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will become unstable if a critical zero enters the open righthalf plane, and otherwise will remain stable if all the critical zeros remain in the left-half plane. The essential problem in this approach, consequently, is to characterize the analytical properties of the imaginary zeros.

When Will Zeros of Time-Delay Systems Cross Imaginary Axis?

Jie Chen, Peilin Fu and Silviu-Iulian Niculescu Abstract-A time-delay system may or may not be stable for different periods of delay. When will then a delay system be stable or unstable, and for what ranges of delay? This paper attempts to answer these questions. We show that by finding a set of critical delay values, for which the system's characteristic quasipolynomial has zeros on the imaginary axis, it is possible to determine its stability in the full range of the delay parameter by characterizing the analytical behaviors of the zeros. This characterization is facilitated by an operator perturbation approach, which is both conceptually attractive and computationally efficient. The entire procedure, which first identifies the critical zeros on the imaginary axis and next determines whether the zeros cross the imaginary axis, requires only solving a generalized eigenvalue problem.
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I. INTRODUCTION

In this paper we study stability properties of linear timedelay systems. We consider specifically retarded systems with commensurate delays. For systems of this type, it is known that the stability problem can be tackled efficiently by computing the critical delay values that result in imaginary zeros of the system's characteristic quasipolynomial. This computation can be executed in a number of different ways, notably, by, e.g., solving a generalized eigenvalue problem [START_REF] Gu | Stability of Time-Delay Systems[END_REF], [START_REF] Niculescu | Stability and hyperbolicity of linear systems with delayed state: A matrix pencil approach[END_REF], [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF]. Since the critical delay values form consecutive intervals and the zeros vary continuously with respect to the delay parameter, whether the system is stable over a specific delay interval can be determined by checking the stability corresponding to any fixed delay value within that interval, thus in principle, determining the system's stability over the entire range of delay values. One should note, nevertheless, that even for a fixed delay, the testing of stability for a time-delay system is not a simple task.

A more potent approach in accomplishing this goal is to analyze the asymptotic behavior of the critical zeros on the imaginary axis. The idea is rather simple. Specifically, at each critical delay value corresponding to a critical zero of the characteristic quasipolynomial, one may seek to determine whether the zero may cross the imaginary axis, from one half plane into another; for example, the system The problem alluded to above, known in the literature as the stability switch problem, has been studied for quite some time (see, e.g., [START_REF] Boese | Stability with respect to the delay: On the paper of K[END_REF], [START_REF] Cooke | Discrete delay, distributed delay and stability switches[END_REF], [START_REF] Cooke | On zeroes of some transcendental equations[END_REF], [START_REF] Hertz | Simplified analytical stability test for systems with commensurate time delays[END_REF], [START_REF] Lee | On the τ -decomposition method of stability analysis for retarded dynamical systems[END_REF], [START_REF] Olgac | An exact method for the stability analysis of time-delayed LTI systems[END_REF], [START_REF] Walton | Direct method for TDS stability analysis[END_REF]). Recently, the authors developed an operator perturbation approach [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF] to facilitate this analysis, which appears both analytically attractive and computationally appealing. The approach seeks to reformulate the zero asymptotic analysis problem as one of eigenvalue perturbation [START_REF] Kato | Perturbation Theory for Linear Operations[END_REF], and it amounts to performing a first-order asymptotic expansion of the zeros around their critical values. Whether a critical zero will cross the imaginary axis can then be checked by computing the eigenvalues of a constant matrix. It is worth noting that the asymptotic expansion can be carried out in a rather efficient manner; in fact, it can be considered a direct consequence resulted from the computation of the critical delay values and the imaginary zeros. This paper continues the work of [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF] and gives a full development of the asymptotic analysis up to the second order. The results, along with the first-order analysis given in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF], thus provide a more complete tool which can aid in stability analysis when the first-order tests cease to be useful; this scenario arises when the first-order coefficient in the asymptotic series is imaginary, which renders the firstorder test inconclusive. Similar to their first-order counterparts, the second-order tests developed herein also require computing the eigenvalues of a constant matrix only.

