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When Will Zeros of Time-Delay Systems Cross Imaginary Axis?

Jie Chen, Peilin Fu and Silviu-Iulian Niculescu

Abstract— A time-delay system may or may not be stable
for different periods of delay. When will then a delay system
be stable or unstable, and for what ranges of delay? This
paper attempts to answer these questions. We show that by
finding a set of critical delay values, for which the system’s
characteristic quasipolynomial has zeros on the imaginary
axis, it is possible to determine its stability in the full range of
the delay parameter by characterizing the analytical behaviors
of the zeros. This characterization is facilitated by an operator
perturbation approach, which is both conceptually attractive
and computationally efficient. The entire procedure, which
first identifies the critical zeros on the imaginary axis and
next determines whether the zeros cross the imaginary axis,
requires only solving a generalized eigenvalue problem.

Index Terms— Time-delay, asymptotic stability, critical ze-
ros, asymptotic behavior, matrix pencil.

I. I NTRODUCTION

In this paper we study stability properties of linear time-
delay systems. We consider specifically retarded systems
with commensuratedelays. For systems of this type, it is
known that the stability problem can be tackled efficiently
by computing the critical delay values that result in imag-
inary zeros of the system’scharacteristic quasipolynomial.
This computation can be executed in a number of different
ways, notably, by, e.g., solving a generalized eigenvalue
problem [10], [16], [17]. Since the critical delay values
form consecutive intervals and the zeros vary continuously
with respect to the delay parameter, whether the system
is stable over a specific delay interval can be determined
by checking the stability corresponding to any fixed delay
value within that interval, thus in principle, determining the
system’s stability over the entire range of delay values. One
should note, nevertheless, that even for a fixed delay, the
testing of stability for a time-delay system is not a simple
task.

A more potent approach in accomplishing this goal is to
analyze the asymptotic behavior of the critical zeros on the
imaginary axis. The idea is rather simple. Specifically, at
each critical delay value corresponding to a critical zero
of the characteristic quasipolynomial, one may seek to
determine whether the zero may cross the imaginary axis,
from one half plane into another; for example, the system
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will become unstable if a critical zero enters the open right-
half plane, and otherwise will remain stable if all the critical
zeros remain in the left-half plane. The essential problem in
this approach, consequently, is to characterize the analytical
properties of the imaginary zeros.

The problem alluded to above, known in the literature
as thestability switch problem, has been studied for quite
some time (see, e.g., [1], [5], [6], [12], [15], [18], [19]).
Recently, the authors developed anoperator perturbation
approach[3] to facilitate this analysis, which appears both
analytically attractive and computationally appealing. The
approach seeks to reformulate the zero asymptotic analysis
problem as one of eigenvalue perturbation [14], and it
amounts to performing a first-order asymptotic expansion
of the zeros around their critical values. Whether a critical
zero will cross the imaginary axis can then be checked by
computing the eigenvalues of a constant matrix. It is worth
noting that the asymptotic expansion can be carried out in a
rather efficient manner; in fact, it can be considered a direct
consequence resulted from the computation of the critical
delay values and the imaginary zeros.

This paper continues the work of [3] and gives a full
development of the asymptotic analysis up to the second
order. The results, along with the first-order analysis given
in [3], thus provide a more complete tool which can aid
in stability analysis when the first-order tests cease to be
useful; this scenario arises when the first-order coefficient in
the asymptotic series is imaginary, which renders the first-
order test inconclusive. Similar to their first-order counter-
parts, the second-order tests developed herein also require
computing the eigenvalues of a constant matrix only.

The remainder of this paper is organized as follows. In
Section 2, we first develop general eigenvalue perturbation
results, which serve as our primary technical machinery. We
then apply these results to time-delay systems; we first con-
sider in Section 3 systems in the state-space form, and next
in Section 4 systems described by differential-difference
equations. Conditions are derived for characterizing whether
a critical zero will cross the imaginary axis. Section 5
presents an illustrative example and Section 6 concludes
the paper.

