N

N

When will zeros of time-delay systems cross imaginary
axis?

Jie Chen, P. Fu, Silviu-Iulian Niculescu

» To cite this version:

Jie Chen, P. Fu, Silviu-Tulian Niculescu. When will zeros of time-delay systems cross imaginary
axis?. 2007 9th European Control Conference, ECC 2007, Jul 2007, Kos, Greece. pp.5631-5638,
10.23919/ecc.2007.7068613 . hal-02272376

HAL Id: hal-02272376
https://hal.science/hal-02272376
Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02272376
https://hal.archives-ouvertes.fr

When Will Zeros of Time-Delay Systems Cross Imaginary AXxis?

Jie Chen, Peilin Fu and Silviu-lulian Niculescu

Abstract—A time-delay system may or may not be stable will become unstable if a critical zero enters the open right-
for different periods of delay. When will then a delay system half plane, and otherwise will remain stable if all the critical
be stable or unstable, and for what ranges of delay? This ;g5 remain in the left-half plane. The essential problem in

paper attempts to answer these questions. We show that by . . . .
finding a set of critical delay values, for which the system’s this approach, consequently, is to characterize the analytical

characteristic quasipolynomial has zeros on the imaginary Properties of the imaginary zeros.

axis, it is possible to determine its stability in the full range of . .
the delay parameter by characterizing the analytical behaviors The problem alluded to above, known in the literature

of the zeros. This characterization is facilitated by an operator ~as thestability switch problemhas been studied for quite
perturbation approach, which is both conceptually attractive some time (see, e.g., [1], [5], [6], [12], [15], [18], [19]).
and computationally efficient. The entire procedure, which  Recently, the authors developed aperator perturbation

first identifies the critical zeros on the imaginary axis and approach(3] to facilitate this analysis, which appears both

next determines whether the zeros cross the imaginary axis, \vtically attracti d tati I i Th
requires only solving a generalized eigenvalue problem. analytically aftractive and computationally appealing. e

Index Terms— Time-delay, asymptotic stability, critical ze- @PProach seeks to reformulate the zero asymptotic analysis

ros, asymptotic behavior, matrix pencil. problem as one of eigenvalue perturbation [14], and it
amounts to performing a first-order asymptotic expansion
l. INTRODUCTION of the zeros around their critical values. Whether a critical

zero will cross the imaginary axis can then be checked by

In this paper we study stability properties of linear time-computing the eigenvalues of a constant matrix. It is worth

delay systems. We consider specifically retarded systemsting that the asymptotic expansion can be carried out in a

with commensuratelelays. For systems of this type, it israther efficient manner; in fact, it can be considered a direct

known that the stability problem can be tackled efficientlyconsequence resulted from the computation of the critical
by computing the critical delay values that result in imagdelay values and the imaginary zeros.

inary zeros of the systemtharacteristic quasipolynomial

This computation can be executed in a number of differen ; :
evelopment of the asymptotic analysis up to the second

ways, notably, by, e.g., solving a generalized eigenval . . Lo
problem [10], [16], [17]. Since the critical delay valuesorder' The results, along with the first-order analysis given
' ' in [3], thus provide a more complete tool which can aid

form consecutive intervals and the zeros vary continuous! o . )
with respect to the delay parameter, whether the syste' stability analysis when the first-order tests cease to be
is stable over a specific delay intervz,il can be determin eful; this scenario arises when the first-order coefficient in
by checking the stability corresponding to any fixed delay® asympfcot|c SEres IS Imagnary, whm_h renders the first-
order test inconclusive. Similar to their first-order counter-

value within that interval, thus in principle, determining the s th d-order tests developed herein al .
system’s stability over the entire range of delay values. orfgfs, the second-order 1ests developed heréin also require

should note, nevertheless, that even for a fixed delay, tl%)mputmg the eigenvalues of a constant matrix only.

testing of stability for a time-delay system is not a simple The remainder of this paper is organized as follows. In
task. Section 2, we first develop general eigenvalue perturbation
results, which serve as our primary technical machinery. We

