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Conditional marginal expected shortfall
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55, 5230 Odense M, Denmark
(2) Institut Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue
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Abstract

In the context of bivariate random variables (Y (), Y (?)) the marginal expected shortfall,
defined as E(YM|Y®) > Q,(1 — p)) for p small, where Qo denotes the quantile function of
Y2 is an important risk measure, which finds applications in areas like, e.g., finance and
environmental science. We consider estimation of the marginal expected shortfall when the
random variables of main interest (Y1), Y (?)) are observed together with a random covariate
X, leading to the concept of the conditional marginal expected shortfall. The asymptotic
behavior of an estimator for this conditional marginal expected shortfall is studied for a wide
class of conditional bivariate distributions, with heavy-tailed marginal conditional distribu-
tions, and where p tends to zero at an intermediate rate.

Keywords: Marginal expected shortfall, empirical process, Pareto-type distribution, tail
dependence.

1 Introduction

In the past years, many risk measures have been introduced in the literature, and these have
been used to determine the amount of an asset to be kept in reserve in the financial framework.
The most famous of these are the Value-At-Risk (VaR) defined for a random variable X as the
p—quantile

Q(p) :=inf{zx > 0: P(X < x) = p}, for pe (0,1),

and the Conditional Tail Expectation (CTE) defined as
CTE,[X] =E(X|X > Q(p)), for pe (0,1).

The latter risk measure is more conservative than the VaR for a same level of degree of confi-
dence (see Landsman and Valdez, 2003) and it also satisfies the desirable property of being a
coherent risk measure as defined by Artzner et al. (1999). For all these reasons, the CTE has
been extensively studied and also it has been generalized to the multivariate framework, see,
e.g., Cai and Li (2005), Cai et al. (2015), and Di Bernardino and Prieur (2018). More precisely,
if (Y™, Y ®) denote a pair of risk factors, the CTE can be extended into E(Y (VY ) > Qs (p)),
where Q2(p) is the p—quantile of the risk Y ®). In such a multivariate context, this risk measure



is well-known as the Marginal Expected Shortfall (MES). It was introduced by Acharya et al.
(2017), and used to measure the contribution of a financial institution to an overall systemic risk.
The ongoing global credit crisis and other former financial crises have demonstrated the vital
aspect of adequate risk measurement. For a financial firm, the MES is defined as its short-run
expected equity loss conditional on the market taking a loss greater than its VaR. The MES is
very simple to compute and therefore easy for regulators to consider. When estimating this risk
measure, one often has the availability of additional information given by covariates, and these
are important to take into account in order to obtain more precise estimates. This leads to the
concept of conditional marginal expected shortfall.

In this paper, we will consider the estimation of the conditional marginal expected shortfall
when the random variables of main interest (Y (), V() are recorded together with a random
covariate X € RY. We will denote by Fj(.|z) the continuous conditional distribution function of
Y, j =1,2, given X = x, and use the notation F;(.|z) for the conditional survival function and
Uj(.|z) for the associated tail quantile function defined as Uj(.|z) = inf{y : F;(y|z) > 1—-1/.}.
Also, we will denote by fx the density function of the covariate X and by z( a reference position
such that 29 € Int(Sx), the interior of the support Sx < R? of fx, which is assumed to be non-
empty. Our aim will be to estimate the conditional marginal expected shortfall, given X = x,

and defined as )
0, =E [Y(l)‘y(Z) > Us (‘«T()) ;xo] ,
b
where p is small.
The remainder of the paper is organized as follows. In Section 2, we introduce our estimator

for the conditional marginal expected shortfall and we establish its main asymptotic properties.
All the proofs of the results are postponed to Section 3.

2 Estimator and asymptotic properties

We assume Y1) and Y@ follow a conditional Pareto-type model.

Assumption (D) For all x € Sx, the conditional survival functions of YW, j=1,2, satisfy

Filyl) = Aja)yVo® (1+ 6j<y|x>),

1
%i(@)
where Aj(z) > 0, vj(x) > 0, and |§;(.|z)| is normalised regularly varying with index —p;(x),
,33(1') >0, e,

u

5i(ylz) = Bj(x)exp (fgj(mdu>,

with Bj(x) € R and €;(y|r) — —pfj(x) as y — 0. Moreover, we assume y — €j(y|x) to be a
continuous function.



Under Assumption (D), Fi(.|x) and Fy(.|z) have density functions. Indeed, straightforward
differentiation gives

(lz) = @)1y ) sl | -
) = 24y 1+ (i et 0l | g = 1.2 0

Now, let (Yi(l),Y-@),Xi), i = 1,...,n, be independent copies of (Y1), Y®) X). We consider

1
estimating the conditional marginal expected shortfall when p — 0 at an intermediate rate, i.e.

p = k/n, where k,n — o such that k/n — 0. A natural idea is then to study

AN (1)
O := EZ i)Y H{Y-(2>>r72<n/k\xo>}’

where ﬁg(.|$0) is an estimator for Us(.|zg), to be introduced later, and Kp, (.) := K(./hy)/he,
with K a joint density function on R?, h,, is a positive non-random sequence of bandwidths with
hy, — 0 if n — o0, 14 is the indicator function on the event A.

To simplify the situation, let us assume for the moment that Us(.|zo) is known and consider

~

BN (1)
On := %Z 200 = XY; Ly @ vl

Clearly, assuming Fj(y|zo) is strictly increasing in y, we have

2

S
3
I

o0
1
fo k ; K (@0 = Xy 02 3 Uy @12 0 )y 29

© 1 n
- fo k;Khn(xo BRAQLNVEEI LTI
© q n
_ fo Eilehn(mo—Xz-)]l{flm(”|xo><<k/n>[<n/k)ﬁ<s\xo>],F2<Y5”Iwo><k/n}d8
B —1(x0)
= —Ui(n/k|wo) f ZKhn K L)<y (), o (VP oy tmy 0

where sy (u) := % Fy (w11 @)U (n/k|zo)|z0). Note that under (D), we have s, (u) — u asn — 0.

The key statistic to consider is thus, for zp € Int(Sx),

?r\i—‘

n
T (y17y2’w0 Z H{F (Y(1)|:C0)<k/n Y1, FQ(Y( )|$0)<k/n v}

where y1,y2 > 0.



As a first main result we study the weak convergence of the process

{ ind Lo y2120) — E(Ta(y1, y2|20))
n m
Y1

e <0,T]}, @)

for any T' > 0, finite, and 0 < n < 1/2 — x, where x > 0 small. This will require some further
assumptions.

In order to deal with the regression context, the functions appearing in Fi(y|z) and Fy(y|z) are
assumed to satisfy the following Holder conditions. Let |.| denote some norm on R

Assumption (H) There exist positive constants My, , Ma,, M,,, Mp;, Mc,, N5y, 14;, ;5 NB;
and ne;, where j = 1,2, such that for all x,z € Sx:

[fx(z) — fx(2)] < M|z —2"x,
|Aj(z) — Aj(2)] < Mg,z — 2™,

v (@) = ()] < My, llz— 2™,
|Bj(x) — Bj(2)| < Mp;|z— 2",

sup e (ylw) —g;(ylz)| < M,lla— 2™

y=1

We also impose a condition on the kernel function K, which is a standard condition in local
estimation.

Assumption (K) K is a bounded density function on R?, with support Sk included in the unit
ball in R

Next, a uniform convergence result is needed for the joint conditional distribution of (Y (1), Y (2)),
Let Ry(y1,ye|x) := tP(F1(Y W) < y1/t, Fo(YP|z) < yo/t|X = 2).

Assumption (R) For all x € Sx we have
Jm Ry (y1, y2|2) = R(yr, y2|2),
uniformly in y1,y2 € (0,T], for any T > 0, and x € B(xg, hy).
The weak convergence of (2) is then established in the following theorem.

Theorem 2.1 Assume (D), (H), (K), (R) with x — R(y1,y2|x) being a continuous function,
xo € Int(Sx) with fx(x9) > 0, and y — F;(y|zo), j = 1,2, are strictly increasing. Consider
sequences k — oo and h, — 0 as n — o, in such a way that k/n — 0, khﬁ — o0 and
hot N2 M N2 1y ke — 0. Then for n € [0,1/2 — x), where x > 0, small, we have,

Tn(y1, y2lzo) — B(Tu(y1, y2lz0))  Wiy1,2)

Jehd
" yi yi

, 3)



in D((0,T1?), for any T > 0, where W (y1,y2) is a zero centered Gaussian process with covariance
function

EW (y1, y2)W (41, 92)) = HKﬂng(UUO)R(Z/l A Y1, Y2 A G2|To).