We use the following notation throughout the paper. Let
IR be the set of real numbers,C the set of complex numbers,
and IR+ the set of nonnegative real numbers. Denote the
open right half plane byC+ := {s : <(s) > 0}, the closed
right half plane byC+, and the imaginary axis by∂C+.
Similarly, denote the open unit disc byID, the unit circle
by ∂ID, and the closed exterior of the unit disc byIDc.



For a matrixA, denote its spectrum byλ(A), and the ith
eigenvalue byλi(A). For a matrix pair(A, B), denote the
set of all its generalized eigenvalues byσ(A, B), i.e.,

σ(A, B) := {λ ∈ C : det(A− λB) = 0} .

The operationA⊕B denotes the Kronecker sum, andA⊗B
the Kronecker product, of the matricesA andB.

II. PRELIMINARY RESULTS

This section introduces the operator perturbation theory
for matrix eigenvalue problems. We shall first give an
account of the first-order results developed in [3], and subse-
quently perform a second-order analysis. The development
is based on the classical work by Kato [14] and the authors’
own extension in [3].

A. First-Order Analysis

Consider a matrix operatorT (x) of a real variablex.
Suppose that in the neighborhood ofx = 0, the perturbed
operator T (x) is holomorphic, or equivalently, can be
expanded into the power series,

T (x) = T (0) + xT ′(0) + x2T ′′(0) + · · · . (1)

It is known that near the origin, any semisimple eigenvalue
of T (x), namely the semisimple root of the characteristic
equation

det (T (x)− ξI) = 0, (2)

is an analytic functions ofx and can be expressed as a
power series inx; here by a semisimple eigenvalue, we
mean a repeated but diagonalizable eigenvalue. With no loss
of generality, letλ(0) be ordered as the first eigenvalue of
T (0) with multiplicity m. ThenT (0) can be decomposed
as

T (0) = QΣR =
[

Q1 Q2

] [
Σ1 0
0 Σ2

] [
R1

R2

]
, (3)

whereΣ1 is diagonal with diagonal entries asλ(0), R =
Q−1 =

[
rT
1 · · · rT

n

]T
, and Q =

[
q1 · · · qn

]
consist of the eigenvectors ofT (0). The following lemma
gives the asymptotic series for the eigenvalues ofT (x)
originating fromλ(0).

Lemma 1 [3] Let λ(0) be a semisimple eigenvalue ofT (0)
with multiplicity m. Then the corresponding eigenvalues of
T (x) are analytic inx and have the form

µi(x) = λ(0) + λ
(1)
i x + o(x2), i = 1, . . . , m, (4)

where λ
(1)
i , i = 1, . . . , m, are the eigenvalues of

R1T
′(0)Q1.

Consider next the case thatλ(0) is not a semisimple but
repeated eigenvalue ofT (0) with multiplicity m. In this
case,T (0) admits a Jordan decomposition in whichΣ is
block diagonal with diagonal Jordan blocks, andQ1 consists

of the generalized eigenvectors associated withλ(0). In
particular,

Σ1 =




λ(0) 1 · · · 0

0
.. .

.. . 0
...

.. . 1
0 · · · · · · λ(0)




.

The eigenvalue ofT (x) can no longer be expanded in the
form of (4), but instead as a Puiseux series.

Lemma 2 [3] Let λ(0) be a non-semisimple eigenvalue of
T (0) with multiplicity m. Then the corresponding eigenval-
ues ofT (x) have the form

µi(x) = λ(0) +
(
γ

(1)
i

) 1
m

x
1
m + · · · , i = 1, . . . , m, (5)

whereγ
(1)
i = rmT ′(0)q1.

As a consequence, Lemma 1 and Lemma 2 provide
a complete first-order characterization of the asymptotic
expressions for the eigenvalues ofT (x) near the origin.

B. Second-Order Asymptotic Expansion

The first-order asymptotic series introduced in the preced-
ing subsection can be further developed to include terms
of higher orders. In this section we derive formulas for
computing the coefficients of the asymptotic series up to
the second order.