The remainder of this paper is organized as follows. In Section 2, we first develop general eigenvalue perturbation results, which serve as our primary technical machinery. We then apply these results to time-delay systems; we first consider in Section 3 systems in the state-space form, and next in Section 4 systems described by differential-difference equations. Conditions are derived for characterizing whether a critical zero will cross the imaginary axis. Section 5 presents an illustrative example and Section 6 concludes the paper.

We use the following notation throughout the paper. Let IR be the set of real numbers, C the set of complex numbers, and IR + the set of nonnegative real numbers. Denote the open right half plane by C + := {s : (s) > 0}, the closed right half plane by C + , and the imaginary axis by ∂C + . Similarly, denote the open unit disc by ID, the unit circle by ∂ID, and the closed exterior of the unit disc by ID c . For a matrix A, denote its spectrum by λ(A), and the ith eigenvalue by λ i (A). For a matrix pair (A, B), denote the set of all its generalized eigenvalues by σ(A, B), i.e., σ(A, B) := {λ ∈ C : det(A -λB) = 0} .

The operation A⊕B denotes the Kronecker sum, and A⊗B the Kronecker product, of the matrices A and B.

II. PRELIMINARY RESULTS

This section introduces the operator perturbation theory for matrix eigenvalue problems. We shall first give an account of the first-order results developed in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF], and subsequently perform a second-order analysis. The development is based on the classical work by Kato [START_REF] Kato | Perturbation Theory for Linear Operations[END_REF] and the authors' own extension in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF].

A. First-Order Analysis

Consider a matrix operator T (x) of a real variable x. Suppose that in the neighborhood of x = 0, the perturbed operator T (x) is holomorphic, or equivalently, can be expanded into the power series,

T (x) = T (0) + xT (0) + x 2 T (0) + • • • . ( 1 
)
It is known that near the origin, any semisimple eigenvalue of T (x), namely the semisimple root of the characteristic equation

det (T (x) -ξI) = 0, (2) 
is an analytic functions of x and can be expressed as a power series in x; here by a semisimple eigenvalue, we mean a repeated but diagonalizable eigenvalue. With no loss of generality, let λ (0) be ordered as the first eigenvalue of T (0) with multiplicity m. Then T (0) can be decomposed as

T (0) = QΣR = Q 1 Q 2 Σ 1 0 0 Σ 2 R 1 R 2 , (3) 
where Σ 1 is diagonal with diagonal entries as

λ (0) , R = Q -1 = r T 1 • • • r T n T , and Q = q 1 • • • q n consist
of the eigenvectors of T (0). The following lemma gives the asymptotic series for the eigenvalues of T (x) originating from λ (0) . Lemma 1 [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF] Let λ (0) be a semisimple eigenvalue of T (0) with multiplicity m. Then the corresponding eigenvalues of T (x) are analytic in x and have the form

µ i (x) = λ (0) + λ (1) i x + o(x 2 ), i = 1, . . . , m, (4) where λ (1) i , i = 1, . . . , m, are the eigenvalues of R 1 T (0)Q 1 .
Consider next the case that λ (0) is not a semisimple but repeated eigenvalue of T (0) with multiplicity m. In this case, T (0) admits a Jordan decomposition in which Σ is block diagonal with diagonal Jordan blocks, and Q 1 consists of the generalized eigenvectors associated with λ (0) . In particular,

Σ 1 =       λ (0) 1 • • • 0 0 . . . . . . 0 . . . . . . 1 0 • • • • • • λ (0)       .
The eigenvalue of T (x) can no longer be expanded in the form of ( 4), but instead as a Puiseux series.

Lemma 2 [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF] Let λ (0) be a non-semisimple eigenvalue of T (0) with multiplicity m. Then the corresponding eigenvalues of T (x) have the form

µ i (x) = λ (0) + γ (1) i 1 m x 1 m + • • • , i = 1, . . . , m, ( 5 
)
where γ

(1) i

= r m T (0)q 1 . As a consequence, Lemma 1 and Lemma 2 provide a complete first-order characterization of the asymptotic expressions for the eigenvalues of T (x) near the origin.