: ) " then apply these results to time-delay systems; we first con-
analyze the asymptotic behavior of the critical zeros on t der in Section 3 systems in the state-space form, and next

|mag|na_rty alxz;. IThe |c|jea is rather ?}:mplf' Spec_ltflcallly, ah Section 4 systems described by differential-difference
e?ch cn ;]ca clay value c_orr:aspon_ Ilng 0 a crntica Zker%quations. Conditions are derived for characterizing whether
of the c aracteristic quasipolynomial, one may see t.g critical zero will cross the imaginary axis. Section 5

determine whether the zero may cross the imaginary axllg1

: resents an illustrative example and Section 6 concludes
from one half plane into another; for example, the syste e paper

This paper continues the work of [3] and gives a full

A more potent approach in accomplishing this goal is t
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For a matrixA, denote its spectrum by(A), and the ith of the generalized eigenvectors associated Wtt. In
eigenvalue by\;(A4). For a matrix paif A, B), denote the particular,
set of all its generalized eigenvalues byA, B), i.e., A

1 0
o(4, B):={AeC: det(A—AB)=0}. 5 0 0
1 =
The operatiold® B denotes the Kronecker sum, ade B : U |
the Kronecker product, of the matricesand B. 0 - --- 2O
Il. PRELIMINARY RESULTS The eigenvalue of'(x) can no longer be expanded in the

_ o ) form of (4), but instead as a Puiseux series.
This section introduces the operator perturbation theory

for matrix eigenvalue problems. We shall first give ar-€mma 2[3] Let ),‘(0) be a non-semisimple eigenvalue of
account of the first-order results developed in [3], and subsé.(0) With multiplicity . Then the corresponding eigenval-
quently perform a second-order analysis. The developmeligS Of7'(x) have the form

is based on the classical work by Kato [14] and the authors’ ©) M7 L )

own extension in [3]. pi(x) = A% + (% ) zm 4o, i=1,...,m, (5)
) : m _

A. First-Order Analysis wherey; ™" = 7, T'(0)gs.

] i ] As a consequence, Lemma 1 and Lemma 2 provide
Consider a matrix operatdf'(z) of a real variablez. 5 complete first-order characterization of the asymptotic
Suppose that in the neighborhood o= 0, the perturbed  gypressions for the eigenvaluesBfz) near the origin.
operator T'(z) is holomorphic, or equivalently, can be
expanded into the power series, B. Second-Order Asymptotic Expansion
The first-order asymptotic series introduced in the preced-
ing subsection can be further developed to include terms

It is known that near the origin, any semisimple eigenvalu@‘c higher orders. In this section we derive formulas for
of T(z), namely the semisimple root of the characteristi€®™PUting the coefficients of the asymptotic series up to
equation the second order.

Define the operator-valued function

. . . T(€) = (T(0) - &N, (6)
is an analytic functions ofc and can be expressed as a

power series inz; here by a semisimple eigenvalue, weWhich is known as the resolvent @f(0). It is obvious that
mean a repeated but diagonalizable eigenvalue. With no Iod singularities off' () are the eigenvalues @f(0). Let
of generality, let\©) be ordered as the first eigenvalue of\”’ be an eigenvalue of (0). Then(¢) can be expanded
7(0) with multiplicity m. ThenT'(0) can be decomposed as & Laurent series &t= A", that is,

T(x) = T(0) + 2T’ (0) + 2*T"(0) + - - -. (@)}

det (T(z) — €1) = 0, @)

as 0o
T — (- )\on-1p _ _\O —n-1p
T0)=QER=[ Q1 Q2 ] X 0 Bl (3 (é) ¢ : ;(6 ) '
S 0 3, Ry |7 -

+ — A8, 4, 7
where ¥, is diagonal with diagonal entries ag®), R = ;(5 )" Snt1 (@)
Qt=1[+F o T] andQ = [¢1 - qn ] - _ » _

N ! " ' ~ L4 n whereP, D,, andS,,; 1 are corresponding coefficient matri-

consist of the eigenvectors @f(0). The following lemma
gives the asymptotic series for the eigenvaluesTok)
originating from\(©).