Define the operator-valued function

Υ(ξ) = (T (0)− ξI)−1, (6)

which is known as the resolvent ofT (0). It is obvious that
the singularities ofΥ(ξ) are the eigenvalues ofT (0). Let
λ(0) be an eigenvalue ofT (0). ThenΥ(ξ) can be expanded
as a Laurent series atξ = λ(0), that is,

Υ(ξ) = −(ξ − λ(0))−1P −
∞∑

n=1

(ξ − λ(0))−n−1Dn

+
∞∑

n=0

(ξ − λ(0))nSn+1, (7)

whereP , Dn andSn+1 are corresponding coefficient matri-
ces. Evidently, the matrixP , known as the eigenprojection
for λ(0), can be found as

P = − 1
2πj

∮

Γ

Υ(ξ)dξ =
1

2πj

∮

Γ

(ξI − T (0))−1
dξ,

whereΓ is a positively-oriented closed contour enclosing
λ(0) but no other eigenvalues ofT (0). It was found in [3]
that

P = Q1R1.

The holomorphic part in the Laurent expansion is called the
reduced resolvent ofT (0) with respect to the eigenvalue
λ(0), denoted as

S(ξ) =
∞∑

n=0

(
ξ − λ(0)

)n

Sn+1.



Let S = S(λ(0)), namely the value of the reduced resolvent
of T (0) at ξ = λ(0). Then it is obvious that

S = S1 =
1

2πj

∮

Γ

Υ(ξ)
ξ − λ(0)

dξ.

Lemma 3 For any matrixT (0) decomposed in the form of
(3), whereΣ1 is in Jordan form with diagonal entries as
λ(0), the reduced resolvent atξ = λ(0) is equal to

S = Q

[
0 0
0 (Σ2 − λ(0)I)−1

]
R = Q2(Σ2−λ(0)I)−1R2.

The following Lemma given in [14] provides the result
on the second order perturbation ofT (x) when all the
eigenvalues ofT (0) are semisimple.
Lemma 4 [14] Letλ(0) be a semisimple eigenvalue ofT (0),
λ

(1)
i be a semisimple eigenvalue ofPT ′(0)P with the eigen-

projectionP
(1)
i , that is

P
(1)
i =

∮

Γi

(ξI − PT ′(0)P )−1
dξ, (8)

whereΓi is a positively-oriented closed contour enclosing
λ

(1)
i but no other eigenvalues ofPT ′(0)P . ThenT (x) has

d = dim P
(1)
i repeated eigenvalues of the form

µip(x) = λ(0)+xλ
(1)
i +x2µ

(2)
ip +o(x2), p = 1, · · · , d, (9)

whereµ
(2)
ip are the repeated eigenvalues of

P
(1)
i T (2)P

(1)
i = P

(1)
i (T ′′(0)− T ′(0)ST ′(0)) P

(1)
i .

The eigenvalues ofP (1)
i T (2)P

(1)
i can be computed in a

manner similar to that in the first-order analysis.
Lemma 5 Let λ

(1)
i be an eigenvalue ofPT ′(0)P . Let

also T (0) be decomposed as in (3), andR1T
′(0)Q1 be

decomposed as

R1T
′(0)Q1

= Q(2)Σ(2)R(2)

=
[

Q
(2)
1 Q

(2)
2

] [
Σ(2)

1 0
0 Σ(2)

2

] [
R

(2)
1

R
(2)
2

]
(10)

whereΣ(2)
1 is the Jordan block corresponding to the eigen-

valueλ
(1)
i . Then,

P
(1)
i = Q1Q

(2)
1 R

(2)
1 R1,

and the eigenvalues ofP (1)
i T (2)P

(1)
i are those of the matrix

R(2)R1T
(2)Q1Q

(2)
1 .

We note that whenλ(1)
i is a simple eigenvalue, then

P
(1)
i = q1r1.

Finally, in the case thatλ(i)
1 is a repeated non-semisimple

eigenvalue ofPT ′(0)P , we can state a result similar to
Lemma 2. We state this result without proof.