We also introduce the following weak convergence result for a related process. This process will
be useful in establishing the asymptotic properties of the quantile estimator Us(n/kl|zo). Let
fn(zo) :==1/n > | Kp, (z0 — X;) be a classical kernel density estimator.

Theorem 2.2 Assume (D), (H), (K), and xg € Int(Sx) with fx(xo) > 0. Consider sequences
k — o and h, — 0 as n — o0, in such a way that k/n — 0, kh® — o, ha?Inn/k — 0,
VERE hyX "2 0, (/KR B2 Inn/k — 0, \/khd |62 (Us(n/k|ao)|zo)|[hn™? — 0, and

N khd |52 (Us(n/k|zo)|zo) | hn 2 Inn/k — 0. Then, we have

/ Tn(OO,y2|9Co) . — W(Ooay2)
khﬁ ( ﬁl(l’o) y2> fX(xO)

in D((0,T]), for any T > 0, where W (o0, y2) is a zero centered Gaussian process with covariance
function

E(W (00, y2)W (0, %2)) = |IK|3.fx (z0) (Y2 A T2)-

The joint weak convergence of the above two processes can be established by showing the joint
finite dimensional weak convergence of them, combined with joint tightness. The joint finite
dimensional convergence can be established by using the Cramér-Wold device (van der Vaart,
1998, p. 16). This is a standard, but tedious, calculation which is for brevity omitted from the
paper. Note that the joint tightness follows from the individual tightness (similarly to Lemma
1 in Bai and Taqqu, 2013).

Now, generalise gn to gn(yg), defined as

~

1y e
en(y2) h ;Kh" (x() N XZ)Y’ ]l{YZ-(%?Uz(n/(kw)\a:o)}'

el

Assuming F}(y|zg) strictly increasing in y, we have

o0

Oue) = ~Us (phon) | 7o (sul) ele)du 0.

Proposition 2.1 Assume (D), (H), (K), (R) with x — R(y1,y2|z) being a continuous function,
xo € Int(Sx) with fx(zo) > 0, and y — Fj(ylzo), j = 1,2, are strictly increasing. Consider
sequences k — oo and h, — 0 as n — o, in such a way that k/n — 0, khfl — o0 and
Ryt "2 M2 1y Jle — 0. Then, for yi(xo) < 1/2 — K, with & > 0 small, we have

VR s N ® ) )
sup  |——"— |0, (y2) — E(0,,(y +j W (u,y2)du mn(zo)| P,
1<yy<a | Un(n/k|zo) [ (y2) = E(6n( 2>)] . (u,y2)




The main result of this paper is the asymptotic normality of 6,, := Hn/ n(x 0~) which is an esti-
mator for the conditional marglnal expected shortfall 0}, /,. Note that 0, = 0y, (€n), where €, :=

ZFg(unAUg(k\xo)\xo) with 4, = Ug(k|x0)/U2(k|:c0). To estimate Us(.|xg) we use ﬁg(.|l’0) =
inf{y : Fj,2(y|lzg) =1 —1/.} with
Z?zl Khn (1‘0 - Xi)ﬂ{}’i(2><y}

i1 K, (2o — Xi) ’

the empirical kernel estimator of the unknown conditional distribution function of ¥ given
X = xg. See for instance Daouia et al. (2011).

Fra(ylzo) ==

In order to obtain the weak convergence of 6,,, we need to introduce the following second order
condition.

Assumption (S). There ezist B > v1(zo) and T < 0 such that, as t —

R - R )
sp sup | t(ylay2|$)ﬂ (Y1, y2lzo)| _ o).
zeB(zo,hn) 0<y1<007%<y2<2 by A 1

Theorem 2.3 Assume (D), (H), (K), (S) with x — R(y1,y2|z) being a continuous function,
and y — Fj(y|zo), j = 1,2, are strictly increasing. Let xg € Int(Sx) such that fx(zo9) > 0.
Consider sequences k = |n“l1(n)| and hy, = n~%0(n), where €1 and ly are slowly varying
functions at infinity, with o € (0,1) and

e <d 271 (20) (A, A 11y) " d+ 200 — (20)) (113 A g A 118y A g A g)
a  2(1— a)vi(o)Bi(zo) a—2(1— a)(yi(zo) A (Ba(z0)r2(20)) A (—7)))

a
A< —.
<A<

d d+d(Bi(xo) +&)v1(20)’ d

Then, for y1(xo) < 1/2 — K, with kK > 0 small, we have
O W (o0, 1) 1 S0 W(s, 1)ds~m (@)
AJkRE [ —— —1 1—y(x +
<9k/n > ~ () Ix(zo SO (s, 1|zg)ds— (o)
The conditions on k and h,, in Theorem 2.3 are due to the method of proof of the auxiliary

result given in Lemma 3.4. Also in Cai et al. (2015) one needed a condition on the growth of k,
but in the context without covariates.

3 Appendix

Lemma 3.1 Assume (D) and (H) and xo € Int(Sx). Let (tp)n>1 and (hp)n>1 be arbitrary
sequences satisfying t, — o and h, — 0 such that hy,”’ ’ Int, — 0, asn — 00, and 0 < n < 1.
Then

tnfj(Uj (tn/y“TO)‘x)
y’]

— ¢ =0, asn — o0,



uniformly in y € (0,T] and x € B(xo, hy).
Proof

First note that, by continuity of y — F}(y|x),

FyUytafylzo)le)
Fj(Uj(tn/ylxo)|zo)
Then, from condition (D), and a straightforward decomposition,

tn (U (tn/ylzo)lz) 1,
Y1 Y

< B 0 ) et oy
Aj(o)

tnFj(Uj(tn/ylzo)|z) =y

85 (Uj(tn/ylzo)|2)
i (tn/ylwo)|wo)

J

6;(U.
q1+%ﬁ<<mwmm
1+35 ($0)6 (Uj(tn/ylzo)|z0)
L+ 210U (ta/ylzo)2) 1‘}
L+ 505 (Uj (tn/ylz0) o)

I ‘(Uj(tn/y|xo))1/”(’30)’1/”(1) _

Fach of the absolute differences in the right-hand side of the above display can be handled by
condition (H). Obviously, for some constant C,

Aj(x)
Aj(z0)

- 1‘ <ChYY, for x e B(wg, hn).

Next, using the inequality |e* — 1| < el?l|z|, we have, for some constant C' (not necessarily equal
to the one introduced above),

Ny )
(U; (tny)0)) V15 @) =10 @) _ 1‘ < eChn? WU (tn ko) ORI 10 U (2, fy| o).
For distributions satisfying (D), one easily verifies that
Uj(talao) = (A;(20)) V57 ™ (1 + aj(ta|0) (4)

where |a;(.|zo)| is regularly varying with index equal to —v;(zo)B;(x0). Hence, for some con-
stants C7 and C3, not depending on y, one gets for x € B(xg, hy,) and n large,

(Ut fylag)) sz 5) 1 < ¢y fGat G (1 Ity — 0 Iy
Finally, for n large,

L+ 50505 (Uj (tn/ylo) )
+3 (930)6 (Uj(tn/ylxo)|zo)

1 _ 1
vi(x) (o)

3;(Uj (tn/ylzo)|z)
65 (Uj(tn/ylzo)|z0) 1‘ "

b

<C%((mMmMM{

7



By the assumptions on d; we obtain

5;(U;(tn/ylzo)lz) 1’
8;(U;(tn/y|wo)|w0)

and, hence, using (H), for x € B(xg, h,,) and n large,

1+ =550 (U; (ta/ylzo)|z)

Bi(z) _ 1‘ esgjun/ylm) Mdu +
Bj(zo)

el

U, (tn/ylzg) sj(u\z):::j(u\zo)du B ‘
b

75 (@) T ANBy L Cohn Y —Cohn (3,7 e
-1 <Cl[hn] T L TR (hjlnt —h]lny) .
L+ A,j(lg,;o)éj(Uj(tn/kaO)’xO) " " v
Combining the above results establishes the lemma. |

Lemma 3.2 Assume (D), (H), (K) and (R) with x — R(y1,y2|z) being a continuous function,
and xo € Int(Sx) such that fx(xg) > 0. Consider sequences k — o and h, — 0 as n — o0 in
such a way that k/n — 0 and hy*""2"" "2 Inn/k — 0. Then, as n — o

E(Tn(y1, y2120)) —  fx(xo)R(y1,y2|x0),
khiVar(Ty(y1,y2lw0)) — | K3 fx(z0) R(y1, y2|xo).

