
HAL Id: hal-02272353
https://hal.science/hal-02272353v1

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systematic Design and Automated Execution of
Embedded System Tests

Peter M Kruse, Jörg Reiner

To cite this version:
Peter M Kruse, Jörg Reiner. Systematic Design and Automated Execution of Embedded System Tests.
Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse, France. �hal-02272353�

https://hal.science/hal-02272353v1
https://hal.archives-ouvertes.fr

Systematic Design and Automated Execution

of Embedded System Tests

Peter M. Kruse

Berner & Mattner Systemtechnik GmbH

Gutenbergstr. 15

Berlin, Germany

peter.kruse@berner-mattner.com

Jörg Reiner

Berner & Mattner Systemtechnik GmbH

Erwin-von-Kreibig-Str. 3

Munich, Germany

joerg.reiner@berner-mattner.com

ABSTRACT

During the development of embedded sys-

tems, tests are performed on various test

platforms, such as hardware-in-the-loop plat-

forms in order to find faults. Test cases must

be specified to verify the properties demand-

ed of the system on these test platforms. The

main challenge is to find relevant test cases,

since in most cases not all possible test cases

can be found and executed. Combinatorial

testing can solve this task systematically.

In this paper, we describe the integrated test

design and test automation using the indus-

trial testing tools CTE XL Professional and

MESSINA. In a case study with an antilock

braking system, we demonstrate the opera-

tion of the system.

1 INTRODUCTION

A great number of today’s products are based on

the deployment of embedded systems. In indus-

trial applications, embedded systems are pre-

dominantly used for controlling and monitoring

technical processes.

In order to be able to find faults in the embedded

system under development before its deploy-

ment into the target environment, tests are usu-

ally carried out on various in-the-loop test plat-

forms. In-the-loop means that there is bidirec-

tional interaction between the embedded system

and its environment: the environment stimu-

lates the sensors of the system, and in turn the

system affects the environment using its actua-

tors. Depending on the artifacts that are modeled

and simulated, different in-the-loop test ap-

proaches are distinguished.

While a Model-in-the-loop (MiL) testing allows

early tests with a model based approach; Soft-

ware-in-the-loop (SiL) testing aims at testing

executable artifacts of software components.

With Hardware-in-the-loop (HiL) tests, the soft-

ware integrated into the target hardware (e.g. an

embedded controller) is examined. In all these

cases the environment of the system under test

is simulated.

Test cases must be created to verify the specified

properties of the developed system on the dif-

ferent test platforms. Exhaustive testing is usual-

ly not possible due to the enormous amount of

possible input situations and combinations of

input signals. Care must therefore be taken to

select relevant test cases, as the quality of the

overall test directly depends on it. It is therefore

necessary to follow a systematically approach,

e.g. in terms of combinatorial testing.

In this paper, we describe the integration of the

industrial testing tools MESSINA and CTE XL

Professional.

1.1 MESSINA

MESSINA [1] is a testing environment for the

test of embedded systems. It allows the connec-

tion to the embedded devices with their various

interfaces, like electrical connections (e.g. ana-

logue and digital signals) or bus systems (e.g.

CAN) as well as sensor interfaces (e.g. cameras).

MESSINA allows the implementation of hard-

ware- and software-independent test sequences

specified using different notations such as UML

or Java. Using abstraction layers allows universal

test execution on MiL, SiL and HiL platforms.

One of these layers is the signal pool containing

all system signals provided by the connected

devices or software. The signal pool allows easy

read and write access to all the signals used by

the system under test (SUT) or the simulation

environment.

Several approaches are available in MESSINA for

the creation of test cases. Search-based testing

approaches for example using evolutionary algo-

rithms are described in [2]. Another approach is

the application of Combinatorial Testing provid-

ed by CTE XL Professional.

1.2 CTE XL Professional

CTE XL Professional [3] is a popular tool for

systematic combinatorial test design. It imple-

ments and supports the test design technique

called Classification Tree Method [4].

Basically the method consists of classifying the

combinatorial aspects relevant for the SUT into

classifications and then decomposing each into

disjoint classes. Found classes can again be clas-

sified in different ways, so called refinements.

