ´u| `|t n py 2 q ´y2 |s du ´γ1 px 0 q `2 sup uě0, 1 2 ´ζďy 2 ď2`ζ Rpu, y 2 |x 0 q ? kh d T ´γ1 px 0 q n ": T 1 `T2 `T3 `T4 , for ζ ą 0 small and where δ n Ñ 0 and T n Ñ 8, as n Ñ 8.

Now, since Rpy 1 , y 2 |x 0 q ď y 1 ^y2 , using Lemma 3, and assuming h ηε 1 ^ηγ 1 | ln δ n | Ñ 0, we obtain after tedious calculations, for n large, 

C ? kh d T 1´γ 1 px 0 q n ! h η A 1 `hηγ 1 ln n k `hηγ 1 ln T n `ˇˇδ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇT pβ 1 px 0 q`εqγ 1 px 0 q n ) `C? kh d δ ´γ1 px 0 q n ! h η A 2 `hηγ 2 ln n k `ˇˇδ 2 ´U2 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇ" h η B 2 `hηε 2 ln n k ı) (6.24)
assuming h ηε 1 ^ηγ 1 ln T n Ñ 0.

Finally

T 4 ď C ? kh d T ´γ1 px 0 q n . (6.25) 
Take δ n " h ξ and T n " n κ , with ξ and κ positive numbers, and 0 ă ε ă β 1 px 0 q. Combining (6.23), (6.24) and (6.25), the first part of Lemma 4 follows if the sequences δ n and T n are chosen such that α ´∆ rd ´2ξγ 1 px 0 q `2pξ ^ηA 2 ^ηB 2 ^ηγ 2 ^ηε 2 qs ă 0, α ´∆d ´2κγ 1 px 0 q ă 0, α ´∆d `2κp1 ´γ1 px 0 qq ´2∆pη A 1 ^ηγ 1 q ă 0, α ´∆d ´2p1 ´αqγ 1 px 0 qβ 1 px 0 q `2κr1 `pβ 1 px 0 q `εqγ 1 px 0 q ´γ1 px 0 qs ă 0.

Note that this is possible if we proceed as follows: ' α and ∆ are chosen as stated in Lemma 4; ' κ is chosen such that α ´∆d 2γ 1 px 0 q ă κ ă min ˆ1 ´α, 2∆pη A 1 ^ηγ 1 q ´pα ´∆dq 2p1 ´γ1 px 0 qq , 2p1 ´αqγ 1 px 0 qβ 1 px 0 q ´pα ´∆dq 2r1 ´γ1 px 0 q `pβ 1 px 0 q `εqγ 1 px 0 qs ˙;

' ξ is chosen such that

α ´∆d 2∆p1 ´γ1 px 0 qq ă ξ ă η A 2 ^ηγ 2 ^ηB 2 ^ηε 2 .
Note that the choices of κ and ξ only depend on those of α and ∆.

The second part of Lemma 4 is similar, although simpler. Indeed, a decomposition of the quantity of interest this time into two parts yields ? kh d ˇˇˇż 8 0 rR ps n puq, y 2 |x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇď ? kh d ˇˇˇż Tn 0 rR ps n puq, y 2 |x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇ? kh d ˇˇˇż 8

Tn rR ps n puq, y 2 |x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇď

´?kh d ż Tn 0 |s n puq ´u| du ´γ1 px 0 q `2 sup uě0, 1 2 ďy 2 ď2

Rpu, y 2 |x 0 q

? kh d T ´γ1 px 0 q n ď ´?kh d |δ 1 pU 1 p n k |x 0 q|x 0 q| |γ 1 px 0 q `δ1 pU 1 p n k |x 0 q|x 0 q| ż Tn 0 u ˇˇˇˇδ1 pu ´γ1 px 0 q U 1 p n k |x 0 q|x 0 q δ 1 pU 1 p n k |x 0 q|x 0 q ´1ˇˇˇˇˇd u ´γ1 px 0 q `C? kh d T ´γ1 px 0 q n ď C ? kh d ˇˇδ 1 ´U1 ´n k ˇˇx 0 ¯ˇˇx 0 ¯ˇˇT 1´γ 1 px 0 q`pβ 1 px 0 q`εqγ 1 px 0 q n `C? kh d T ´γ1 px 0 q n .
This achieves the proof of Lemma 4.