B. Second-Order Asymptotic Expansion

The first-order asymptotic series introduced in the preceding subsection can be further developed to include terms of higher orders. In this section we derive formulas for computing the coefficients of the asymptotic series up to the second order.

Define the operator-valued function

Υ(ξ) = (T (0) -ξI) -1 , ( 6 
)
which is known as the resolvent of T (0). It is obvious that the singularities of Υ(ξ) are the eigenvalues of T (0). Let λ (0) be an eigenvalue of T (0). Then Υ(ξ) can be expanded as a Laurent series at ξ = λ (0) , that is,

Υ(ξ) = -(ξ -λ (0) ) -1 P - ∞ n=1 (ξ -λ (0) ) -n-1 D n + ∞ n=0 (ξ -λ (0) ) n S n+1 , (7) 
where P , D n and S n+1 are corresponding coefficient matrices. Evidently, the matrix P , known as the eigenprojection for λ (0) , can be found as

P = - 1 2πj Γ Υ(ξ)dξ = 1 2πj Γ (ξI -T (0)) -1 dξ,
where Γ is a positively-oriented closed contour enclosing λ (0) but no other eigenvalues of T (0). It was found in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF] that

P = Q 1 R 1 .
The holomorphic part in the Laurent expansion is called the reduced resolvent of T (0) with respect to the eigenvalue λ (0) , denoted as

S(ξ) = ∞ n=0 ξ -λ (0) n S n+1 .
Let S = S(λ (0) ), namely the value of the reduced resolvent of T (0) at ξ = λ (0) . Then it is obvious that

S = S 1 = 1 2πj Γ Υ(ξ) ξ -λ (0) dξ.
Lemma 3 For any matrix T (0) decomposed in the form of [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF], where Σ 1 is in Jordan form with diagonal entries as λ (0) , the reduced resolvent at ξ = λ (0) is equal to

S = Q 0 0 0 (Σ 2 -λ (0) I) -1 R = Q 2 (Σ 2 -λ (0) I) -1 R 2 .
The following Lemma given in [START_REF] Kato | Perturbation Theory for Linear Operations[END_REF] provides the result on the second order perturbation of T (x) when all the eigenvalues of T (0) are semisimple. Lemma 4 [START_REF] Kato | Perturbation Theory for Linear Operations[END_REF] Let λ (0) be a semisimple eigenvalue of T (0), λ [START_REF] Boese | Stability with respect to the delay: On the paper of K[END_REF] i be a semisimple eigenvalue of P T (0)P with the eigenprojection P [START_REF] Boese | Stability with respect to the delay: On the paper of K[END_REF] i , that is

P (1) i = Γ i (ξI -P T (0)P ) -1 dξ, ( 8 
)
where Γ i is a positively-oriented closed contour enclosing λ

(1) i but no other eigenvalues of P T (0)P . Then T (x) has d = dim P (1) i repeated eigenvalues of the form

µ ip (x) = λ (0) +xλ (1) i +x 2 µ (2) ip +o(x 2 ), p = 1, • • • , d, (9)
where µ [START_REF] Chen | Linear System Theorem and Design[END_REF] ip are the repeated eigenvalues of

P (1) i T (2) P (1) i = P (1) i (T (0) -T (0)ST (0)) P (1)
i .

The eigenvalues of P

(1) i T (2) P (1) i can be computed in a manner similar to that in the first-order analysis.