ces. Evidently, the matriX’, known as the eigenprojection
for (9, can be found as

! 1 .
Lemma 1[3] Let \(?) be a semisimple eigenvalue Bf0) P= T2 Jp T(§)de = 27 fép (&1 =T(0))  d,
with multiplicity m. Then the corresponding eigenvalues o

L (Nherel“ is a positively-oriented closed contour enclosin
T'(z) are analytic inz and have the form P y g

A9 put no other eigenvalues @(0). It was found in [3]
i(x :)\(U)+)\(-1):17+0x2, i=1,...,m, 4 that

pi() i (z7) (4) P=0Q\R,.

Q. i . . .

i@ = 1,...,m, are the eigenvalues of The nolomorphic part in the Laurent expansion is called the

BT (0)@r- . . reduced resolvent of’(0) with respect to the eigenvalue
Consider next the case that® is not a semisimple but () genoted as

repeated eigenvalue &F(0) with multiplicity m. In this -
case,T'(0) admits a Jordan decomposition in whighis S(€) = Z (5 _ A(O))RSWH.
block diagonal with diagonal Jordan blocks, apdconsists '

where A\

n=0



Let S = S(A®), namely the value of the reduced resolvenmultiplicity d. Then thed corresponding eigenvalues of

of 7(0) at& = A9, Then it is obvious that T(z) can be expanded in the form
_g ! T() © O L @\ s
S = L= on Fg_)\(O)d«E. i) = A9 4z —I—(rdT q1> [ SR

Lemma 3 For any matrixT'(0) decomposed in the form of i=l...d (11

(3), whereX; is in Jordan form with diagonal entries as where7,; and ¢, are thedth right and the first left eigen-
A9 the reduced resolvent gt= \(¥) is equal to vectors of PT'(0) P, respectively.

0

S=Q 8 (55 — A )1 ] R=Qs(2y—AO1)7R,. [1l. STATE-SPACE MODELS
2 In this section we consider linear time-delay systems

The following Lemma given in [14] provides the resultdescribed by the state-space equation
on the second order perturbation &f{x) when all the

q
eigenvalues of'(0) are semisimple. () = Ao 2(t A 2t — k >0 12
Lemma 4[14] Let \(?) be a semisimple eigenvalueBf0), &(t) o 2(t) + ; el ™, 720, (12)
)\51) be a semisimple eigenvalue BT’ (0) P with the eigen-

. nxn
projection f)i(l)’ that is where 7 is the delay parameter and, € R are the

given system matrices. The characteristic quasipolynomial

Pi(l) _ ?{ (eI — PT’(O)P)fl de, 8) associated with this system is given by
T; q
whereT’; is a positively-oriented closed contour enclosing p(s, e 7%) = det (sI — ZAke""”> . (13)
)\2(1) but no other eigenvalues @*7”(0)P. ThenT'(z) has k=0
d = dim P") repeated eigenvalues of the form For a fixedr > 0, the system is asymptotically stable if

and only if all the zeros of the quasipolynomials, e~7%)
liein €~ (see, e.g., [10]).

The critical delay values and the critical zeros of the
above system can be computed in the following way. Define

/’Llp(x) = )\(O)+$A£1)+LL‘2/LEZZ))+O(I‘2)7 b= 17 U 7d7 (9)

Whereug) are the repeated eigenvalues of

AT PN = pM (17 (0) — T'(0)ST’(0)) PV, the matrices
(I 0 0 O
The eigenvalues o7 P! can be computed in a 0 I 0 0
manner similar to that in the first-order analysis. U = ,
Lemma 5 Let /\El) be an eigenvalue ofP7’(0)P. Let 0 0 I 0
also T(0) be decomposed as in (3), afd,77(0)Q, be | 0 0 -+ 0 By
decomposed as T I 0 ... 0
RlT/(O)Ql 0 0 I o 0
— Q(Q)E(Q)R(Q) VvV = :
(2) (2) 0 0 0 1
— (2) (2) X 0 R’y
- |: Ql 2 :| 0 252) Ré2) (10) L -By —-By —By ... _B2q—1
n?xn? _ . :
whereEﬁQ) is the Jordan block corresponding to the eigen—WhereBm €R »m=0,1,---,2q are given by
value/\gl). Then, Bym=I2AY B,=A®Al, Bym=A4,21
PV = QP RPR,, The following lemma, obtained in [4] (see also [9]), shows

that the critical delay values and zeros can be determined

and the eigenvalues @7 P are those of the matrix by solving a generalized eigenvalue problem