Proof of Lemma 5

In this proof, as mentioned above, we will use the Skorohod representation with keeping the same notation. First remark that

1 n ř n i"1 K h px 0 ´Xi q1l tY p2q i ąunu F 2 pu n |x 0 q " F 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q T n ´8, n k F 2 pu n |x 0 q ˇˇx 0 ¯, a.s. .
We have, with r n :"

b nh d F 2 pu n |x 0 q, ˇˇˇr n " F 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q T n ´8, n k F 2 pu n |x 0 q ˇˇx 0 ¯´f X px 0 q  ´W p8, 1q ˇˇď ˇˇ?kh d " T n ´8, n k F 2 pu n |x 0 q ˇˇx 0 ¯´n k F 2 pu n |x 0 qf X px 0 q ı ´W ´8, n k F 2 pu n |x 0 q ¯ˇ? kh d ˇˇˇˇd F 2 pu n |x 0 q F 2 pU 2 pn{k|x 0 q|x 0 q ´1ˇˇˇˇˇˇˇˇT n ´8, n k F 2 pu n |x 0 q ˇˇx 0 ¯´n k F 2 pu n |x 0 qf X px 0 q ˇW ´8, n k F 2 pu n |x 0 q ¯´W p8, 1q ˇř n ˇˇˇF 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q ´1ˇˇˇˇˇˇˇT n ´8, n k F 2 pu n |x 0 q ˇˇx 0 ¯´n k F 2 pu n |x 0 qf X px 0 q ˇˇ. (6.26) 
From (6.12) combined with the Skorohod construction, we have

r n ¨1 n ř n i"1 K h px 0 ´Xi q1l tY p2q i ąunu F 2 pu n |x 0 q ´fX px 0 q ' W p8, 1q.
Finally

r n ˜p F n,2 pu n |x 0 q F 2 pu n |x 0 q ´1¸" r n ¨1 n ř n i"1 K h px 0 ´Xi q1l tY p2q i ąunu F 2 pu n |x 0 qf X px 0 q ´1' `rn f X px 0 q ´f n px 0 q f X px 0 q fn px 0 q 1 n ř n i"1 K h px 0 ´Xi q1l tY p2q i ąunu F 2 pu n |x 0 q W p8, 1q f X px 0 q .

Proof of Lemma 6

To prove the lemma we will use the idea of [START_REF] Wretman | A simple derivation of the asymptotic distribution of a sample quantile[END_REF], applied to our situation. We have, for z P R, and u n from Lemma 5 taken as U 2 pn{k|x 0 qp1 `z{ ? kh d q, that P ´?kh d pp u n ´1q ď z "

P ˜bnh d F 2 pu n |x 0 q ˜p F n,2 pu n |x 0 q F 2 pu n |x 0 q ´1ḑ b nh d F 2 pu n |x 0 q ˆF 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q ´1˙˙.
We have that in the present context

a n :" b nh d F 2 pu n |x 0 q ˆF 2 pU 2 pn{k|x 0 q|x 0 q F 2 pu n |x 0 q ´1˙Ñ z γ 2 px 0 q . Let H n denote the distribution function of b nh d F 2 pu n |x 0 qp p F n,2
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1 K h px 0 ´Xi q1l tF 1 pY p1q i |x 0 qďpk{nqrpn{kqF 1 1 K h px 0 ´Xi q1l tF 1 pY p1q i |x 0

 1110 ps|x 0 qs, F 2 pY qďpk{nqsnpuq, F 2 pY p2q i

  ), Escobar-Bach et al. (2018a, b), Castro et al. (2018) and Mhalla et al. (2019).

  η0 du ´γ1px0q ˇˇˇˇą ε ¸. According to Lemma 3 in Cai et al. (2015) ˇˇˇż T 0

T 1 u du ´γ1 px 0 q ´?kh d ż δn 0 |r s n puq ´u| du ´γ1 px 0 q ď C ? kh d δ 1´γ 1 px 0 q n . ( 6 . 23 )

 10n623 As for T 3 , using again Lemma 3 and following the lines of proof of Lemma 1, we have, for n large, T 3 ď ´?kh d ż Tn 0 |r s n puq ´u| du ´γ1 px 0 q ´?kh d ż Tn δn |t n py 2 q ´y2 | du ´γ1 px 0 q ď

Figure 1 :

 1 Figure 1: Model 2: γ 1 pxq (left) and γ 2 pxq (right) as a function of x.

Figure 2 :

 2 Figure 2: Model 3: γ 1 pxq (left) and γ 2 pxq (right) as a function of x.

Figure Model 1 ,

 1 Figure Model 1, boxplots of θ n for 500 simulations of size n " 500 (left) and n " 1000 (right) for k{n " 2% (top row) and k{n " 10% (bottom row). The red curve shows the true value of θ k{n .