Lemma 5 Let λ

(1) i be an eigenvalue of P T (0)P . Let also T (0) be decomposed as in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF], and R 1 T (0)Q 1 be decomposed as

R 1 T (0)Q 1 = Q (2) Σ (2) R (2) = Q (2) 1 Q (2) 2 Σ (2) 1 0 0 Σ (2) 2 R (2) 1 R (2) 2 ( 10 
)
where Σ

(2)

1 is the Jordan block corresponding to the eigenvalue λ [START_REF] Boese | Stability with respect to the delay: On the paper of K[END_REF] i . Then,

P (1) i = Q 1 Q (2) 1 R (2) 1 R 1 ,
and the eigenvalues of

P (1) i T (2) P (1) i are those of the matrix R (2) R 1 T (2) Q 1 Q (2) 1 .
We note that when λ (1) i is a simple eigenvalue, then

P (1) i = q 1 r 1 .
Finally, in the case that λ

(i)
1 is a repeated non-semisimple eigenvalue of P T (0)P , we can state a result similar to Lemma 2. We state this result without proof. Lemma 6 Let λ (0) be a semisimple eigenvalue of T (0), and λ

(1) i be a non-semisimple eigenvalue of P T (0)P with multiplicity d. Then the d corresponding eigenvalues of T (x) can be expanded in the form [START_REF] Gosiewski | The effects of feedback delays on the performance of multivariable linear control systems[END_REF] where rd and q1 are the dth right and the first left eigenvectors of P T (0)P , respectively.

µ i (x) = λ (0) + xλ (1) i + rd T (2) q1 1/d x 1+ 1 d + • • • , i = 1, . . . , d,

III. STATE-SPACE MODELS

In this section we consider linear time-delay systems described by the state-space equation

ẋ(t) = A 0 x(t) + q k=1 A k x(t -kτ ), τ ≥ 0, ( 12 
)
where τ is the delay parameter and A k ∈ IR n×n are the given system matrices. The characteristic quasipolynomial associated with this system is given by p(s, e -τ s ) = det sI -

q k=0 A k e -kτ s . ( 13 
)
For a fixed τ ≥ 0, the system is asymptotically stable if and only if all the zeros of the quasipolynomial p(s, e -τ s ) lie in C -(see, e.g., [START_REF] Gu | Stability of Time-Delay Systems[END_REF]).

The critical delay values and the critical zeros of the above system can be computed in the following way. Define the matrices

U =        I 0 • • • 0 0 0 I • • • 0 0 . . . 0 0 • • • I 0 0 0 • • • 0 B 2q        , V =        0 I 0 • • • 0 0 0 I • • • 0 . . . 0 0 0 • • • I -B 0 -B 1 -B 2 . . . -B 2q-1        , where B m ∈ IR n 2 ×n 2 , m = 0, 1, • • • , 2q are given by B q-m = I ⊗ A T m , B q = A 0 ⊕ A T 0 , B q+m = A m ⊗ I.
The following lemma, obtained in [START_REF] Chen | A new method for computing delay margins for stability of linear delay systems[END_REF] (see also [START_REF] Fu | Stability of linear neutral timedelay systems: exact conditions via matrix pencil solutions[END_REF]), shows that the critical delay values and zeros can be determined by solving a generalized eigenvalue problem.

Lemma 7

The characteristic quasipolynomial p(s, e -τ s ) has a critical zero on the imaginary axis if and only if the following conditions are satisfied:

(i) σ(V, U ) ∩ ∂ID = ∅; (ii) For some z i ∈ σ(V, U ) ∩ ∂ID, σ q k=0 A k z k i ∩ jIR + = ∅.
The imaginary number jω i ∈ σ(

q k=0 A k z k i ),
where ω i > 0, is a critical zero. The corresponding critical delay forms the set

T (ω i ) = Log(z i ) jω i + 2π ω i > 0, = 1, 2, • • • ,
where Log(•) represents the Cauchy principal value and (.) the complex conjugate.

Note that while T (ω i ) is a countable set consisting of infinitely many elements, the number of critical zeros is finite.