This creates a tree made of classes and classifica-

tions, a Classification Tree. By means of the clas-

sification tree, the CTE XL Professional then

generates test cases by combining the individual

classes of the various classifications. For a test

generation with pairwise combination coverage,

a test suite is obtained, that uses every class pair

from disjoint classifications at least once in a test

case. Since large trees can generate many test

cases due to the combinatorial explosion, CTE XL

Professional offers prioritization of classes in a

tree and hence the generated test cases will have

a corresponding prioritization [5].

2 APPROACH

We are illustrating, how a classification tree

structure with test cases can be created and

exported to MESSINA for execution.

The general idea is to implement a general test

case in MESSINA, which is then parameterized

several times with test cases from CTE XL Pro-

fessional.

2.1 Test Object: Anti-lock Braking System

The anti-lock braking system (ABS) is a system

which prevents the wheels of a vehicle from

locking while braking, in order to allow the driv-

er to maintain steering control under heavy

braking conditions and, in most situations, to

shorten braking distances. Sensors of the ABS

measure the speed at which the wheels are turn-

ing. If the speed decreases rapidly, the electronic

control system reports blocking danger. The

pressure of the brake hydraulics is reduced im-

mediately and then raised again to a point slight-

ly below the blocking threshold. This process is

repeated several times per second. The goal of

the anti-locking control system is to maintain the

slip of the wheels at a level which guarantees the

highest braking power and the highest steerabil-

ity of the vehicle.

2.2 Test Implementation

The first step is the creation of a system setup in

MESSINA. The runtime environment consists of

the SUT as well as environment simulation mod-

els. In our configuration, we start with a MiL test,

since actual hardware is not yet available. Sen-

sors and actors are also simulated in our config-

uration. For simulating driving and braking ma-

neuvers, a car simulation model is connected to

the SUT using the signal pool. Test cases also

connect to the signal pool, so they are able to

read, trigger, manipulate and assess all data flow

between the SUT and the simulation environ-

ment. The complete setup is given in Figure 1.

A MESSINA test case implementation typically

consists of three sections, a pre-condition part

(used for initialization), the actual test action

and a post-condition part (used for cleanup).

public class CheckBrakingDistance {

 public boolean preCondition() {

 throttle.setValue(0);

 brakeIntensity.setValue(100);
 ASSERT(speed.waitValue(0, 60000),

 "Timeout-preCondition");

 brakeIntensity.setValue(0);

 return true;

 }

Listing 1: Initialization of the system

Figure 1: MESSINA MiL test environment configuration

In the pre-condition part, the system is brought

to a meaningful starting point, e.g. the speed is

reduced to zero.

public int run() {
 kl15.setValue(true)

 kl30.setValue(true)

 throttle.setValue(50);

 ASSERT(speed.waitValue(50, 60000),
 "Timeout-acceleration");

 throttle.setValue(0);

 int startPos = distance.getValue();

 brakeIntensity.setValue(100);

 ASSERT(speed.waitValue(0, 60000),
 "Timeout-brake");

 int stopPos = distance.getValue();

 int total = stopPos - startPos;

 ASSERT(total > 27,

"FAIL: Distance too long with "

+ total + "m.");

 return 0; // 0 means PASS

 }

Listing 2: Actual test execution

In the test implementation (the run-method), the

car is then accelerated to a given speed (50m/s),

then a full brake is performed (with 100% brake

intensity). When the car has come to a full stop,

the braking distance is evaluated. If it is below a

given threshold (27m), the test case passes. Oth-

erwise, the test case produces a failure.

public boolean postCondition() {

 brakeIntensity.setValue(0);

 return true;
 }

}

Listing 3: Post-condition and cleanup

In the post-condition part, the brake is released.

2.3 Test Generalization

The concrete values in the test case can also be

extracted so that the test case can be parameter-

ized. Thus, different Speeds, Brake Intensities and

so on can be tested using the same test template.

For the combination of different parameter val-

ues, we use the CTE XL Professional.

2.4 Test Variation

The CTE XL Professional project is used to illus-

trate the campaign test cases and their parame-

ters as a tree structure. Figure 2 shows the clas-

sification tree structure as created in CTE XL

Professional.

All parameters (Speed, BrakeDistance,

BrakeIntesity, KL30_Status, KL15_Status,

ManeuverDurantion, ManeuverDataset) and

their respective values are graphically displayed

to illustrate their connection to the test cases.

The test case groups each contain test cases

which use different parameter settings as de-

fined by the tree structure. These parameter

values will be assigned to the MESSINA test case

for execution of the test.