Lemma 6 Let λ(0) be a semisimple eigenvalue ofT (0),
and λ

(1)
i be a non-semisimple eigenvalue ofPT ′(0)P with

multiplicity d. Then thed corresponding eigenvalues of
T (x) can be expanded in the form

µi(x) = λ(0) + xλ
(1)
i +

(
r̃dT

(2)q̃1

)1/d

x1+ 1
d + · · · ,

i = 1, . . . , d, (11)

where r̃d and q̃1 are thedth right and the first left eigen-
vectors ofPT ′(0)P , respectively.

III. STATE-SPACE MODELS

In this section we consider linear time-delay systems
described by the state-space equation

ẋ(t) = A0 x(t) +
q∑

k=1

Ak x(t− kτ), τ ≥ 0, (12)

where τ is the delay parameter andAk ∈ IRn×n are the
given system matrices. The characteristic quasipolynomial
associated with this system is given by

p(s, e−τs) = det

(
sI −

q∑

k=0

Ake−kτs

)
. (13)

For a fixedτ ≥ 0, the system is asymptotically stable if
and only if all the zeros of the quasipolynomialp(s, e−τs)
lie in C− (see, e.g., [10]).

The critical delay values and the critical zeros of the
above system can be computed in the following way. Define
the matrices

U =




I 0 · · · 0 0
0 I · · · 0 0

. . .
0 0 · · · I 0
0 0 · · · 0 B2q




,

V =




0 I 0 · · · 0
0 0 I · · · 0

. ..
0 0 0 · · · I

−B0 −B1 −B2 . . . −B2q−1




,

whereBm ∈ IRn2×n2
, m = 0, 1, · · · , 2q are given by

Bq−m = I ⊗AT
m, Bq = A0 ⊕AT

0 , Bq+m = Am ⊗ I.

The following lemma, obtained in [4] (see also [9]), shows
that the critical delay values and zeros can be determined
by solving a generalized eigenvalue problem.

Lemma 7 The characteristic quasipolynomialp(s, e−τs)
has a critical zero on the imaginary axis if and only if the
following conditions are satisfied:

(i) σ(V, U) ∩ ∂ID 6= ∅;
(ii) For somezi ∈ σ(V,U) ∩ ∂ID,

σ

(
q∑

k=0

Akzk
i

)
∩ jIR+ 6= ∅.



The imaginary numberjωi ∈ σ(
∑q

k=0 Akzk
i ), whereωi >

0, is a critical zero. The corresponding critical delay forms
the set

T (ωi) =
{

Log(zi)
jωi

+
2π`

ωi
> 0, ` = 1, 2, · · ·

}
,

whereLog(·) represents the Cauchy principal value and(.)
the complex conjugate.

Note that whileT (ωi) is a countable set consisting of in-
finitely many elements, the number of critical zeros is finite.
In addition, since the zeros ofp(s, e−τs) are conjugate
symmetric, it suffices to consider only the critical zeros with
ωi > 0. The entire range of delay values can be partitioned
into intervals(τi, τi+1), and the stability is invariant in each
of such intervals.

Let τ∗ andjω∗, ω∗ ∈ IR+, ω∗ 6= 0 be a pair of critical de-
lay and critical zero ofp(s, e−τs), i.e.,p(jω∗, e−jω∗τ∗) =
0. The asymptotic behavior of the critical imaginary zero
jω∗ can be examined by casting the problem into one
of eigenvalue perturbation. Indeed, introduce a new real
variablex = τ − τ∗, and define

T (x) :=
q∑

k=0

(
Ake−jω∗kτ∗

)
e−jω∗kx. (14)

Clearly, T (x) is holomorphic. Furthermore, since

det(T (0)− jω∗I) = p(jω∗, e−jω∗τ∗) = 0,

where

T (0) =
q∑

k=0

Ake−jω∗kτ∗ , (15)

jω∗ is an eigenvalue ofT (0). Without loss of generality,
let jω∗ be ordered as the first eigenvalue ofT (0), with
multiplicity m. Let alsoT (0) be partitioned as in (3). Then,
the following asymptotic expansion can be obtained.