Proof
We have
n
E(Ty(y1,y2|70)) = 7E [Khn (o = X)LeE, (v ) o) <h/n g1, Fa (¥ @ Jo) <h/n yQ}]
n — _
= n ) B (0)P(F1(YW|zo) < k/ny1, Fa(YP|zo) < k/n y2| X = m9 — hyv)
K
X fx(xg — hpv)dv
= K(v)R(y1,y2|r0 — hnv) fx (0 — hypv)dv
Sk
Mp(FE (v F.(v@ _
+ K(v) kIP’(Fl(Y |xo) < k/nyr, Fo(Y'|xz0) < k/n yo| X = x9 — hyv)
Sk
—R(y1, y2|z0 — hnv)]fx(ﬂco — hpv)dv
=: Tl,n + T2,n-

Concerning T ,,, by the continuity of fx(x) and R(yi,y2|z) at zg, we have that fx and R are
bounded in a neighborhood of zg, and hence, by Lesbesgue’s dominated convergence theorem

Ty — fx(zo)R(y1,y2|z0), as n — oo.
As for Ts p,

n

<  sup

T
’ " UGSK k

P(F1(YWzo) < k/n 1, Fo(YPag) < k/n ya| X = 2o — hav)

*R(yla 3/2|$0 - hnv)' S K('U)fX (QTO — hn’l})d’l},
K



and note that
P(F1(YWVlxo) < k/ny1, Fa(YP|ag) < k/n ya| X = 29 — hnv)

_ b n—
= P (Fl(Y(1)|l‘0 — hnU) < ﬁ %Fl(Ul(n/(ky1)|a:0)|xo — hnv),

S|
> 3

Fo(Y @)z — hpv) < = —Fa(Us(n/(ky2)|wo)|zo — hnv)| X = 20 — hnv> .

Then, by the result of Lemma 3.1 and the uniformity of the convergence in Assumption (R), we
have that 75, — 0 as n — 0.

Now, consider the variance. We have

nhiVar (K, (20 = X) Uz, (v 0)g)<h/n g1, Fa(y @leo)<k/n go)
k

khgVar(T,(y1, y2|z0)) =

= HKHQ%E [th@ <hn> H{Fl(Y(l)kco)Sk/n y1, F2(Y @ |20)<k/n y2}:|

_khi‘i{n

2
L TE | En (20 = X) 05, (g i, Fov @ gy in o]}

from which the result follows. [ |

Proof of Theorem 2.1

To prove the result we will make use of empirical process theory with changing function classes,
see for instance van der Vaart and Wellner (1996). To this aim we start by introducing some
notation. Let P be the distribution measure of (Y1), Y X), and denote the expected value
under P, the empirical version and empirical process as follows

Pf:= ffdP, P, f = ;Z F(FOYP X)) Gaf = AP - P,
=1

for any real-valued measurable function f : R2xR% — R. For a function class F, let N, (e, F, L2(P)),
denote the minimal number of e—brackets needed to cover F. The bracketing integral is then
defined as

0
Ty (8, F, La(P)) = L /I Ny (&, F, Lo(P))de.

We introduce our sequence of classes F;, on R? x R? as

Fn = {(u,z)—»fmy(u,z), Y€ (0,T]2}

where

hd ]liu:p\n,ium\n
fry(u,2) = y/nT"Khn(xo —z) tFa(f)<h) tan( 2lro)Sh/nz).
1

9



Denote also by F;, an envelope function of the class F,,. Now, according to Theorem 19.28
in van der Vaart (1998), the weak convergence of the stochastic process (3) follows from the
following four conditions. Let p,, be a semimetric, possibly depending on zy, making (0,77
totally bounded. We have to prove that

sup  P(fuy — fng)? — 0 for every 8, \, 0, (5)
Pag (4,9)<0n

PF; = O(1), (6)

PFg]l{Fn>€\/ﬁ} —> 0 for every € > 0, (7)

J1(6ns Fn, La(P)) — 0 for every 6, N\, 0, (8)

along with the pointwise convergence of the covariance function.

We start with verifying condition (5), with paz,(y,¥) = [y1 — 91| + [y2 — J2|. Denote Ay, =
(F1(YD|z0) < k/ny1, Fo(YP|xg) < k/n y2}. We have then

nhd 1, Ty \2
P(fn, — fn’, 2 — _n E KQ o — X < ny n,y)
Yy y) k hn( ) y717 y?
d 1 1 ) 9
= % E K]% (SL’O — X)[E # _ ’i‘;u X ‘ (9)
F ! Y1 Y1

We consider now three cases.

Case 1: y1 AY1 < 0n,. Assume without loss of generality that y; < ¢;. By expanding the square in
the above conditional expectation and using the fact that, e.g., A,, < {F1(YM|zg) < k/n y1},
we obtain the following inequality

f (L - Bas) x| < SPEO) <binuiX =0
7 ] S 2
Y1 Y1 Y1
+P(f1(Y(1)|$0) <k/ny|X =x)
_277 )
Y1

which, after substituting in (9) leads to

P(F(YW|zg) < k/ny1|X = 29 — hyo)

n
P(fay = fag)® < 37| K@) o Fx (20 = hyv)dv
Sk Y1
P(F1(YW]z0) < k/n 1| X = 20 — hyy
[ g PR S MRS = 00 = 0t g
k Sk U

Now note that

PF (YWD z0) < k/ny1|X = 2o — hnv) = F1 (Ui (n/(ky1)|z0)|mo — hnv),

10



which, together with the result of Lemma 3.1, motivates the following decomposition

P(fn,y - fn,?j)Q < 391727] KQ('U)fX(:L'O - hn’U)d’U

Sk
2 L ns 1-2n
+3 K=(v) TUEFl (Ui (n/(kyr)|zo)|zo — hnv) — 3 fx(zo — hpv)dv
Sk Y1

+gi‘2’7 K2(v) fx(xo — hyv)dv

Sk

2 L n - 127
+ | EKW) | =g E1 (Ui (k) o) |o — hnv) — 51 | fx (w0 — hav)dv.

Sk Y1

Using Lemma 3.1 and the fact that pg,(y,y) < 0, which implies g1 < 26, we get

Plfay = fag)® < 56,777 | K(0)fx (w0 = hnv)dv + o(1),
Sk
where the o(1) term does not depend on y; and 7.

Case 2: y1 AY1 > 6, and yo A Yo < 6, Assume without loss of generality that yo < . Similarly
to the approach followed in Case 1, we obtain

el (M )| _ 3P(Fa(YPlzg) < k/nyp|X =)
T TS Z 20
Y1 Y1 (y1 A 71)
P(FQ(Y(Q)‘Z'O) < k/n gQ‘X = CC)
(y1 A g1)2n ’
and thus
3y2 2
P ny — Jny 2 T — oo K= (v o — hn’U dv
(f Y f ,y) (yl /\y1)2’7 Sk ( )fX( 0 )
3y§n 2 1 ns 1-2
—_— K ———F — hpv) — K — hpv)d
NS . (v) 2k 2 (U2(n/(ky2)|xo)|zo — hnv) —yy " | fx (20 — hnv)dv
b2 | K (0) fx (w0 — hyv)do

(y1 A 51)% g,

ﬂgn 2 1 n _ 12y
L K2(0) | = Fy (U (n/ (k) 0) [0 — hv) — 52727 | fx (20 — hw) o

(y1 A g1)? 75" k

Again by Lemma 3.1 and using that 32 < 24,, we have that

P(foy = fag)® < 56,72 K*(v)fx(z0 — hpv)dv + o(1),
Sk

where the o(1) term does not depend on y2 and 7s.
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Case 3: y1 A Y1 > 0n and yo A §o > 0,. Let y v § denote the vector with the component-wise
maxima of y and 7, and similarly y A y is the vector with the component-wise mimima of y and

y. Then
4[
Note that

d 1 ) 1 ) 2
Plfoy—fo® < T2E [Kh (20— X)E [ (s~ o)
]]'An, vy IlAn, AY 2 1 ]' 2 1
(( yi?! _ y,y ) — (n — 77) ]lAn,yAg + ﬂ(ﬂAn,yvy - ﬂAn,yAgj)’ (10)

k yr Ag)"T (Y1 v gL)"
yi Ag)"T (yr v ogn)? v, Y Y1 A Y1

which leads to

yl 7)) 2 y (1) 5 B (Y (2) i = 20 —
< 2 K F1(YWlzg) < k/nyr A g1, Fo(Y'P|29) < k/nyo A 52| X = 20 — hpv
(y151)%" /~€
X fx(xg — hpv)dv
1

n _ _
+WE J:q KQ(U) [P <F1(Y(1)]a:o) <k/my v gjl,Fg(Y(2)|xo) <k/mnys v QQ‘X =0 — hnv)
K