The CTE XL Professional export creates cam-

paign structures in the MESSINA project based

on the classification tree. The parameters for

each test case execution within each campaign

are then also defined in the classification tree.

The test case group (Braking Distance

Tests) will be exported as a campaign into

MESSINA. The actual export then consists of

specifying the MESSINA project folder and se-

lecting the template test case.

After a refresh of the project folder has been

done in MESSINA, the project structure is updat-

ed (Figure 3). The new campaigns have been

added. The test case (selected during the export

process) is added to each campaign with the

corresponding parameter settings as defined in

the CTE XL Professional project.

The parameter values for each test case (within

each campaign) can be examined by double

clicking on the parameter name. The values cor-

respond to those defined in the CTE XL Profes-

sional project.

Figure 2: Classification Tree

2.5 Test Execution

The campaigns can then be executed in the usual

way. All different configurations of the master

test case are executed then one by one. In our

example, this would be all three test cases. By

the means of the MESSINA hardware abstraction

layer the test cases can be run on all test config-

urations from MiL to HiL.

For the execution of test cases in a HiL setup,

with actual hardware of the system under test,

the MESSINA configuration would look slightly

different (Figure 4). In the upper part, the ABS

Module (SUT) is missing, as it is replaced by an

ABS Electronic Control Unit (ECU). When the

SUT evolves to an embedded system, as in our

case, the access is done by hardware access (e.g.

bus system or digital I/O or analogue I/O). MES-

SINA provides adapters between these interfac-

es and the signal pool. I.e. that environment

models and test cases can be reused without

modifications.

This combines both, the systematic test case

generation and the consistent verification from

early stages of the development process to the

complete system test. The test reports of the

executed test runs contain all relevant configura-

tion information including the parameter set

generated by CTE XL Professional. Reusable test

cases on various integration levels (e.g. MiL, SiL,

HiL) reduce creation and maintenance efforts

and therefore cuts cost in embedded software

development.

Figure 4: MESSINA HiL test environment configuration

Figure 3: Resulting MESSINA campaign

3 BEYOND PARAMETERIZATION

In this work, a master test case is to be imple-

mented in MESSINA by the test engineer which

is then parameterized using the CTE XL Profes-

sional. While this approach is already of great

help for the test engineer, it does not benefit

from all available test generation facilities of CTE

XL Professional, i.e. the generation of semantical-

ly correct test sequences [6].

For testing state-based systems with continuous

actions, test cases must therefore reflect these

properties of the SUT in a certain order. The

outcome of one test case is used as the input for

the next test case. The composition of several

test cases into a larger test scenario, so called

test sequence, and their generation remains a

challenging task. Furthermore, test steps as part

of test sequences cannot be composed in any

arbitrary order as it is required for some config-

urations of the software that other things have

been done first.

In Figure 5, an example tree for driving maneu-

vers of a car is given. Different steering wheel

angles and speeds are available.

Since the different configurations are only avail-

able depending on previous states of the car (e.g.

steering to left is not directly reachable if steer-

ing is currently to right), not all possible tests

can be performed in any arbitrary order. There-

fore, the tester can assign allowed transitions to

the classes of the classification tree.

The resulting valid transitions for Steering can

be seen in Figure 6. Initially, the steering is neu-

tral, straight forward (indicated by green back-

ground of the class). From neutral, the steering

wheel can be turned to left and right, and also

back from left and right, but there is no direct

connection between left and right.

The available transitions for the car’s speed are

given in Figure 7. Initially, the car is always

standing still (stop, again indicated by green

background). It can accelerate to slow, medium

and fast, but only in that order, and decelerate in

reverse order from fast to medium to slow.

The allowed transitions can then be used for test

sequence generation in CTE XL Professional.

The resulting test sequence is given in Figure 8.

The sequence covers each transition at least

once. The steering wheel is turned from neutral

to the left, back to neutral, to the right and back

to neutral, covering all four transitions for steer-

ing (as given in Figure 6). For the speed of the

car, the sequence uses all possible transitions by

accelerating from the stopped car to fast speed

traversing low and medium speed and deceler-

ates back to stop using medium and low speed

again. The sequence containing of seven steps

covers all possible six transitions of speed (as

given in Figure 7).