Theorem 1 Let jω∗ be a semisimple eigenvalue ofT (0)
with multiplicity m, and letλ(1)

i be a semisimple eigenvalue
of PT ′(0)P with multiplicity d. Then for anyτ sufficiently
close toτ∗, the characteristic zeros corresponding tojω∗

can be expanded into the power series

jω∗+λ
(1)
i (τ − τ∗)+µ

(2)
ip (τ − τ∗)2 + o

(
(τ − τ∗)3

)
, (16)

with

λ
(1)
i = λi (R1T

′(0)Q1) ,

i = 1, 2, · · · , m,

µ
(2)
ip = λp

[
R

(2)
1 R1 (T ′′(0)− T ′(0)ST ′(0))Q1Q

(2)
1

]
,

p = 1, 2, · · · , d,

where

T ′(0) = −
q∑

k=1

jkω∗Ake−jω∗kτ∗ ,

T ′′(0) = −
q∑

k=1

(ω∗k)2Ake−jω∗kτ∗ ,

and S is given in Lemma 3.
(i) For τ sufficiently close toτ∗ but τ > τ∗, there arem
repeated characteristic zeros entering the right-half plane
(or the left-half plane) if the following eigenvalues satisfy
the condition

Re {λi (R1T
′(0)Q1)} > 0 (< 0).

(ii) If

Re {λi (R1T
′(0)Q1)} = 0, , i = 1, 2, · · · , m,

then for τ sufficiently close toτ∗ but τ > τ∗, there ared
repeated characteristic zeros entering the right-half plane
(or the left half plane) if the eigenvaluesµ(2)

ip satisfy the
condition

Re
{

λp

[
R

(2)
1 R1 (T ′′(0)− T ′(0)ST ′(0)) Q1Q

(2)
1

]}

> 0 (< 0).

Thus, upon finding the critical delays and critical zeros,
the additional computation for the asymptotic expansion
given in Theorem 1 requires only computing the eigenvalues
in the expressions ofλ(1)

i and µ
(2)
ip . In particular, when

jω∗ is a simple critical zero, this computation can be
further simplified. The following corollary is an immediate
consequence of Theorem 1.

Corollary 1 Let jω∗ be a simple eigenvalue ofT (0). Then
for any τ sufficiently close toτ∗ but τ > τ∗, jω∗ enters
the right-half plane (or the left-half plane) if

Re {r1T
′(0)q1} > 0 (< 0),

whereq1 and r1 are the right and left eigenvectors associ-
ated withjω∗ . Additionally, if

Re {r1 (T ′(0)) q1} = 0,

then for anyτ sufficiently close toτ∗ but τ > τ∗, jω∗

enters the right-half plane (or the left half plane) if

Re {r1 (T ′′(0)− T ′(0)ST ′(0)) q1} > 0 (< 0), (17)

The next two results concern the cases thatjω∗ is not a
semisimple but repeated eigenvalue, or thatλ

(1)
i is such an

eigenvalue.

Theorem 2 Let jω∗ be a repeated eigenvalue ofT (0)
with multiplicity m. Suppose thatjω∗ is not semisimple.
Then for anyτ sufficiently close toτ∗ but τ > τ∗, the m
characteristic zeros corresponding tojω∗ can be expanded
into the Puiseux series

jω∗ + {−rmT ′(0)q1}
1
m (τ − τ∗)

1
m + · · · ,

Hence, fork = 0, 1, · · · , m − 1, the kth branch of the
eigenvalue enters the right half plane (or the left half plane)
if

cos
(

2kπ + π + θ

m

)
> 0 (< 0),

whereθ ∈ [0, 2π] is the phase angle ofrmT ′(0)q1.



