
HAL Id: hal-02272363
https://hal.science/hal-02272363

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving FDIR of Spacecraft Systems with Advanced
Tools and Concepts

Eric Bensana, Xavier Pucel, Christel Seguin

To cite this version:
Eric Bensana, Xavier Pucel, Christel Seguin. Improving FDIR of Spacecraft Systems with Advanced
Tools and Concepts. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse,
France. �hal-02272363�

https://hal.science/hal-02272363
https://hal.archives-ouvertes.fr


Improving FDIR of Spacecraft Systems with

Advanced Tools and Concepts

Eric Bensana, Xavier Pucel, Christel Seguin
ONERA Toulouse, 2 av. Edouard Belin

31077 Toulouse CEDEX 4

July 5, 2013

Faults in spacecraft systems are an important problem, mainly because of
the cost of downtime, and because their remoteness makes maintenance more
difficult. This is why automated handling of faults can greatly enhance the sys-
tem overall performance. This automated fault management relies on dedicated
functions for fault detection, identification, and recovery (FDIR), that are often
interleaved with the system, which makes it difficult to guarantee tolerance with
respect to a particular anomaly, and makes the system difficult to maintain as
well. On the other hand, several advanced computational tools exist that are
known to support the tasks of FDIR. In this paper, starting from the current
state of affairs in spacecraft system development, we develop and test several
options for enhancing the quality of FDIR functions. First, we use software
validation and verification tools to prove that the FDIR functions meet some
functional quality goals. A second option we explore is to re-implement FDIR
functions by Model-Based Reasoning algorithms, that are guaranteed to pro-
duce exact results with respect to a model of the system’s behaviour. In each
option, we use and compare several software tools, we compare the effort re-
quired to adapt, integrate and use them, and estimate the overall benefits they
provide.

1 Verification and Validation of FDIR

Verification and validation of FDIR functions aims at offering guarantees of
functional quality, as in how the system reacts to faults. It also supports the
prototyping and early development of FDIR functions, which can greatly en-
hance their integration and utility in the system. These approaches rely on
a formal representation of the system’s behaviour, in absence and in presence
of faults, as well as a representation of the quality requirements in the same
formalism. Because these approaches involve computationally expensive algo-
rithms, the modelling phase is critical for the success of the validation tasks,
and we show in two studies how this complexity can be handled, for instance
by analysing subsystems separately, or by using abstract or situational models.

In a first study with Astrium, we have validated the FDIR functions for a
satellite thermal control system by analyzing separately 3 aspects of the sys-
tem in 3 different modelling tools: the system architecture with Altarica and

1



Cecilia OCAS, the control software with Scade 6 and the physical components
with HyTech. In each case, the tool offered both a language for modelling the
subsystem’s behaviour and FDIR requirements, as well an a model specific al-
gorithm for checking which requirements were met.

In a separate study with Thales Alenia Space, we have validated an Attitude
and Orbit Control System the COMPASS and SLIM tools. Separate analyses
were performed for a model of the nominal behaviour (in absence of faults) and
for a model that accounts for faults. In both cases, the model is qualitative and
focuses on the system’s architecture and ability to make use of the component
redundancies.

Experience shows that although modelling a system’s behaviour and require-
ments can be difficult, validating FDIR algorithms helps discovering design
problems and correcting them. Validation tools have proven to be useful for
critical systems development in general, and for FDIR modules in particular.

2 FDIR with Model-Based Reasoning

Model-Based Reasoning for FDIR is a different development approach, that rely
on formal models of the system’s behaviour, and analysis algorithms. It usually
requires the encapsulation of the FDIR functions in a separate module, which
makes validation and maintenance easier, at the potential cost of increased
development time due to the architectural constraint and the complexity of
the analysis algorithms. In this section we present two studies: the first study
consists in the complete implementation of a FDIR module in a satellite flight
control software demonstrator, the second study consists in the integration of
academic diagnosis modules in a flight control software.

2.1 A BDD based FDIR module

The first implementation of a Model-Based FDIR module took place in a flight
control software demonstrator from CNES. The system was already imple-
mented in a hierarchical architecture. Some equipment redundancy mechanisms
were already in place at the lowest level of the hierarchy, while at the topmost
level several global reconfiguration modes could be activated, such as turning
off the payload, or switch to safe flight mode. We used a custom made Binary
Decision Diagram (BDD) library to build our FDIR module. We expressed
the precondition for each reconfiguration action as a BDD, and implemented a
state monitoring mechanism that encodes the system’s current state as a BDD
as well. Our FDIR module had a hierarchical architecture that maps that of the
system, so that state monitoring and reconfiguration actions could be taken at
any level of the architecture, thus restricting the affected part of the satellite and
effectively containing the faults. BDD tend to lower memory consumption, and
can easily be implemented without dynamic memory allocation, which makes
them suited for satellite systems. The implementation was successful.

2.2 Complex tools and models

The second implementation of a FDIR module aimed at integrating and compar-
ing several Model-Based Diagnosis tools. The challenge behind this integration

2



relies on the fact that each tool provides different interpretations for diagnosis
: the Lydia tool from TU Deltf produces sets of faulty components, the Diades
tool from LAAS a classification of faults, the Livingstone tool a trajectory (i.e. a
sequence of events) that explain an abnormal behaviour. We have also included
a custom made diagnosis engine based on Prolog Eclipse based on predicate
logic. Despite the variety of tools, we have established a common interface,
based on common concepts such as modes, commands and faults, common data
types such as assignments, observations, candidate and diagnosis, and common
functions, such as initialization, model loading, observation and analysis, and
integrated the four diagnosis engines in a flight software simulator. While the
integration of the diagnosers was successful, it was difficult to evaluate the opti-
mal granularity of the models to produce a useful diagnosis while containing the
algorithmic complexity of the diagnosis reasoning. Moreover, it exhibited that
without being guided by a collection of possible reconfigurations, it is difficult
to judge how precise a diagnosis, and how precise a model, is needed.

Our Model-Based implementations of FDIR modules have confirmed our expec-
tations in terms of greater modularity and maintainability. We also claim that
they offer greater potential for validation, since the modeling formalisms for
Model-Based FDIR are similar to those used in validation. We have discovered
that modelling the system can be difficult, especially when there is no clear
specification of the FDIR objectives. Such specification can be a predefined
set of possible reconfiguration actions that must be taken automatically, which
when available makes the implementation possible and efficient.

3