—P (fl(Y(l)Lfno) <k/ny A gl,Fg(Y(Q)kvg) <k/nys Aye|X =x9— hnv)] fx(xo — hpv)dv
=: Ql,n + QQ,n-

As for Q1,,, we easily obtain

Qun < LI [ RT3/ 1 )l — ) s (0~ o

Now, by the mean value theorem, applied to (y) — g’17)2, and a decomposition motivated by
Lemma 3.1,

Ql,n

< (yAg) TPy —)? . K*(v) fx (20 — hpv)dv
K

7, (Ul(n/(k? U1 A g1)|x0)‘$0 — hnv> — (y1 A y1)1277]

X fx(xo — hpv)dv.

_\—2 =2 21} éf
+y1 A7) (1 — ) SKK()[(yMZh)Z"k

This then gives

Qin < 5,11_2’7 K2(’U)fx($0 — hpv)dv + 0o(1),
Sk

where the o(1) term does not depend on y; and 7.
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Concerning ()2, we have the following inequality

Q2,n
L n 2 i< Ty ® ; ) o _
< RS LK K*(v)P (k/n n A < F1(YWze) <k/nyr vin|X =0 hnv> fx(xg — hpv)dv
1 n 2 _ — @) B ’
— = < < =20 — hy, — hyv)do.
+(y1 AL, LK K=(v)P (k/n Yo Ao < Fo(Y'¥W|zg) < k/mnys v ia| X =z — h v) fx(zo — hpv)dv
= Q21n+ Q22n.

We only give details about Q2,1,,, the term Q2 2, can be handled analogously. Direct compu-
tations give

1 n
= K2
@, (y1 A §1)*1 k LK )

and, after substituting u = (n/k)F1(y|zo), we have

1 2 [PV AU (0 () o) — ) )
Quin = G |y, KO | ey~ bl

Using (1) and arguments similar to those used in the proof of Lemma 3.1 one obtains for n large
and some small £ > 0,

Ui (n/(k(y1Ag1))|z0)
f £ (yl0 — hav)dyfx (z0 — hpv)do,

Ur(n/(k(y1vi1))|zo)

S1(U(n/ (ku)|o)|xo — hnv)
SO (n/ (ku)l|zo)|xo)

where C' does not depend on y; and ;. Then, for n large enough,

< Cu™",

Quan & o [ wdu [ K)o — o)
210 S — u "du v) fx(xg — hpv)dv
" (yl A y1)2"7 Y1 AY1 Sk "
C o _ _
S GianE (yr A90) (Y1 v i1 — 1 A )

< Col-r
Combining all the above we have verified (5).
Now, we move to the proof of (6). A natural envelope function of the class F,, is

d 11—
Fn(u,z) = LhnKhn(CU() _ Z) {F1(ui|x0)<kT/n} '
[(0/E) Fr(unlao)]7

k

13



This yields

H{Fl(y(1)|r0)$kT/n}
(Fl (Y(l) ’xo))?’]

PF?

>3

) ( 2w~ X)E

)

(
(
(

B n\1-2n 9 ﬂ{fl(yunonkT/n} B
— E) K (v )E[ (F1 (V) [g))27 X =x9— hyv| fx(xo — hypv)dv
n\1-2n 1
= (- K? f dFy(ylzg — hpv) fx(zo — hpv)dv
I R0 o oy iyl = o) fe(zo = o)
n\1-2n J 1
+ J—
<k> (n/(kT)[z0) (F1(ylw0 — hinv))?1
{( y|x0‘ nU)) —1}dFl(y|:L‘0—hnv)fx(ajo—hnv)dv
$0

= QS,n(T)+Q47n( )

Concerning Q3 ,(T") we obtain by direct integration and a slight adjustment of Lemma 3.1, for
large n

@sall) = 1 —1277 (%)172” Sie K*()[Fy(Ur(n/(kT)|zo)|lro — hn)]' ™" fx (x0 — hnv)dv
T17217
- 1_ 2 LK K2() fx (20 — hyv)dv
T 1 _1277 JS K2(’U) [(ZFI(Ul(n/(kT)’.TO)’.TO — hnv)> e — T1_2’7} fx(xo — hpv)dv
< CoritheR a1

for k < 1—2n.

Concerning Q4. (T"), combining (D) with (#) gives the following bound, for n large,

(Fl(ylwo - hnv)>2n 1
Fi(ylwo)

"
< O (W P Iy + [ (yleo) 2

Ne
5 wlao) ly " B ) (12)

Each of the terms in the right-hand side of the above inequality needs now be used in Q4 (7"),
leading to the terms Q4 ;n(T), j = 1,...,4, studied below. First

Quin@ =1 (1) K2 JOO ! APy (y]20 — hav) fx (20 — hav)dy
4,1,n = Nn - — 1 0— Nn XXy — Nn .
k Sk U1 (n/ (KT o) (F'1(ylT0 — hn))?"
This term is clearly of smaller order than @3 ,(T") studied above and hence Q4,1,(T) = O(1).
For the second term in the right-hand side of (12) we need to study
Q0
1

n 1—27’]
n(T) = hZAIl - K? f 1n ] _
Qa2.n(T) (k) S (v) wry Falylzo — hav)

o dFy(y|lxg — hpo) fx (xo — hpv)dv

14



where t,(T) := Uy(n/(kT)|zo) and &1, := Cohp*. Let pu(y) := & s tiny 4 ysonl,
Applying integration by parts on the inner integral gives, for n large enough,

_ M n &1n . _
Qmﬁﬂ::(bl%ml«%?gwm SK%wwwwm%—mmlﬁam—mmw
n\1-2n M 9 @ = _ 1-2n B
() gy, K [ i) Patstzo ]! dy et — had

=: Q472,1,n(T) + Q4,2,2,H(T)'

We obtain, for n large enough
Quo1n(T) < Cho n(ty(T))[tn(T)]S T 2075
o),

by (4) and the fact that ha'* In(n/k) — 0 as n — 0.
Now consider Q4.22,(T"). We have

i Tl=2n 0 F —hoo)\'" " ( F =2
K2(v) f ou(y) ( 1@500 U)> < 1(y]zo) > dy
1-2n Js, tn(T) Fi(y|xo) F1(tn(T)|0)

X fx(xg — hpv)dv.

Qu22.n0(T)

For n large, with &, = Chyt,

=1 1-2n
(F1(y’:vo — hnv)> < Cyfn (1 +y2n T I y) ‘
F1(ylzo)

Substituting u = y/t,(T) we get

Qu220(T) < Cha M T 2[t, (T)]FHé1n . K?%(v) Loopn(tn(T)u)u&’" <1 + (tn(T)u)s2m bt ln(tn(T)u)>
y (Fl(tn(T)u]xo)
Fi(ta(T)|20)

Since F1(.|wg) is regularly varying, we can apply the Potter bound (see, e.g., de Haan and
Ferreira, 2006, Proposition B.1.9), and obtain, for n large enough

1-2n
) dufx(xo — hpv)dv.

Quo2.(T) < Cha" TV 21, (T)]?0 | K2(v) fx (20 — hpv)dv
Sk

« JOO <§17nu51,n*1 In(t,(T)) + é‘Lnu&l,n*l lnwu+ ugl,n*1> uStn— (/71 (o) —08)(1-2n)
1

x@+udﬂm&wﬁum%@m0m%
where 0 < § < 1/71(x). After tedious computations one gets
Quazn(T) < OT™ I [t ()00 {14 I Wn(ty(T)) + [t (1)} I In(1(T) |
= 0(1)’
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by (4) and the fact that hy* """ In(n/k) — 0 as n — o0. Hence, Qu.2.,(T) = O(1).