Theorem 3 Let jω∗ be a semisimple eigenvalue ofT (0)
with multiplicity m and λ

(1)
i = λi(R1T

′(0)Q1) be a re-
peated eigenvalue ofPT ′(0)P with multiplicity d. Suppose
that λ(1)

i is not semisimple. Then for anyτ sufficiently close
to τ∗ but τ > τ∗, the characteristic zeros corresponding to
jω∗ can be expanded by the Puiseux series

jω∗ + λ
(1)
i (τ − τ∗) +

(
−r̃dT

(2)q̃1

) 1
d

(τ − τ∗)1+
1
d + · · · ,

(18)

where

T (2) = R
(2)
1 R1 (T ′′(0)− T ′(0)ST ′(0)) Q1Q

(2)
1 ,

and r̃d, q̃1 are thedth right and the first left eigenvectors
of PT ′(0)P . Hence, if

Re{λi(R1T
′(0)Q1)} = 0,

then for k = 0, 1, · · · , d − 1, the kth branch of the
eigenvalue enters the right half plane (or the left half plane)
if

cos

(
2kπ + π + θ̃

d

)
> 0 (< 0),

whereθ̃ ∈ [0, 2π] is the phase angle of̃rmT (2)q̃1.

Theorem 2 and Theorem 3 reveal a fundamental dif-
ference between the asymptotic behaviors of a semisimple
eigenvalue and one that is not. Take Theorem 2 for example,
for a repeated eigenvalue that is not semisimple, the result
shows that, precluding the case that

Re{rmT ′(0)q1} = 0,

whether the zero will enter the right-half plane is solely
determined by the multiplicity of the zero. In this case, the
branches of the zero loci will almost generically enter the
right-half plane when the multiplicity is greater than two.
Note that in the degenerate casem = 1, Theorem 2 also
reduces to Corollary 1.

IV. D IFFERENTIAL-DIFFERENCEEQUATION MODEL

Alternatively, we also consider the differential-difference
equation

y(n)(t) +
n−1∑

i=0

q∑

k=0

akiy
(i)(t− kτ) = 0, τ ≥ 0. (19)

Systems described by (19) can be represented equivalently
by the quasipolynomial

a
(
s, e−τs

)
=

q∑

k=0

ak(s)e−kτs, τ ≥ 0, (20)

where

a0(s) = sn+
n−1∑

i=0

a0is
i, ak(s)

n−1∑

i=0

akis
i, k = 1, · · · , q.

We note that a similar generalized eigenvalue-based solution
(see, e.g., [4]) exists for the critical zerosjω∗ of a (s, e−τs)
at the critical delay valueτ∗, at whicha

(
jω∗, e−jω∗τ∗

)
=

0. This result is available from [4], [9].

Lemma 8 Define Hn := 0, Tn := I, and for i =
0, , 1, · · · , n− 1,

Ti : =




a0i 0 · · · 0
a1i a0i · · · 0
...

. . .
. . .

...
aq−1,i aq−2,i · · · a0i


 ,

Hi : =




aqi aq−1,i · · · a1i

0 aqi · · · a2i

...
. . .

. . .
...

0 0 · · · aqi


 .

Define further

Pi :=
[

(j)iTi (j)iHi

(−j)iHT
i (−j)iTT

i

]
, i = 0, 1, · · · , n,

P :=




0 I · · · 0
...

...
. . .

...
0 0 · · · I

−P−1
n P0 −P−1

n P1 · · · −P−1
n Pn−1


 .

F (s) :=




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a0(s) −a1(s) · · · −aq−1(s)


 ,

G(s) := diag(1 · · · 1 aq(s)) .

The quasipolynomiala(s, e−τs) has a critical zero on the
imaginary axis if and only if the following conditions are
satisfied:

(i) σ(P ) ∩ ∂IR+ 6= ∅ and σ(P ) ∩ ∂IR+ 6= {0};
(ii) For someωi ∈ σ(P ) ∩ ∂IR+, σ(F (jωi), G(jωi)) ∩

∂ID = ∅.
The imaginary numberjωi ∈ σ(P ), whereωi > 0, is a
critical zero. The corresponding critical delay forms the set

T (ωi) =
{

Log(zi)
jωi

+
2π`

ωi
> 0, ` = 1, 2, · · ·

}
,

wherezi ∈ σ(F (jωi), G(jωi)).