RORT®Q,QP.
We note that whemgl) is a simple eigenvalue, then Lémma 7 The Charactens'tlc C]l'JaSIpO|y'I’10.m|@|(s, e—Tf)
has a critical zero on the imaginary axis if and only if the
4 following conditions are satisfied:

Finally, in the case thaxgl) is a repeated non-semisimple (i (v, U) N oD # 0;
eigenvalue ofP7"(0)P, we can state a result similar to (i For somez; € o(V,U) N 0D,
Lemma 2. We state this result without proof.

q
Lemma 6 Let A(?) be a semisimple eigenvalue @70), o (Z Asz> NjiRy # 0.
and )\51) be a non-semisimple eigenvalue®1”(0) P with k=0

PY = gyry.

7



The imaginary numbejw; € o(>7_, AxzF), wherew; > and S is given in Lemma 3.
0, is a critical zero. The corresponding critical delay forms(i) For 7 sufficiently close ta* but + > 7*, there arem
the set repeated characteristic zeros entering the right-half plane

Log(z) = 2l (or the left-half plane) if the following eigenvalues satisfy
T(wi) = { —— t——>0, (=12, }’ the condition
JWwi L%
whereLog(-) represents the Cauchy principal value apil Re {\; (RiT'(0)Q1)} >0 (< 0).
the complex conjugate. (ii) If

Note that while7 (w;) is a countable set consisting of in- , .
finitely many elem(en)ts, the number of critical zerosgis finte. e (IT(O)Q)} =0, i=1, 2, m,
In addition, since the zeros gf(s, e~7%) are conjugate then forr sufficiently close ta* but 7 > 7*, there ared
symmetric, it suffices to consider only the critical zeros withepeated characteristic zeros entering the right-half plane
w; > 0. The entire range of delay values can be partitionegbr the left half plane) if the eigenva|uep§? satisfy the
into intervals(t;, 7;11), and the stability is invariant in each condition
of such intervals. ) . , , 2)

Let7* andjw*, w* € R, w* # 0 be a pair of critical de- Re {)‘p [31 Ry (T7(0) = T(0)ST"(0)) @1@Q4 } }
lay and critical zero op(s, e~7%), i.e.,p(jw*, e ¥ T ) = >0 (< 0).
0. The asymptotic behavior of the critical imaginary zero o -~ .
jw* can be examined by casting the problem into onel’ hus, upon finding the_cr|t|cal delays and C_rltlcal zeros,
of eigenvalue perturbation. Indeed, introduce a new re&l€ additional computation for the asymptotic expansion

variablez = + — 7*. and define given in Theorem 1 requires only computing the eigenvalues
q in the expressions oﬁgl) and Mg)- In particular, when
T(z) := Z (Akefjw*k‘r*)efjw*kz' (14) Jw" is a simple critical zero, this computation can be

further simplified. The following corollary is an immediate
consequence of Theorem 1.

k=0
Clearly, T'(x) is holomorphic. Furthermore, since
. B Corollary 1 Let jw* be a simple eigenvalue @f(0). Then
_ - J —
det(T(0) = jw'I) = p(ju’, e ) =0, for any 7 sufficiently close tar* but 7 > 7%, jw* enters

where . the right-half plane (or the left-half plane) if
T(0) =) Ape 7, (15) Re {rT'(0)q} >0 (<0),
k=0

whereq; andr; are the right and left eigenvectors associ-

jw* is an eigenvalue of’'(0). Without loss of generality, ated with jw* . Additionally, if

let jw* be ordered as the first eigenvalue Bf0), with
multiplicity m. Let alsoT'(0) be partitioned as in (3). Then, Re{ri (T'(0)) ¢} = 0,

the following asymptotic expansion can be obtained. o
then for anyr sufficiently close tor* but = > 7%, jw*