In addition, since the zeros of p(s, e -τ s ) are conjugate symmetric, it suffices to consider only the critical zeros with ω i > 0. The entire range of delay values can be partitioned into intervals (τ i , τ i+1 ), and the stability is invariant in each of such intervals. Let τ * and jω * , ω * ∈ IR + , ω * = 0 be a pair of critical delay and critical zero of p(s, e -τ s ), i.e., p(jω * , e -jω * τ * ) = 0. The asymptotic behavior of the critical imaginary zero jω * can be examined by casting the problem into one of eigenvalue perturbation. Indeed, introduce a new real variable x = τ -τ * , and define

T (x) := q k=0
A k e -jω * kτ * e -jω * kx . (

Clearly, T (x) is holomorphic. Furthermore, since

det(T (0) -jω * I) = p(jω * , e -jω * τ * ) = 0,
where

T (0) = q k=0 A k e -jω * kτ * , ( 15 
)
jω * is an eigenvalue of T (0). Without loss of generality, let jω * be ordered as the first eigenvalue of T (0), with multiplicity m. Let also T (0) be partitioned as in [START_REF] Chen | Asymptotic behavior of imaginary zeros of linear systems with commensurate delays[END_REF]. Then, the following asymptotic expansion can be obtained.

Theorem 1 Let jω * be a semisimple eigenvalue of T (0) with multiplicity m, and let λ

(1) i be a semisimple eigenvalue of P T (0)P with multiplicity d. Then for any τ sufficiently close to τ * , the characteristic zeros corresponding to jω * can be expanded into the power series

jω * + λ (1) i (τ -τ * ) + µ (2) ip (τ -τ * ) 2 + o (τ -τ * ) 3 , (16) with λ (1) i = λ i (R 1 T (0)Q 1 ) , i = 1, 2, • • • , m, µ (2) ip = λ p R (2) 1 R 1 (T (0) -T (0)ST (0)) Q 1 Q (2) 1 , p = 1, 2, • • • , d,
where

T (0) = - q k=1 jkω * A k e -jω * kτ * , T (0) = - q k=1
(ω * k) 2 A k e -jω * kτ * , and S is given in Lemma 3. (i) For τ sufficiently close to τ * but τ > τ * , there are m repeated characteristic zeros entering the right-half plane (or the left-half plane) if the following eigenvalues satisfy the condition

Re {λ i (R 1 T (0)Q 1 )} > 0 (< 0). (ii) If Re {λ i (R 1 T (0)Q 1 )} = 0, , i = 1, 2, • • • , m,
then for τ sufficiently close to τ * but τ > τ * , there are d repeated characteristic zeros entering the right-half plane (or the left half plane) if the eigenvalues µ

(2)

ip satisfy the condition

Re λ p R (2) 1 R 1 (T (0) -T (0)ST (0)) Q 1 Q (2) 1 > 0 (< 0).
Thus, upon finding the critical delays and critical zeros, the additional computation for the asymptotic expansion given in Theorem 1 requires only computing the eigenvalues in the expressions of λ (1) i and µ

(2) ip . In particular, when jω * is a simple critical zero, this computation can be further simplified. The following corollary is an immediate consequence of Theorem 1.

Corollary 1 Let jω * be a simple eigenvalue of T (0). Then for any τ sufficiently close to τ * but τ > τ * , jω * enters the right-half plane (or the left-half plane) if

Re {r 1 T (0)q 1 } > 0 (< 0), where q 1 and r 1 are the right and left eigenvectors associated with jω * . Additionally, if

Re {r 1 (T (0)) q 1 } = 0, then for any τ sufficiently close to τ * but τ > τ * , jω * enters the right-half plane (or the left half plane) if

Re {r 1 (T (0) -T (0)ST (0)) q 1 } > 0 (< 0), (17) 
The next two results concern the cases that jω * is not a semisimple but repeated eigenvalue, or that λ (1) i is such an eigenvalue.

Theorem 2 Let jω * be a repeated eigenvalue of T (0) with multiplicity m. Suppose that jω * is not semisimple. Then for any τ sufficiently close to τ * but τ > τ * , the m characteristic zeros corresponding to jω * can be expanded into the Puiseux series

jω * + {-r m T (0)q 1 } 1 m (τ -τ * ) 1 m + • • • , Hence, for k = 0, 1, • • • , m -1

, the kth branch of the eigenvalue enters the right half plane (or the left half plane) if

cos 2kπ + π + θ m > 0 (< 0), where θ ∈ [0, 2π] is the phase angle of r m T (0)q 1 .
Theorem 3 Let jω * be a semisimple eigenvalue of T (0) with multiplicity m and λ