It is clear that Theorem 1-Theorem 3 can be directly
applied to determine the asymptotic behavior of the critical



zero jω∗, by making use of the realization

A0 =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−a00 −a01 · · · −a0,n−1


 , (21)

Ak =




0 0 · · · 0
...

...
. ..

...
0 0 · · · 0

−ak0 −ak1 · · · −ak,n−1


 , k > 0. (22)

Additionally, with the specific structures of this realization,
it is not difficult to derive that the eigenvalues ofT (0)
are also the roots of quasipolynomiala

(
s, e−jω∗τ∗

)
. This

makes it possible to state the results directly in terms of
the quasipolynomiala (s, e−τs). We first show that with a
realization given by the above companion form,T (0) cannot
have semisimple repeated eigenvalues.

Lemma 9 Any companion matrix

A =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−α0 −α1 · · · −αn−1




cannot have semisimple repeated eigenvalues.
The implication of Lemma 9 is rather clear. With the

above realization ofAk, the matrixT (0) is in the compan-
ion form with

αi =
q∑

k=0

akie
−jkω∗τ∗ , i = 0, 1 · · · , n− 1.

As such, when applying the results in Section III, one
can preclude the case thatT (0) has semisimple repeated
eigenvalues; instead, the critical zerojω∗ is either a simple
eigenvalue, or a repeated, non-semisimple eigenvalue of
T (0). Theorem 4 and Corollary 2 given below describe the
asymptotic behavior of imaginary poles in these two cases,
in terms ofa (s, e−τs).

Theorem 4 Let jω∗ be a repeated zero ofa
(
s, e−jω∗τ∗

)
with multiplicity m. Then for anyτ sufficiently close to
τ∗ but τ > τ∗, the m zeros corresponding tojω∗ can be
expanded into the Puiseux series

jω∗ +


−m!

d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

dm a(s, e−jω∗τ∗ )
dsm |s=jω∗




1
m

(τ − τ∗)
1
m + · · · ,

If jω∗ is a simple zero ofa
(
s, e−jω∗τ∗

)
, the following

corollary is an immediate consequence of Theorem 4.

Corollary 2 Let jω∗ be a simple zero ofa
(
s, e−jω∗τ∗

)
.

Then for anyτ sufficiently close toτ∗ but τ > τ∗, jω∗

enters the right-half plane (or the left-half plane) if

Re





d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

d a(s, e−jω∗τ∗ )
ds |s=jω∗



 < 0 (> 0).

It is useful to note that in the case of a simple critical
zero, results similar to Corollary 2 have been reported in [1],
[5], [6], [12], [19], while without much technical deliber-
ation. Our derivation herein thus provides an independent,
rigorous justification to some of the previously available
results.

Theorem 4 and Corollary 2 correspond to the first-
order analysis of the quasipolynomial. When these results
become inapplicable, the following second-order result can
be employed.

Theorem 5 Let jω∗ be a simple zero ofa
(
s, e−jω∗τ∗

)
. If

Re





d a(jω∗, e−jω∗τ )
dτ |τ=τ∗

d a(s, e−jω∗τ∗ )
ds |s=jω∗



 = 0,

then for anyτ sufficiently close toτ∗ but τ > τ∗, jω∗

enters the right-half plane (or the left-half plane) if

Re





d2 a(jω∗, e−jω∗τ )
dτ2

d a(s, e−jω∗τ∗ )
ds

−



d a(jω∗, e−jω∗τ )
dτ

d a(s, e−jω∗τ∗ )
ds







∂2 a(s, e−jω∗τ )
∂s∂τ

d a(s, e−jω∗τ∗ )
ds






 < 0 (> 0)

at s = jω∗, τ = τ∗.

V. A N ILLUSTRATIVE EXAMPLE

In this section we use an example to demonstrate the
second-order zero-crossing conditions.