Theorem 1 Let jw* be a s((la)misimple eigenvalue ®0)  enters the right-half plane (or the left half plane) if
with multiplicity mz, and letA;”’ be a semisimple eigenvalue . ) )

of PT"(0)P with multiplicity d. Then for anyr sufficiently Re {ri (T"(0) = T'(0)ST"(0)) 1 } >0 (<0), (17)
close tor*, the characteristic zeros corresponding to*

‘ X The next two results concern the cases that is not a
can be expanded into the power series

semisimple but repeated eigenvalue, or m}ﬂ is such an

jot A0 (- =) + 12 (r =772 o (1 — 7)%), (16) eigenvalue.
with Theorem 2 Let jw* be a repeated eigenvalue @f(0)

1 y with multiplicity m. Suppose thafw* is not semisimple.
A=A (BT (0)Q1) Then for anyr sufficiently close ta* but 7 > 7*, them

=1, 2,---, m, characteristic zeros corresponding jo* can be expanded
NE?)) — )‘p |:R§2)R1 (T”(O) . TI(O)ST/(O)) QngQ):| ; into the Puiseux series 1
p=1,2,---.,d, jw* +{=rnT'(0)q1 }™ (7 — T*)# + -
where Hence, fork =0, 1, ---, m — 1, the kth branch of the
g L eigenvalue enters the right half plane (or the left half plane)
T'0) = =) jkw Age T if
k=1 2km + w46
q COS T >0 (< 0),
T//(O) _ Z(w*k)gA e Iw kr*

o1 whered € [0, 2x] is the phase angle of,, 7 (0)q;.



Theorem 3 Let jw* be a semisimple eigenvalue B10) We note that a similar generalized eigenvalue-based solution
with multiplicity m and )\51) = M(RiT'(0)Qq) be a re- (see, e.g., [4]) exists for the critical zerps* of a (s, e~ ")
peated eigenvalue dPT”(0) P with multiplicity d. Suppose at the critical delay value*, at whicha (jw*, e=7*"7") =

that A" is not semisimple. Then for anysufficiently close 0. This result is available from [4], [9].

to 7* but 7 > 7*, the characteristic zeros corresponding to

jw* can be expanded by the Puiseux series Lemma 8 Define H, := 0, T, := I, and fori =
Oa ) 17 ey, N— 11
1
jw*—I—)\El)(T—T*)—i- (—FdT(Q)cjl)d (T—T*)H% + -
apg 0 0
(18) a agi - 0
T;I = ’
where : ) :
T = R Ry (T7(0) = T'(0)ST'(0)) 1Q7”, L Gq-1i Gg-2i 00
. . . Qqi Qg—1,4 - 015
and 74, g1 are thedth right and the first left eigenvectors 0 agi o Gy
of PT'(0)P. Hence, if H, : =
Re{/\l(RlT/(O)Qﬁ} = O, L 0 0 R 757}
then fork = 0, 1, ---, d — 1, the kth branch of the
eigenvalue enters the right half plane (or the left half planepefine further
if
2km + 7+ [ T G)E -
(d) 00 Pom | (Cymr Gayrr [ 10 L
wherefd € [0, 2] is the phase angle of,,7?g;. 0 ; 0
Theorem 2 and Theorem 3 reveal a fundamental dif- : : _ :
ference between the asymptotic behaviors of a semisimple P := ' ' ' '
. . 0 0 . I
eigenvalue and one that is not. Take Theorem 2 for example, o . 3
for a repeated eigenvalue that is not semisimple, the result PRy PP =P P
shows that, precluding the case that
Re{rnT'(0)q1} = 0, 0 b 0
whether the zero will enter the right-half plane is solely F(s) := 0 0 - 1 )
determined by the multiplicity of the zero. In this case, the o
—ao(s) —ai(s) -+ —ag-1(s)

branches of the zero loci will almost generically enter the
right-half plane when the multiplicity is greater than two.
Note that in the degenerate case= 1, Theorem 2 also G(s):=diag(l --- 1 a,(s)).
reduces to Corollary 1.