(1) i = λ i (R 1 T (0)Q 1 )
be a repeated eigenvalue of P T (0)P with multiplicity d. Suppose that λ

(1) i is not semisimple. Then for any τ sufficiently close to τ * but τ > τ * , the characteristic zeros corresponding to jω * can be expanded by the Puiseux series

jω * + λ (1) i (τ -τ * ) + -r d T (2) q1 1 d (τ -τ * ) 1+ 1 d + • • • , ( 18 
)
where

T (2) = R (2) 1 R 1 (T (0) -T (0)ST (0)) Q 1 Q (2) 1 ,
and rd , q1 are the dth right and the first left eigenvectors of P T (0)P . Hence, if

Re{λ i (R 1 T (0)Q 1 )} = 0, then for k = 0, 1, • • • , d -1
, the kth branch of the eigenvalue enters the right half plane (or the left half plane) if

cos 2kπ + π + θ d > 0 (< 0),
where θ ∈ [0, 2π] is the phase angle of rm T (2) q1 .

Theorem 2 and Theorem 3 reveal a fundamental difference between the asymptotic behaviors of a semisimple eigenvalue and one that is not. Take Theorem 2 for example, for a repeated eigenvalue that is not semisimple, the result shows that, precluding the case that Re{r m T (0)q 1 } = 0, whether the zero will enter the right-half plane is solely determined by the multiplicity of the zero. In this case, the branches of the zero loci will almost generically enter the right-half plane when the multiplicity is greater than two. Note that in the degenerate case m = 1, Theorem 2 also reduces to Corollary 1.

IV. DIFFERENTIAL-DIFFERENCE EQUATION MODEL

Alternatively, we also consider the differential-difference equation

y (n) (t) + n-1 i=0 q k=0 a ki y (i) (t -kτ ) = 0, τ ≥ 0. ( 19 
)
Systems described by ( 19) can be represented equivalently by the quasipolynomial

a s, e -τ s = q k=0 a k (s)e -kτ s , τ ≥ 0, (20) 
where

a 0 (s) = s n + n-1 i=0 a 0i s i , a k (s) n-1 i=0 a ki s i , k = 1, • • • , q.
We note that a similar generalized eigenvalue-based solution (see, e.g., [START_REF] Chen | A new method for computing delay margins for stability of linear delay systems[END_REF]) exists for the critical zeros jω * of a (s, e -τ s ) at the critical delay value τ * , at which a jω * , e -jω * τ * = 0. This result is available from [START_REF] Chen | A new method for computing delay margins for stability of linear delay systems[END_REF], [START_REF] Fu | Stability of linear neutral timedelay systems: exact conditions via matrix pencil solutions[END_REF].

Lemma 8 Define H n := 0, T n := I, and for i = 0, , 1,

• • • , n -1, T i : =      a 0i 0 • • • 0 a 1i a 0i • • • 0 . . . . . . . . . . . . a q-1,i a q-2,i • • • a 0i      , H i : =      a qi a q-1,i • • • a 1i 0 a qi • • • a 2i . . . . . . . . . . . . 0 0 • • • a qi      .
Define further

P i := (j) i T i (j) i H i (-j) i H T i (-j) i T T i , i = 0, 1, • • • , n, P :=      0 I • • • 0 . . . . . . . . . . . . 0 0 • • • I -P -1 n P 0 -P -1 n P 1 • • • -P -1 n P n-1      . F (s) :=      0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1 -a 0 (s) -a 1 (s) • • • -a q-1 (s)      , G(s) := diag (1 • • • 1 a q (s)) .
The quasipolynomial a(s, e -τ s ) has a critical zero on the imaginary axis if and only if the following conditions are satisfied:

(i) σ(P ) ∩ ∂IR + = ∅ and σ(P ) ∩ ∂IR + = {0}; (ii) For some ω i ∈ σ(P ) ∩ ∂IR + , σ(F (jω i ), G(jω i )) ∩ ∂ID = ∅.
The imaginary number jω i ∈ σ(P ), where ω i > 0, is a critical zero. The corresponding critical delay forms the set