For further use in MESSINA, the resulting se-

quence currently needs to be implemented in

Java manually. By assigning Java statements to

the corresponding elements of the classification

tree (i.e. setter-/getter-methods to the classifica-

tions, concrete values to classes) the whole pro-

cess can be further automatized. We are also

evaluating the use of different coverage criteria

for the actual generation of sequences.

Figure 5: Classification Tree for Driving Car

Figure 6: Allowed Transitions for Steering

Figure 7: Allowed Transitions for Speed

Figure 8: Resulting Test Sequence

4 SEARCH-BASED TESTING

The use of search-based techniques for function-

al testing of embedded systems has been de-

scribed in [2].

Evolutionary testing is based on meta-heuristic

search techniques such as evolutionary algo-

rithms. An evolutionary algorithm is an optimi-

zation technique based on the principles of the

Darwinian theory of evolution. It implements an

iteratively process of evaluation, selection,

crossover, mutation and population update,

which is repeated unless a termination criterion

applies, such as that the ideal solution is found.

With evolutionary testing, the test objective

considered is transformed into an optimization

problem. The input domain of the test object

forms the search space in which an evolutionary

algorithm searches for test data that fulfils the

respective test objective.

Through the EvoTest project, an extensible and

open automated evolutionary testing architec-

ture and framework was developed [7] that

provides general components and interfaces to

facilitate the automatic generation, execution,

monitoring and evaluation of test cases using

evolutionary computation.

Empirical evaluation in an industrial context

using MESSINA has been evaluated in [8]. In

summery the study identifies the creation of

appropriate fitness functions the most challeng-

ing task, although results indicate that evolu-

tionary functional testing using MESSINA is scal-

able and applicable.

5 CONCLUSSION

In this paper, we presented an approach for

systematic test design and test automation of

MiL, SiL and HiL tests. We have laid out a simple

system configuration for MESSINA consisting of

a SUT and an environment simulation. An exist-

ing single test case is then parameterized allow-

ing the use of CTE XL Professional for systematic

test case design. Resulting test suites are export-

ed from CTE XL Professional to MESSINA for

execution and evaluation. The repeated instanti-

ation of the master test cases reduces the manu-

al effort of test case creation and maintenance.

For future work, we see a more tightened inte-

gration of both tools, to ease the systematic

specification of embedded system tests and their

automated execution. This might include actual

Java test case generation from CTE XL Profes-

sional instead of parameterizing existing test

cases. The distinction between pre-condition,

test action and post-condition requires special

attention, which might be handled more natural-

ly with the test sequence generation facilities [6]

of CTE XL Professional.

Post evaluation is another topic we would inves-

tigate further. CTE XL Professional supports the

analysis of test results for specified test case to

assess the influence of individual parameter

values (the class) on test success or failure. Hav-

ing a test suite with test results available allows

for an in-depth root-cause-analysis.

We will also continue on the Search-based Soft-

ware Testing track, as already described in [2].

REFERENCES
[1] Berner & Mattner Systemtechnik GmbH MESSI-

NA. www.berner-mattner.com/en/berner-

mattner-home/products/messina

[2] P.M. Kruse, J. Wegener, and S. Wappler. A highly

configurable test system for evolutionary black-

box testing of embedded systems. GECCO 2009,

Montreal, Canada, 2009.

[3] Berner & Mattner Systemtechnik GmbH, CTE XL

Professional. http://www.cte-xl-

professional.com/

[4] M. Grochtmann and K. Grimm. Classification

trees for partition testing. Softw. Test., Verif. Re-

liab., 3(2):63--82, 1993.

[5] P.M. Kruse and M. Luniak. Automated test case

generation using classification trees. Software

Quality Professional, 13(1):4--12, 2010.

[6] P.M. Kruse and J. Wegener. Test Sequence Gen-

eration from Classification Trees. A-MOST

2012/ICST 2012, Montreal, Canada, April 2012.

[7] M. Dimitar, I. M. Dimitrov, and I. Spasov. Evotest-

Framework for customizable implementation of

Evolutionary Testing. International Workshop

on Software and Services. 2008.

[8] T. E. J. Vos, F.F. Lindlar, B. Wilmes, A. Windisch,

A. I. Baars, P. M. Kruse, H. Gross, and J. Wegener.

Evolutionary functional black-box testing in an

industrial setting. Software Quality Journal

(2013): 1-30.