Finally, the two last terms Q4,3 ,(T") and Q4,4 (1) can be dealt with similarly as the two previous
ones since

1=2n * |01 (y|o)
WT) = (T K? f _ dF ~ ~ hav)d
QuanlD) (B L 250, Tt — o 0170~ 0t = b
n\1-2n
< sup |61 (y|x haPt (=
(m0) )
20 [ 1 ) (13
X K (v)J — dFy (y|zo — hpv) fx (29 — hpv)dv 13
Sk n(T) (Fl(y|x0 - hnv))Qn ‘
and
. /M 12 L 161 (y|wo) |yt In
Quan(T) := hEt (—) J KQ(U)J 191 (yl o)y y dFl(y]mo hnv) fx (xg — hpv)dv
k Sk ta(1) (F1(ylzo — hyyv))2
n\1-2n
< sup |01 (y|x hier (=
(y}tn(T)| N0 0)|> (%)

© 52,711
~ K2(v)f _ Yy ny
Si (1) (F1(ylzo — hnv))?7

This yields Q43,(T) = O(1) and Q4,4,,(T) = O(1). Combining all these results, we get (6).

dFy(y|zo — hpv) fx (xo — hpv)do. (14)

Now, we want to show (7). To this aim, for any « € (0,1/n — 2), we have

1
Eoznoc/2

1+ B
= ; <nh;il> +3 E (K}QL:Q('TO _ X) H{FL(Y(l)'xO)ng/n} >

PF2+a

PEp ocm <

cano \ "k [(n/F) Fr (Y D) 2]

11 ny 1-n(2+a) L7, (v ) |20)<kT/n}
Y (e K2+a E 1 0)= X =
e (kh%)a/? (k;) Sk (’U) ([Fl(Y(1)|x0)]77(2+06)

X fx(xog — hpv)dv

o — hnv>

= G (%)1 "‘M

( ) (F1(ylzo — hyv))n(2+e)
1
+ K2+°‘ f _
ta() (F1(ylzo — hnv))n+e)

n(2+a)
(Fl(y\wo _ h”v)> — 1] dFy(y|zo — hpv) fx (zo — hnv)dv} )

w
1
{ K2+O‘ — dFi(y|zg — hpv) fx (zo — hpv)dv

Fi(ylzo)
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The terms into brackets can be studied similarly as Q;,(T),j = 3,4, and thus (7) is established
since khe — oo.

Finally we verify (8). Without loss of generality assume 7' = 1 and consider, for a, 0,0 < 1, the
classes

}—él)(a) = {fn,yEfn:yl <(l},
fr(z2)(a) = {fmye‘rn:yl > a,y2 < af,
Fallym) = {fayeFn: 07 <yn <0°,0™ <y <™},

where £ = 0,...,|lna/Inf| and m = 0,.. ., [ln a/ln éJ We start by showing that ]-"7(11)(&) is an
e—bracket, for n sufficiently large. Clearly
nhd

0< fay(u,2) < TKhn(xO —2)

H{Fl(uliﬂ?o)<k/n v}
[(n/k) F1(ui]zo)]"
H{Fl(ul\xo)gk/n a}

< h;i/anl/anKhn Ty — 2)—— = u1n(u, 2).
(02 (a - ) AP oy,
Then
1-2n @© 1
Pu2n - (2 KQUJ ————dF1(y|lzg — hpv) fx(zg — hpv)do
b= (B) ), 0, ) Ealag 0l — ) xteo = bt

= Q3,n(a) + Q4,n(a)'

Thus, one can obtain the result from the above analysis of Q3,(T") and Q4,(T), taking into
account that the various constants involved in these will not depend on a.

Concerning Q3 (a), according to (11), for n large
Qsn(a) < Ca'™217",

where C does not depend on a. Now, taking a = £/(1=27)_ for n large enough and e small we
have |Q3,(a)] < &2

Concerning Q4. (a), we use the same decomposition as for Q4,,(T") based on (12), which entails
that, for n large enough, ¢ small and some small { > 0

Qiin(a) < &2
Qu21n(a) < Cho™ In(t,(a))[tn(a [Srmgt—2—r
< C(1+|lna|)aSat=217"
< Cal~27%

with C' a constant not depending on a, since from (4) and for n large,

ha't Inty,(a) < C(1 + |Inal).
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Also, for n large, and some small ¢ > 0

Qi22n(a) < Ca'=21pm [tn(a)]%lv" {1 + R In(ty(a)) + [tn(a)]&'”hz61 ln(tn(a))}
< Ca ™y a™C(1 + |Ina| + a (1 + |Inal))
< Ca172nili,

where C' does not depend on a. Hence, for n large and e small we obtain Q4,22 (a) < 2. Using
(13) and (14), we have also Q4 3,(a) < €2 and Q4 4n(a) < €2. Combining all the terms we get
Puin < &2 for n large.

Next consider F.°) (a). Then

nhd Fo(us|zg)<k/n a
0< fry(u,z) < - g, (o — 2) Iy 2|af;) Jna} _

ug (U, 2),

and
Pu%,n = a2’7 T J K2(v)F2(Qo(1 — k/n alzo)|xzo — hnv) fx (20 — hnv)dv
2

< €%

when n is large enough and for £ small.

Finally, we consider F,, (¢, m). We obtain the following bounds

F <k 9£+1 I <k 9m+1
(u, 2) [n Khn 2o — 2) { Fi(u1|zo)<k/n 2(u2\x0) /n } < faylu,2) <

nhé W5, (s w0)<h/n 08, Fa(uslwo)<k/m 6m)
k —LKp, (xg — 2) T =:Tp(u, 2).
Then
P, —uw)? = g | g2 (g x) [ L) Sk 0 Fafusieo)<hin 7]
n — tn - k hy \10 g(L+1)n

2
_ ]l{fl (u1]mo)<k/n 04+1, Fo(ug|zo)<k/n §7m+1}
6n

The difference of the indicator functions can be decomposed as in (10), and subsequent calcula-
tions follow arguments similar to those used in the verification of (5), Case 3. Taking 6 =1 — g3
and § = 1 — a, gives for n large enough and ¢ small that P(@, — u,)* < £2.

Combining the above, for n large and  small one obtains that the cover number by bracketing
is of the order e=473/(1=21) " and hence (8) is satisfied.

18



To conclude the proof, we comment on the pointwise convergence of the covariance function,
which is given by Pfp yfnyg — PfnyP fng. We have

|K[3 n 1 o (10— X
Pflfoyfng = ——E K 1 _
f 7yf Y (ylyl)nk HKH%hg hn An,y/\y
R(y1 A 91,2 A §2]70)
— |K|? T ’
H HQfX( 0) (ylgl)n

as n — 00, by the arguments used in the proof of Lemma 3.2. Also
khd 1 n
Ploy = “/TnﬁEE [ Kh, (zo — X)1a,, |

as n — 0. [ |

i

Proof of Theorem 2.2
Recall that

n

1
Tn(o0, y2lz0) = & D K, (w0 — X)Lz, (v )

k .
<Zyo}
i=1 o

We follow the lines of proof of Theorem 2.1. We introduce the sequence of classes F, on R x RY
as

fn = {(uvz) - ]?n,y(u7 Z)7y € (OaT]}

where
¥ nhd
oy (u; 2) := TKhn (zo — Z)H{Fg(umo)g%y}.

We have to verify the conditions (5)-(8) in the proof of Theorem 2.1 for the new functions fn,y.
Without loss of generality, we may assume that y > y. Thus, we have

P (ﬁ,y - fn,y)Q = nZiE [Kin (zo — X) (H{FQ(Y(2)|mo)<%y} - ﬂ{E(Y@)Ion%@})]

- i ww |7 (00 (ko ) oo = oo ) = P (02 (oo ) o = o)

X fx(xo — hpv)dv
= (-9 | K fx(wo— hy)dv

Sk
+ . Kz(v) |:ZF2 (UQ (lZy‘xO> ’mo — hnv> - y] fx(xg — hpv)dv
— o K2(v) |:ZF2 <U2 <l:;‘x0> ’xo — hnv) — y] fx(zo — hpv)dv
< O, K2(v)fx($0 — hpv)dv + o(1),
Sk
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with a o(1)—term which is uniform in y and 7 by Lemma 3.1. This yields (5).