T (ω i ) = Log(z i ) jω i + 2π ω i > 0, = 1, 2, • • • , where z i ∈ σ(F (jω i ), G(jω i )).
It is clear that Theorem 1-Theorem 3 can be directly applied to determine the asymptotic behavior of the critical zero jω * , by making use of the realization

A 0 =      0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1 -a 00 -a 01 • • • -a 0,n-1      , ( 21 
)
A k =      0 0 • • • 0 . . . . . . . . . . . . 0 0 • • • 0 -a k0 -a k1 • • • -a k,n-1      , k > 0. (22)
Additionally, with the specific structures of this realization, it is not difficult to derive that the eigenvalues of T (0) are also the roots of quasipolynomial a s, e -jω * τ * . This makes it possible to state the results directly in terms of the quasipolynomial a (s, e -τ s ). We first show that with a realization given by the above companion form, T (0) cannot have semisimple repeated eigenvalues.

Lemma 9 Any companion matrix

A =      0 1 • • • 0 . . . . . . . . . . . . 0 0 • • • 1 -α 0 -α 1 • • • -α n-1      cannot have semisimple repeated eigenvalues.
The implication of Lemma 9 is rather clear. With the above realization of A k , the matrix T (0) is in the companion form with

α i = q k=0 a ki e -jkω * τ * , i = 0, 1 • • • , n -1.
As such, when applying the results in Section III, one can preclude the case that T (0) has semisimple repeated eigenvalues; instead, the critical zero jω * is either a simple eigenvalue, or a repeated, non-semisimple eigenvalue of T (0). Theorem 4 and Corollary 2 given below describe the asymptotic behavior of imaginary poles in these two cases, in terms of a (s, e -τ s ).

Theorem 4 Let jω * be a repeated zero of a s, e -jω * τ * with multiplicity m. Then for any τ sufficiently close to τ * but τ > τ * , the m zeros corresponding to jω * can be expanded into the Puiseux series

jω * +   -m! d a(jω * , e -jω * τ ) dτ | τ =τ * d m a(s, e -jω * τ * ) ds m | s=jω *   1 m (τ -τ * ) 1 m + • • • ,
If jω * is a simple zero of a s, e -jω * τ * , the following corollary is an immediate consequence of Theorem 4. It is useful to note that in the case of a simple critical zero, results similar to Corollary 2 have been reported in [START_REF] Boese | Stability with respect to the delay: On the paper of K[END_REF], [START_REF] Cooke | Discrete delay, distributed delay and stability switches[END_REF], [START_REF] Cooke | On zeroes of some transcendental equations[END_REF], [START_REF] Hertz | Simplified analytical stability test for systems with commensurate time delays[END_REF], [START_REF] Walton | Direct method for TDS stability analysis[END_REF], while without much technical deliberation. Our derivation herein thus provides an independent, rigorous justification to some of the previously available results.

Theorem 4 and Corollary 2 correspond to the firstorder analysis of the quasipolynomial. When these results become inapplicable, the following second-order result can be employed. 

V. AN ILLUSTRATIVE EXAMPLE

In this section we use an example to demonstrate the second-order zero-crossing conditions.

Example Consider the following second-order delay system1 [START_REF] Hertz | Simplified analytical stability test for systems with commensurate time delays[END_REF] (see also [START_REF] Gosiewski | The effects of feedback delays on the performance of multivariable linear control systems[END_REF]):

ẋ1 (t) ẋ2 (t) = 0 1 -1 -1 x 1 (t) x 2 (t) + 0 0 0 -1 x 1 (t -τ ) x 2 (t -τ ) . (23)
The corresponding characteristic quasipolynomial is given by

p(s, e -τ s ) = s 2 + s + se -sτ + 1. (24) 
By a direct application of Lemma 7 or Lemma 8, a pair of critical zero and delay are found to be jω * = j and τ * = π. Following the state-space computations in Theorem 1 and Corollary 1, we first find

T (0) = 0 1 -1 -1 + 0 0 0 -1 e -jπ = 0 1 -1 0 ,
which can be decomposed as

T (0) = 1 1 j -j j 0 0 -j 1/2 -(1/2)j 1/2 (1/2)j . Furthermore, T (0) = 0 0 0 -j , T (0) = 0 0 0 -1 .
It follows instantly that r 1 T (0)q 1 = -(1/2)j. As such, it is necessary to invoke the second-order condition. For this purpose, we find S = 1 -j (-j -j) -1 1/2 (1/2)j = -1 4 j -1 1 j .