Figure 4 :

 4 Figure 4: Model 2, boxplots of θ n for 500 simulations of size n " 500 (left) and n " 1000 (right) for k{n " 2% (top row) and k{n " 10% (bottom row). The red curve shows the true value of θ k{n .

Figure 5 :

 5 Figure 5: Model 3, boxplots of θ n for 500 simulations of size n " 500 (left) and n " 1000 (right) for k{n " 2% (top row) and k{n " 10% (bottom row). The red curve shows the true value of θ k{n .

Figure 6 :

 6 Figure 6: Normal quantile plots of ? kh ln θ n {θ k{n . Top: Model 1, x 0 " 3, middle: Model 2, x 0 " 0.3, and bottom: Model 3, x 0 " 5. The quantile plots are constructed with k taken as 5% of n, with n " 500 (left) and n " 1000 (right).

Figure 7 :

 7 Figure 7: FEMA claim data: local Hill plots for Y p1q , total claim amount (left), and Y p2q , capital insured (right).

Figure 8 :

 8 Figure 8: FEMA claim data: p Rp1.5, 1.5|x 0 q as a function of k, for location (latitude, longitude)=(33.84,-84.45) on 2009, July 1 (left), and 2017, January 1 (right).

Figure 9 :

 9 Figure 9: FEMA claim data: θ n with k{n " 1% (solid line) and k{n " 10% (dashed-dotted line), as a function of time, for location (latitude, longitude)=(33.84,-84.45).

Figure 10 :

 10 Figure 10: FEMA claim data: θ n with k{n " 1% (left) and k{n " 10% (right), with pointwise 95% confidence intervals, as a function of time, for location (latitude, longitude)=(33.84,-84.45).

  ˇˇˇˇ? kh d rT n py 1 , y 2 |x 0 q ´EpT n py 1 , y 2 |x 0 qqs ´W py 1 , y 2 q

			The Skorohod
	representation theorem gives then (with keeping the same notations)	
	sup y 1 ,y 2 Pp0,T s	1 y η	ˇˇˇˇÑ 0, a.s.
	and		
	sup		
	y 2 Pp0,T s		

  rT n ps n puq, y 2 |x 0 q ´E pT n ps n puq, y 2 |x 0 qqs du ´γ1px0q ˇˇˇ, rT n ps n puq, y 2 |x 0 q ´E pT n ps n puq, y 2 |x 0 qqs ´W ps n puq, y 2 q

			ˇˇˇż	8	W pu, y 2 qdu ´γ1px0q ˇˇˇ,
		1 2 ďy2ď2	T
	I 2,n pT q :" kh d I 3,n pT q :" sup 1 2 ďy2ď2 ˇˇˇż 8 T ? sup ˇˇˇˇż T ! ? kh d )	du ´γ1px0q ˇˇˇˇ,
		1 2 ďy2ď2	0
			ˇˇˇˇż
	I 4,n pT q :"	sup	
		1 2 ďy2ď2	

T 0 rW ps n puq, y 2 q ´W pu, y 2 qs du ´γ1px0q ˇˇˇˇ.

  n puq, t n py 2 q|x 0 q ´Rpu, y 2 |x 0 qs du ´γ1 px 0 q ˇˇˇÝ Ñ 0

	one has that	
	sup vPS K rR pr s and sup 1 2 ďy 2 ď2 ? 8 kh d ˇˇˇż 0 sup ? kh d ˇˇˇż 8
	1 2 ďy 2 ď2	0

  0, ? kh d h ηγ 2 ln n{k Ñ 0, ? kh d |δ 2 pU 2 pn{k|x 0 q|x 0 q|h η B 2 Ñ 0, and ? kh d |δ 2 pU 2 pn{k|x 0 q|x 0 q|h ηε 2 ln n{k Ñ 0. Then, for any sequence u n satisfying

Acknowledgements

The authors would like to thank the referees and Associate Editor for their helpful comments. The research of Armelle Guillou was supported by the French National Research Agency under the grant ANR-19-CE40-0013-01/ExtremReg project and an International Emerging Action (IEA-00179). Computation/simulation for the work described in this paper was supported by the DeIC National HPC Centre, SDU.