Now, concerning (6) we can use the following envelope function of the class Fn

~ nhd

Fn(“? Z) = TnKhn (;UO o Z)H{Fz(u‘x0)<%T}

from which we deduce that
~ on 9, = n ‘ ‘ B
PF: = — K*(v)Fo (Us | — — hy, — hyv)dv = O(1).
- k LK (v)Fy ( 9 (kT x0> xo v) fx(xo v)dv = O(1)

Next condition (7) is also a direct consequence of the definition of the envelope since

~ 1 ~
29 ~ - 2+«
PEN g ey S apaptte
1 n K2ta (N F n B
S (k) k LK (0)F2 (U2 (kT‘%)l% h"”) Fx(ao = hnv)dv = o(1)

as soon as kh? — co.

Finally, concerning (8), again without loss of generality we assume 7' = 1 and divide [0, 1] into
m intervals of length 1/m. Then, for y € [(i — 1)/m,i/m] we have the bounds

nhd ~ nhd

from which we deduce that

Plu, — ) = — | K20)fx(o— hov)do

m Sk ‘
o R0 2 0 ()] ]t

_ K2(U) [ZFQ <U2 (Zz_ml‘xo) ’xo — hnv> — Z;l] fx(xo — hpv)dv

Sk

< | K?()fx(zg — hpv)dv + 23
Sk

when m = [6%] If € is small and n large, then P(u,, — u,)? < 2.

Consequently

\ Eh [Tn(90, yalzo) — E(T (00, y2|w0))] ~ W (0, y2),

in D((0,T7).

20



Now, remark that

E(Tn(0,y2|x0)) = yafx(wo) + O( fo>

#ix(eo) | KW [ZF2 (U:, (/m %)‘% ) m) _yQ} N
+ , K(v) [k: <U2 (ky2’x0>‘ hnv> — yg] [Fx (20 — hnv) — fx (20)] do.

Following the lines of proof of Lemma 3.1, we deduce that

n— _ _ NAqg Nygq. T By ey 1 T
\k <U2<k2‘ >‘xo hnv) y2‘<0{hn 4R lnk+](52(U2(n/k\mo)\mo)\(hn A mk)}

from which we obtain
A n
E(Tn(e0,y2l70) = wafx(@o) + O (AX"") +0 (ki In 2 ) + O (102(Ua(n/klzo) o) ™)

+0 (|82 (Us(n/kfo) o) hiy* In )

with O—terms which are uniform in yo € (0,7]. This implies that, under the assumptions of
Theorem 2.2, we have

A\ kR [T (00, yalzo) — y2fx (20)] ~ W (90, 2), (15)
in D((0,T]).

Finally,
d [ In(@:32l70) (<Ooy2lxo>_ ) ooyzm\[
M( fn(l’o) y2> \/ﬁ fX(«TO) Y2 fn o fX :UO \/7 fn $0 fx(aj‘o)>

from which Theorem 2.2 follows. [ |

3.1 Proof of Proposition 2.1

We use the decomposition

VERD ~ o
sup [ |0, (y2) — E(0n(12)) +J W (u, yo)du™ ")) < T)(T) + Y L n(T),
1<yp<a |UL(n/k|zo) [ ) = Elfnla ] 0 ’ ' l; (
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where

L(T) := sup f W (u, y2)du~ ’71(1170)
$<y2<2
Bn(T) = sup | [ \fkhd [T ) palon) — B (T sl salao))] )
$<ya<2
faall) = e f AW [T (500), 92120) = B (T (), ko)) = W(sn(u), o) b du= )],
F<y2<21J0
T
Ijn(T) = sup J [W(sn(u),yQ)—W(u’w)]du—m(ﬂco)_
’ <2 1J0

Similarly to the proof of Proposition 2 in Cai et al. (2015), it is sufficient to show that for any
e > 0, there exists Ty = Tp(e) such that

P(I,(Ty) > ¢) < e, (16)
and ng = ng(Tp) such that, for any n > ng
P(I;n(Th) > €) <e¢, for j =2,3 and 4.
Clearly

L(T)<  sup  |W(u,yp)|T (0,

1
uzT,5<y2<2

Since a rescaled version of our Gaussian process W(.,.) gives the one in Cai et al. (2015),
according to their Lemma 2, we have sup;_, ., ley<o |W (u,y2)| < oo with probability one.

This implies that there exists 77 = T1(e) such that

P < sup |W (u, y2)| > Tfl(xo)(E) <e,

0<u<oo7%<y2<2

from which we deduce that, for any T > T}

P(I,(T) > ¢) <P ( sup W (u,g2)]| > Tfl(“%) <e.

0<u<oc, 3 <y2<2

Consequently (16) holds for Ty > Tj.

We continue with the term I, (7"). We have
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P (I2,(T) > €)

< IP’( sup \/E[ T (sn(y1), yalzo) — E<Tn(3n(y1),y2|x0))]‘>€T"/1(IO)>
yl?T,%gy2g2

- X;
< P su 11— —
- <y1>T15y2<2 [ EHKHOO< hn Fr (P wo)< on (1), Fo (¥ lwo)< e}
=4y9= <

e K (m-X\, e T (z0) [khd
— HK”OO h,n {fl(y(l)|w0)<§8n(y1),F2(Y(2)|x0)§%y2} > 7”}-(”00 T
o — X
) P(@l,yi) Lo [ Z|K||oo( ) e e PP

E K zo— X - B >5T'71(l‘o) Lh%
Ko \ ke ) FO0 ORI P @<n) ) ||~ RN T )

Define now the function class

. K Ty — % 1
Inay (4 2) = T = ) Ul <on, Faual) <)

Clearly, if we divide [0, 1] into m intervals of length 1/m on each axis, we have, for y € [(i —

1)/m,i/m] x [(j = 1)/m, j/m],

(n2) = B (TZE)q o 1
N ‘ 1K oo I, {Fi1(u1]z)< =2 Fa(uglz)< 1)

K 0o— % _

2 2 K2 $0—X¢ 2
P(g,-g,) <—E <<
In=In) = <|K%o< i >> m = °

as soon as m = [6%] Then the bracketing number is of the order ¢=* for n large, which implies
that, according to Theorem 2.14.9 in van der Vaart and Wellner (1996)

Thus

471 (o) d
P(Iyn(T) >¢) < Ce T’K4 (kh ) —0

as n — 0.

Now, to study I3,(T), remark that for any 7' > 0,3n; = ny(T) : Vn > ny @ s,(T) < T + 1.
Hence for n > ny and any ng € (y1(20),1/2 — k) :

VERE[ T (y1, y2|20) — E(T(y1, y2l20))] — W (y1, y2)

yp°
T
J [5n ()]0 du="(0)| > €>.

0

P(I3,(T)>¢) < P ( sup

0<y1<T+1,2<ya<2

X
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According to Lemma 3 in Cai et al. (2015)

T
J [Sn(u)]ﬁodu—%(ro) — MTUo—’yﬂzo)’
0 10 — 71(xo)

which, combining with our Theorem 2.1, entails that there exists no(T") > ni(T') such that
Vn > na(T), P(I3,(T) > ¢) <e.

Finally, concerning Iy »(7"), we first remark that according to Lemma 2 in Cai et al. (2015), we
have for 1y € (71(x0),1/2) and any T > 0, with probability one,

W
sup VL)l
o<y<Tisp<z W

Then, applying Lemma 3 in Cai et al. (2015) with S =T,S) =T + 1 and g = W, we deduce
that there exists n3(7") such that for n > n3(T") we have P(I4,(T) > ¢) < €.
This achieves the proof of Proposition 2.1. |

In order to prove Theorem 2.3 we need some auxiliary results. Define for v > 0 and v € Sk

P (100, (3 ).

n
(Uz <k‘2 $0> ‘xo — hnv> .

Lemma 3.3 Assume (D) and (H) and xo € Int(Sx). Consider sequences k — o and hy, — 0 as
n — o, in such a way that k/n — 0 and hyt """ In % — 0. Then, we have, for any u < T, — o
such that kT,/n — 0 and 0 < € < B1(xo), that

n
Sp(u) = T
"F
k

tn(y2) =

§ﬁW)—u( < Cu{d?l+h?wn%+4£ﬂunmuﬂ%Tl
’51 (U1 < )‘ >‘ [1 + yTChn n't him | lnu|]
% [u’h z0)p1(z0) ( + u+’yl xo)a) (hZBl n U_Chnsl h?fl (’ lnu\ o %>>
*e

+Wmmmw>me%m)4H

+e

where u** means u® if u is greater than 1, and u~* if u is smaller than 1.