A trivial calculation shows that r 1 (T (0) -T (0)ST (0)) q 1 = -

1 2 1 + 1 4 j .
This means that the zeros ±j enter the left-half plane. Since the system is stable for τ ∈ [0, π), we conclude that the critical zeros ±j do not cross the imaginary axis. We may also use Corollary which, according to Theorem 5, indicates that the imaginary zeros ±j enter the left half plane, resulting in the same conclusion based on the state-space computation. Figure 1 confirms indeed that the zeros only "touch" the imaginary axis, but do not cross it. 

VI. CONCLUDING REMARKS

In this paper we have studied the asymptotic behavior of the critical characteristic zeros of linear time-delay systems with commensurate delays, for systems posed both in statespace form and as a quasipolynomial. We have shown that in both cases the asymptotic behavior of the critical zeros on the imaginary axis can be characterized in a simple manner, either by computing the eigenvalues of a constant matrix, or by computing the derivatives of the quasipolynomial. We demonstrated that when the first-order analysis ceases to be conclusive, the second-order condition can be used to effect.

Corollary 2

 2 Let jω * be a simple zero of a s, e -jω * τ * . Then for any τ sufficiently close to τ * but τ > τ * , jω * enters the right-half plane (or the left-half plane) if Re    d a(jω * , e -jω * τ ) dτ | τ =τ * d a(s, e -jω * τ * ) ds

Theorem 5 ∂ 2

 52 Let jω * be a simple zero of a s, e -jω * τ * . If Re    d a(jω * , e -jω * τ ) dτ | τ =τ * d a(s, e -jω * τ * ) ds | s=jω *    = 0, then for any τ sufficiently close to τ * but τ > τ * , jω * enters the right-half plane (or the left-half plane) if Re    d 2 a(jω * , e -jω * τ ) dτ 2 d a(s, e -jω * τ * ) ds -  d a(jω * , e -jω * τ ) dτ d a(s, e -jω * τ * ) ds a(s, e -jω * τ ) ∂s∂τ d a(s, e -jω * τ * ) ds at s = jω * , τ = τ * .

∂ 2

 2 2 and Theorem 5 to check the behavior of the imaginary zero jω * = j. In this vein, we first compute dp(jω * , e -jω * τ ) dττ =τ * = -(jω * ) 2 e -jω * τ | τ =π = -1, dp(s, e -jω * τ * ) ds s=jω * = 2s + 1 + e -jω * τ * | s=j = 2j.This gives rise tod p(jω * , e -jω * τ ) dτ | τ =τ * d p(s, e -jω * τ * )ds 2 is rendered inconclusive. To proceed to the second-order condition, we findd 2 p(jω * , e -jω * τ ) dτ 2 τ =τ * = (jω * ) 3 e -jω * τ | τ =π = j, ∂ 2 p(s, e -jω * τ ) ∂s∂τ s=jω * ,τ =τ * = -jω * e -jω * τ | τ =π = j.It then follows that   d 2 p(jω * , e -jω * τ ) dτ 2 d p(s, e -jω * τ * ) ds jω * , e -jω * τ ) dτ d p(s, e -jω * τ * ) ds p(s, e -jω * τ ) ∂s∂τ d p(s, e -jω * τ * ) ds

Fig. 1 .

 1 Fig. 1. Eigenvalues as functions of the delay τ

Note that the state-space form of this system was incorrectly given in[START_REF] Hertz | Simplified analytical stability test for systems with commensurate time delays[END_REF].
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