Example Consider the following second-order delay sys-
tem1 [12] (see also [11]):[

ẋ1(t)
ẋ2(t)

]
=

[
0 1
−1 −1

][
x1(t)
x2(t)

]
+

[
0 0
0 −1

][
x1(t− τ)
x2(t− τ)

]
. (23)

The corresponding characteristic quasipolynomial is given
by

p(s, e−τs) = s2 + s + se−sτ + 1. (24)

By a direct application of Lemma 7 or Lemma 8, a pair of
critical zero and delay are found to bejω∗ = j andτ∗ = π.

Following the state-space computations in Theorem 1 and
Corollary 1, we first find

T (0) =
[

0 1
−1 −1

]
+

[
0 0
0 −1

]
e−jπ =

[
0 1
−1 0

]
,

which can be decomposed as

T (0) =
[
1 1
j −j

] [
j 0
0 −j

] [
1/2 −(1/2)j
1/2 (1/2)j

]
.

1Note that the state-space form of this system was incorrectly given in
[12].



Furthermore,

T ′(0) =
[
0 0
0 −j

]
, T ′′(0) =

[
0 0
0 −1

]
.

It follows instantly thatr1T
′(0)q1 = −(1/2)j. As such, it

is necessary to invoke the second-order condition. For this
purpose, we find

S =
[

1
−j

]
(−j − j)−1

[
1/2 (1/2)j

]
= −1

4

[
j −1
1 j

]
.

A trivial calculation shows that

r1 (T ′′(0)− T ′(0)ST ′(0)) q1 = −1
2

(
1 +

1
4
j

)
.

This means that the zeros±j enter the left-half plane. Since
the system is stable forτ ∈ [0, π), we conclude that the
critical zeros±j do not cross the imaginary axis.

We may also use Corollary 2 and Theorem 5 to check
the behavior of the imaginary zerojω∗ = j. In this vein,
we first compute

dp(jω∗, e−jω∗τ )
dτ

∣∣∣∣
τ=τ∗

=
(
−(jω∗)2e−jω∗τ

)
|τ=π = −1,

dp(s, e−jω∗τ∗)
ds

∣∣∣∣
s=jω∗

=
(
2s + 1 + e−jω∗τ∗

)
|s=j = 2j.

This gives rise to

d p(jω∗, e−jω∗τ )
dτ |τ=τ∗

d p(s, e−jω∗τ∗ )
ds |s=jω∗

=
1
2
j,

and hence Corollary 2 is rendered inconclusive. To proceed
to the second-order condition, we find

d2p(jω∗, e−jω∗τ )
dτ2

∣∣∣∣
τ=τ∗

=
(
(jω∗)3e−jω∗τ

)
|τ=π = j,

∂2p(s, e−jω∗τ )
∂s∂τ

∣∣∣∣
s=jω∗,τ=τ∗

=
(
−jω∗e−jω∗τ

)
|τ=π = j.

It then follows that



d2 p(jω∗, e−jω∗τ )
dτ2

d p(s, e−jω∗τ∗ )
ds




−



d p(jω∗, e−jω∗τ )
dτ

d p(s, e−jω∗τ∗ )
ds







∂2 p(s, e−jω∗τ )
∂s∂τ

d p(s, e−jω∗τ∗ )
ds




∣∣∣∣∣∣
s=jω∗,τ=τ∗

=
1
2
− 1

4
j,

which, according to Theorem 5, indicates that the imaginary
zeros±j enter the left half plane, resulting in the same
conclusion based on the state-space computation. Figure 1
confirms indeed that the zeros only “touch” the imaginary
axis, but do not cross it.
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Fig. 1. Eigenvalues as functions of the delayτ

VI. CONCLUDING REMARKS

In this paper we have studied the asymptotic behavior of
the critical characteristic zeros of linear time-delay systems
with commensurate delays, for systems posed both in state-
space form and as a quasipolynomial. We have shown that
in both cases the asymptotic behavior of the critical zeros on
the imaginary axis can be characterized in a simple manner,
either by computing the eigenvalues of a constant matrix,
or by computing the derivatives of the quasipolynomial. We
demonstrated that when the first-order analysis ceases to be
conclusive, the second-order condition can be used to effect.
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