Proof
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Using Assumption (D), we have

R Fy (u‘”’l(‘UO)Ul (% 1‘0) ‘a:o — hnv)
Su(u) = F (U1 (g xo)‘%)
- Al(z(i(;of)znv) (U1 (%’ )) o) "G
1+ W&l (u (o) [y, ( ’ )‘xo hnv>

st (U (#fro) o)

71 (z0)
< uvleo—hno)

This implies that

71 (2zq)
gn(u) — y71(zo—hnv)

Al‘zi@:"“ {0 Gl
- (u w0, (o) o — )

o (0 (e
[ gy
st (2 )

U sttt (U (o) o)
|

O (u™M (xO)Ul ‘ ‘xo hpv
(v ( o)fro )

sttt (U (ko) o)
Using Assumption (#H) and the inequality |e* — 1| < |z|el®l, we deduce that, for n large,
A1 ($0 — hn’U)

X

1+

71(960 hpv)

1+

+

1 ()
=: u7@o—hnv ){TI +Th + Tg}.

—1| < Ch" 17
Ax(zo) ‘ an
1 1
n 7 (@o) M (wg—hnv) < My g, T
(v (2fo)) | < cnrmg (18)
Now, direct computations yield, for n large,
o)y, (2 ’560 — how
k; n
T, < 0‘61 (U1 (ﬁ‘xo)‘%)‘ nlwo) ( ) )
k Y1 (1‘0 — hnv) 51 (Ul (

Ik
(0 () o) (0 ()
o (o () (R
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Using the assumed form for d; (y|z), (H), and the uniform bound from Proposition B.1.10 in de
Haan and Ferreira (2006) with 0 < ¢ < B1(x), we obtain, for n large, that

;3 < C ‘(51 (U1 (%‘xo) ‘xo> {hZ“ + 1 (@0)B1(z0) (1 + uJ—”l(wO)a)

x [hZBl + QFCh:]f1 hiet <| Inu| + In %)] 4 (@) (Br(zo)te) 4 )u”l(m)ﬁl(m) - 1‘} (19)

Since
- - 71 () 71 (@g) =71 (g —hnv)
Sn(u) — U’ < ’$n(u) —un@Eo=hnv) | 4 qyly  7lEo—hnv) 1‘
71 () n
< ’gn(u) — ot | 4 Oyt ECha" i | Inul, (20)
combining (17), (18), (19) with (20), Lemma 3.3 is established. [

Lemma 3.4 Assume (D), (H), y1(zo) <1 and zog € Int(Sx). For sequences k = |n“¢1(n)| and
hy = n~2ly(n), where €1 and lo are slowly varying functions at infinity, with a € (0,1) and

max ( o a o 2(1— ) (0)Bi(0)
d+ 27y1(x0)(na, Any) d+2(1 = 51(20))(MAy A Ny ANBy ATley)” d - d+ d(Br(x0) + €)y1(20)

a—2(1 — a)y1(wo) a
d )<A<?

one has that

— 0

JOO [R (3(1), t(y2)|z0) — R(u,y2|w0)] du (%0

sup sup 4/khd
0

1
vESK L<ya<2

and
sup +/khd — 0.

1<ya<2

Loo [R (sn(u),y2|xo) — R(u, y2|zo)] du =1 (o)

Proof

We use the following decomposition along with the Lipschitz property of the function R:
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khd

n

J:C [R (gn(u)a tn<y2)|$0) - R(U, y2|x0)] du*'Yl(mO)

+1/khd

On,
L [R (§n(u), tn(yg)‘xo) — R(u’ y2!1’0)] du—’n(:to)

Tn
L [R (3,(10), tn(y2)|0) — R(u,ya|wo)] du="(=0)

+1/khd

JOO [R (3(1), tn(y2)|0) — R(u,y2|x0)] du ()

A

On
f R (30 (), b () 20) dhu 1)
0

On
+ k:hgf R(u,y2|1:0)du_71(m0)
0
T
—\/khzf (130 () — ul + [tn(ys) — yal] du= 1)

+2 sup R(u, ya|zo)A/khd T, (o)

uZO,%*C<y2<2+C

=: Ty + T +T5+ Ty,

for ( > 0 small and where §,, — 0 and T,, — o, as n — 0.

Now, since R(y1,ya|z0) < y1 A yo, using Lemma 3.3, and assuming A’ " |Ind,| — 0, we
obtain after tedious calculations, for n large,

On S
Th+1, < -2 kh;ilf wdy~ 71 (@) _ khgj Fa(u) —u du—1(x0)
\/7 . \/7 . | |
< Cy/khdgl—n(@o), (21)

As for T3, using again Lemma 3.3 and following the lines of proof of Lemma 3.1, we have, for n
large,

Tn Tn
T3 < —4/f khgf 15 (w) — u| du=71@0) — kh%L Itn(y2) — yo| du=71(0)
0 n

< CyJRRE T it i 4 B T, + |6y (U (%)xo) 30 ) | TP e a0}

k
Ok 870 LB i i+ (6 (U (o )[wo )| [0 + iz m 2]} 22)

assuming he ! """ InT), — 0.
Finally
Ty < Cy/khd T, 1) (23)
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Take 6, = b, and T, = n®, with £ and k positive numbers, and 0 < £ < 1(z9). Combining
(21), (22) and (23), the first part of Lemma 3.4 follows if the sequences §,, and T, are chosen
such that

— Afd = 28v1(z0) + 2(E A May ANBy ATy A Ney)

a — Ad — 2ky1 (20

a—Ad+26(1 —y1(x0)) — 2A(Na, A Ny
a—Ad—2(1—a)y1(xo)B1(x0) + 26[1 + (B1(x0) + &)y1(z0) — Y1 (0)

A A A A
oo oo

]
)
)
]

Note that this is possible if we proceed as follows:
e o and A are chosen as stated in Lemma 3.4;
e 1 is chosen such that

a— Ad
271 (o)

e ¢ is chosen such that

2A(na, A yy) — (@ = Ad)  2(1 — a)y1(w0)Bi1(w0) — (o — Ad) ) ,

< Kk < min (1 —a, 2(1 — (o)) "2[1 = y1(xo) + (Br(wo) + €)71(z0)]

a—Ad <t <
Ay A ANBy A Ney.
2A(1 - ’Yl(x())) n 2 7772 n 2 7752

Note that the choices of k and £ only depend on those of a and A.

The second part of Lemma 3.4 is similar, although simpler. Indeed, a decomposition of the
quantity of interest this time into two parts yields

khd

n

LDO [R (sn(w), ya|z0) — R(u,ys|20)] du~70)

Thn
< ot [ 1R (50 ) anlo) — R yafao)] du= =0
0
o0
khd || [R (sn(u), y2lwo) — R(u, ya|wo)] du1 (")
Tn
Th
< —x/k‘h;ilj sn(u) — u| du="1@0) + 2 sup  R(u,y2|wo)r/ khd T, 71(%0)
0 u=0,4 <ya<2
< |(51 U1 |.%'0 |.%'0 T (51 u -1 ) 1(%|x0)|x0) 1 du_yl(mo) + Or/khd T—’Yl(fo)
|71 z0) + 01 (U1 (Z|z0)]z0)| Jo 61(U1(%|z0)|z0) e
< CrJkhd (U1 (*’ZL‘Q)‘I’O)’Tl_’yl(1‘0)4_(51(3;0)4_8)71(380) + C+/khd T—7(z0)
n k n n n
This achieves the proof of Lemma 3.4. |

Lemma 3.5 Assume (D), (H), (K), o € Int(Sx) with fx(xo) > 0 and y — Fa(y|xo) is
strictly increasing. Consider sequences k — o and h, — 0 as n — o, in such a way
that k/n — 0, kh? — oo, hy2Inn/k — 0, \/khd /X" — 0, \/khd h7? Inn/k — 0,
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«/kh%]ég(Ug(n/Mwo)|x0)|hZBQ — 0, and «/khg\52(U2(n/k\xo)\:no)\hzgz Inn/k — 0. Then, for

any sequence U, Satisfying

i (LA ) e

as n — 00, we have

Fp.2(tnz0) W (o0,1)
i T 1) - 8

Proof

First remark that
1 n —
n 2uim1 Koo (0 = X)Ly y Fy(Us(n/klo) o)

T, (oo, %FQ(UTL|$0)‘$0> , a.s. .