The quasipolynomiak(s, e~ 7%) has a critical zero on the

) ] ] o imaginary axis if and only if the following conditions are
Alternatively, we also consider the differential-differencegatisfied:

IV. DIFFERENTIAL-DIFFERENCEEQUATION MODEL

s ) For somee: = () (2 s, ARG, i) 1
. Wy g y O Wi ), Wi
Y™ (t) + Z Z ariyD(t—kr)=0, 7>0. (19) oD = (. " ! !
i=0 k=0

n‘{lhe imaginary numbefw; € o(P), wherew; > 0, is a

Systems described by (19) can be represented equivale thltical zero. The corresponding critical delay forms the set

by the quasipolynomial

a Log(z;) = 2m¢
o ) =Yt 720, @) T = {0 Moo oz,
k=0
where wherez; € o(F(jw;), G(jw;)).

n—1 n—1
ao(s) = s"—&—ZaOisi, ax(s) Zaki5i> k=1, -, q. It _is clear that_Theorem l-The_orem 3 can be dire_:t_:tly
= pat applied to determine the asymptotic behavior of the critical



zero jw*, by making use of the realization enters the right-half plane (or the left-half plane) if

0 1 0 Lol e D)
: . : Re§ woi edfjw*T*) — <0 (>0).
Ay = : : E : , (21) e ls=jer
0 0 . 1
| —@0 —Qo1 '* —Gon-—1 It is useful to note that in the case of a simple critical
0 0 e 0 zero, results similar to Corollary 2 have been reported in [1],
) ) ) ) [5], [6], [12], [19], while without much technical deliber-
Ay, = : : - : ,k>0. (22) ation. Our derivation herein thus provides an independent,
0 0 0 rigorous justification to some of the previously available
L —@%0 —Gk1 cr TOkn-1 results.

Theorem 4 and Corollary 2 correspond to the first-
order analysis of the quasipolynomial. When these results
become inapplicable, the following second-order result can
A}e employed.

Additionally, with the specific structures of this realization,
it is not difficult to derive that the eigenvalues @f(0)
are also the roots of quasipolynomia(s, e~/ 7). This
makes it possible to state the results directly in terms
the quasipolynomiak (s, e~7*). We first show that with a Theorem 5 Let jw* be a simple zero of (s, eI ) I
realization given by the above companion foffi{0)) cannot

d a(jw*, e 77 T)

have semisimple repeated eigenvalues. R o J—— 0
€ - =
. . d 5, e—JwrT* )
Lemma 9 Any companion matrix %E:jw*
0 1 0 then for anyr sufficiently close tor* but = > 7%, jw*
enters the right-half plane (or the left-half plane) if
=10 0 @ a(je*, e9477)
Reld — dr*
—Qp —Q1 - —Op-1 d a(s, e7I@"T")
ds
cannot .havg sgmisimple repeateq eigenvalues. . d a(jw®, =377 0 a(s, e=9%" ™)
The implication of Lemma 9 is rather clear. With the — dr____ 9s91___ <0 (>0)
above realization ofl;, the matrix7'(0) is in the compan- d a(s, Z;““ i) d_a(s, Z;N ™)
ion form with )
ats = jw*, T="71".
q
a; =Y age*T =01, n—1 V. AN ILLUSTRATIVE EXAMPLE
k=0 In this section we use an example to demonstrate the
As such, when applying the results in Section Ill, oné€cond-order zero-crossing conditions.