FQ(Un|xO) B FQ(UMI’O)
Since, with r,, := /nhd Fa(uy|zo),
F(Uz(n/k|zo)|z0) N
- [ Fg(un|x0) Ty (o0, 2 Fa(unlzo) o) = fx (w0) | = W (o2, 1)

< |yt [, (s FaCunlanfon) ~ FFatunban) (o) = W (2, Fatunlon))

o \/ Fa(udzo)
"\ Fa(Ua(n/k[zo) o)

w (00 3 Falunlao) r0) = 3 F(unleo) fx (@o)|

| (o0, P (unlwo) ) = W (o0, 1)|
o |2 ZREON) 1, (o 2 Fo(af)n) = Pt (o)

we have by (15) combined with the Skorohod construction that
) (711 2im1 K (w0 = X)Ly,
n

Fa(un|zo) - fx(xo)) = Wi, ).

Then

= 1 n
Fua(unlzo) [\ _ w 2ie1 Ky (w0 = Xy, .
"\ Fa(unlzo) " Fa(un|zo) fx (20)
~ 1 n
fx (0) = fulwo) w Zi=1 Kna (@0 = Xi)]l{yi@&un}

Fx (20) fn (o) Fa(un| o)
W(o0,1)
fx(xo)

n

>
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Lemma 3.6 Assume (D), (H), (K), xo € Int(Sx) with fx(zo) > 0 and y — Fa(y|zg) is
strictly increasing. Consider sequences k — o and h, — 0 as n — ©, in such a way
that k/n — 0, kh? — oo, hi?Inn/k — 0, /khd h/X""™2 — 0, \/khd h% Inn/k — 0,
\ khe|62(Ua(n/k|xg)|zo)| — 0. Then, as n — o, we have

fovd (7 _ 1y o 22@)W (0, 1)
b (i = 1) fx(xo)
Proof

To prove the lemma we will use the idea of Wretman (1978), applied to our situation. We have,
for z € R, and wu,, from Lemma 3.5 taken as Us(n/k|zo)(1 + 2/4/khd), that

P(M(ﬁn—l)<z>

We have that in the present context

an = A/ nhEFo(uy|z0) (FQ(UQ(n/MxO)'xU) — 1) 7

Fa(un|z0) Y2(20)”

~

Let H,, denote the distribution function of y/nh% Fa(up|x0)(Fpn2(tn|z0)/Fa(un|zo) — 1), and H
is the distribution function of W (o0, 1)/fx (o). Then by Lemma 3.5 and by continuity of H one
has that H,(a,) — H(z/v2(x0)), as n — oo, hence the result of the lemma. [

Proof of Theorem 2.3

We have the following decomposition:

vy _ Ui(n/klze) /KD
bl (fx(fﬂo)Qk/n 1) B Oum  fx(wo) (Ul n/klf'«“o E Un( n/k|950 ))
+U1(n//<:|330) khd fx(20)0k/n
Ok fx(z0) Ui ( n/k|$0

> Ui(n/k|zo)
Uy (n/k|zo) /khd O (&, g [ O
ek/n fX(xO Ul( /k|x0 Uy n/k|x0

Ui(n/k|xo) v/khd 0,.(¢ )
R e <E< (”/k?|550 E(m n/m)))

Uy (n/k|zo) /khd & fx(20)0k/m
O /n fX ) ”/Mxo

~ Uy(n/k|zo)
= Ty + Ty +T5.
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First, remark that the common factor of the three terms, Ui (n/k|xo)/0)/, can be handled in a
similar way as in Proposition 1 in Cai et al. (2015), i.e., as n — ®©

Ur(n/klo) -1
gk/n SO 5 1‘.@0 dg 71 (20)

Thus the three terms without this factor need to be studied.

We start with 77. Note that

N _ Ja(anUs(n/k|xo)|xo) Uz (n/k|x0) -
Vi@ —1) - Fa(Us(n/Klo) o) Vi =)

where 1, is a random value between #,, and 1. By the continuous mapping theorem we have
then

fa@nUs(n/klxo)|z0)Us(n/klzo) B 1

Fy(Us(n/k|xo)|zo) Y2(0)’
and hence by Lemma 3.6
\JRhE @ = 1)~ =W (0, 1)/ fx (o). (24)

This implies that
P (|an 1> (khg)—1/4) 0.

Hence, with probability tending to one,

m gn(é\n) B an(é\n) R © . o)
fx (@o) (Ul(n/kxo) " (U1(n/k|xo)>> + fX(l’O)Jo W (s, 1)ds™"

d Z 0, o6}
- o m i -k gni(y) +1f W(S,y)ds_"fl(xo)
-ti<ny-e | Fx (20) \Un(n/klzo) — \ Or(n/kleo) ) ) Fxc(wo) Jy
1 ©
+ sup J [W(s,y) — W(371)]d3—71(x0) '
fx(zo0) ly—1|<(khd)—1/4

The first term of the right-hand side tends to 0 in probability by our Proposition 2.1, whereas
the second term can be handled similarly as in the proof of Proposition 3 in Cai et al. (2015).
Consequently

1

Ty ~
LI SO 5 1‘930 ds 71 (20) fX x[)

f W (s, 1)ds™71@0), (25)

Next step consists to look at T5. To this aim, remark that for y equal either to 1 or €,, we have
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fooo E (Tn(sn(u), y’m0)> du" (z0)

o0]
f K () Ry (), ta(y) 70 — ) fx (20 — hy)dvdu~71)
0 Sk

J~Ooo ) K(0)R (3n(u), ta(y)|zo) fx(x0 — hnv)dvdu="(0)
+ JOO K (v) [R% (Sp(u), tn(y)|xo — hnv) — R (Sn(w), tn(y)|560)] fx(zo — hnv)dvdu_W(mO)
0o Jsg

- f R (u,ylzo) du@) [ K (o) fx (w0 — huv)du
0 Sk

+| K@) fw [R (3n(w), tu(y)|w0) — R(u, ylwo)] du="1C0) fx(z0 — hyv)dv
Sk 0

o0
- f , KW | R (3u(w), ta(9) 20 — ) = R (3u(w), tn(9)|0) | Fx (0 — ) dvdu™ )
0 K
=: j\—:’Q’l + fQ’Q + T'273.

By Lemma 3.4, Assumptions (S) and (#H) we obtain

3
!

Q0
1= fxlon) | R (o) du 0 4 0p (1))
0

~ 1
T = o0 ,
2,2 P (M)

| Rk (Y1, y2lw) — R(y1, y2|zo)|

Tl < — s swp B
z€B(0,hn) 0<yy <00, 3 <ya<2 y; A1
Q0
X K(U)J ([gn(u)]ﬁ A 1) du~ 1) fy (2 — hyv)do
Sk 0

= o ((3))

Note that the integral appearing in the bound for |T2,3] is finite for n large, as 3, (u) < Cu'~¢
for uw € (0,1/2],¢ € (0, (8 — 71(x0))/B) and n large. Consequently, under our assumptions and
using the homogeneity of the R—function and the mean value theorem combining with (24), we
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have

fooE(Tn(sn(u), 1zo)) du~1(0) — LooE (T (50 1), Boo) du—W@)

o0 o0
J R (u,1|zo) du~71(0) —f R (u, é\n|x0)du“(m°)> + op(1)
0

o0

khd (1 - a;—71<x0>> f R (u, 1]zq) du="@0) + op(1)
0

W (0, 1)

(1- 71@0))%

Q0
f R (u, 1|zq) du=71 ()
0

This implies that

W(o0,1) (26)

Ty~ —(1- 71($0))m~

Finally, for T3 we have,

khd E 6,(1)  Ix(@o)Oxym
fx (o) Ur(n/k|zo) Ur(n/k|zo)
fx($0)9k/n>

. khi ([ [* ) IN———
-~ fx(zo) ( fo E(Tn(sn(w), eo))du™ Ui(n/k|xo)

= Wf Rn/k(sn(u)v 1|zo) — R(sn(u),1|z0)] du~71(20)
+1/khd j w), 1|zo) — R(u, 1]z0)] du="0) 4 (1)

=: T371 + T372 + 0(1),

| Ry (y1, y2|w) — R(y1, y2|0)]

jOC ([sn(u)]ﬁ A 1) du~ (o)

Overall, we have then

khd  sup sup 5
Z‘EB(I‘OJ—Ln) 0<y1<®’2\y2<2 yl A 1 0
a (™7
O(q/khn<k) >
o(1).
T3 = o(1). (27)

Combining (25), (26) and (27), and following the argument as at the end of the proof of Theorem

2.2, we can establish the result of Theorem 2.3.
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