can preclude the case th&y0) has semisimple repeated Example Consider the following second-order delay sys-
eigenvalues; instead, the critical zegio* is either a simple tem' [12] (see also [11]):

eigenvalue, or a repeated, non-semisimple eigenvalue of. . 0 1 . 0 0 s

T(0). Theorem 4 and Corollary 2 given below describe the ;;8] = {_1 _1] {i;gtﬂ {0 _1] {i;gt _ :ﬂ - (23)
asymptotic behavior of imaginary poles in these two cases,

in terms ofa (s, e~ 7). bThe corresponding characteristic quasipolynomial is given
e y
Theorem 4 Let jw* be a repeated zero af (s, e =9« 7") s 5 Cer
with multiplicity m. Then for anyr sufficiently close to p(s, €)= s"HstseT 41 (24)
7" butT > 77, the m zeros corresponding tgw* can be By a direct application of Lemma 7 or Lemma 8, a pair of
expanded into the Puiseux series critical zero and delay are found to he* = j andr* = 7.
. 1 Following the state-space computations in Theorem 1 and
daGe, e 7)) " . Corollary 1, we first find

jw* + —m!dm a(s.detjw*‘f*)| (r—7%) + -, . ) 0 o 0 1

’sm s=jw* = T =

¢ ’ (0) {—1 —1} + [0 —1} ¢ [—1 0} ’

which can be decomposed as
If jw* is a simple zero ofi (s, e=7“"7"), the following 1 11 o][/2 —(1/2);

corollary is an immediate consequence of Theorem 4. T(0) = i —jl 1o —jl|1/2 (1/2)j|"

Corollary 2 Let jw*_ l_)e a simple zero of (3’ e IeT ) INote that the state-space form of this system was incorrectly given in
Then for anyr sufficiently close tor* but = > 7%, jw* [12].



Furthermore,

. wof o)

It follows instantly thatr;77(0)q; = —(1/2)j. As such, it

is necessary to invoke the second-order condition. For thisz

purpose, we find
s=[1ci-one ama--1ff

A trivial calculation shows that

il
)

7 (1(0) = T(O)ST'(0) ay = — (14 35

0.1

-0.2 :
15

.
10
T

Fig. 1. Eigenvalues as functions of the delay

20

This means that the zerds;j enter the left-half plane. Since

the system is stable for € [0, ), we conclude that the
critical zeros+; do not cross the imaginary axis.

VI. CONCLUDING REMARKS
In this paper we have studied the asymptotic behavior of

We may also use Corollary 2 and Theorem 5 to checle critical characteristic zeros of linear time-delay systems

the behavior of the imaginary zerpo* = j. In this vein,
we first compute

with commensurate delays, for systems posed both in state-
space form and as a quasipolynomial. We have shown that
in both cases the asymptotic behavior of the critical zeros on

P, —jw*T ok
dp(jw*, e ) _ (_(jw*)Qe—]w ‘r) l_p = —1, the
dr N
d —jw*T* ok
dp(s, e 7 ) = (25414 gy =2
ds s=jw*

imaginary axis can be characterized in a simple manner,

either by computing the eigenvalues of a constant matrix,
. or by computing the derivatives of the quasipolynomial. We
" demonstrated that when the first-order analysis ceases to be

conclusive, the second-order condition can be used to effect.

This gives rise to

d p(jw*, e=3%77)

dr lr=r- _ ey [1]
dp(s, e= ) 27
5 ls=gor

and hence Corollary 2 is rendered inconclusive. To proceeé?]

to the second-order condition, we find 3]
p(jw*, e 3@ T . e .
T (0 ) |y
T=T7* 4
0%p(s, e %) L , 4
— (_jw*efjw 'r) ‘7':71' — ,]
ds0T s=jw* , T=7% [5]
It then follows that 6]
d? P(jw;,Qe’j“’*T) [7]
o ar
d_p(s, e=i"7)
T )
d p(jw*, e 7¥77) 82 p(s, e 797 7) [9]
dr 9sOT
d p(s, e=7="7") d p(s, e=3="7")
ds ds s=jw*,T=T%
1 1. [10]
2 1) [11]

which, according to Theorem 5, indicates that the imaginary

zeros+j enter the left half plane, resulting in the samgi2)
conclusion based on the state-space computation. Figure 1
confirms indeed that the zeros only “touch” the imaginar:{lg]

axis, but do not cross it.
[14]
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