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ABSTRACT 

During the development of embedded sys-

tems, tests are performed on various test 

platforms, such as hardware-in-the-loop plat-

forms in order to find faults. Test cases must 

be specified to verify the properties demand-

ed of the system on these test platforms. The 

main challenge is to find relevant test cases, 

since in most cases not all possible test cases 

can be found and executed. Combinatorial 

testing can solve this task systematically. 

In this paper, we describe the integrated test 

design and test automation using the indus-

trial testing tools CTE XL Professional and 

MESSINA. In a case study with an antilock 

braking system, we demonstrate the opera-

tion of the system. 

1 INTRODUCTION 

A great number of today’s products are based on 

the deployment of embedded systems. In indus-

trial applications, embedded systems are pre-

dominantly used for controlling and monitoring 

technical processes.  

In order to be able to find faults in the embedded 

system under development before its deploy-

ment into the target environment, tests are usu-

ally carried out on various in-the-loop test plat-

forms. In-the-loop means that there is bidirec-

tional interaction between the embedded system 

and its environment: the environment stimu-

lates the sensors of the system, and in turn the 

system affects the environment using its actua-

tors. Depending on the artifacts that are modeled 

and simulated, different in-the-loop test ap-

proaches are distinguished.  

While a Model-in-the-loop (MiL) testing allows 

early tests with a model based approach; Soft-

ware-in-the-loop (SiL) testing aims at testing 

executable artifacts of software components. 

With Hardware-in-the-loop (HiL) tests, the soft-

ware integrated into the target hardware (e.g. an 

embedded controller) is examined. In all these 

cases the environment of the system under test 

is simulated. 

Test cases must be created to verify the specified 

properties of the developed system on the dif-

ferent test platforms. Exhaustive testing is usual-

ly not possible due to the enormous amount of 

possible input situations and combinations of 

input signals. Care must therefore be taken to 

select relevant test cases, as the quality of the 

overall test directly depends on it. It is therefore 

necessary to follow a systematically approach, 

e.g. in terms of combinatorial testing. 

In this paper, we describe the integration of the 

industrial testing tools MESSINA and CTE XL 

Professional. 

1.1 MESSINA 

MESSINA [1] is a testing environment for the 

test of embedded systems. It allows the connec-

tion to the embedded devices with their various 

interfaces, like electrical connections (e.g. ana-

logue and digital signals) or bus systems (e.g. 

CAN) as well as sensor interfaces (e.g. cameras). 

MESSINA allows the implementation of hard-

ware- and software-independent test sequences 

specified using different notations such as UML 

or Java. Using abstraction layers allows universal 

test execution on MiL, SiL and HiL platforms. 

One of these layers is the signal pool containing 

all system signals provided by the connected 

devices or software. The signal pool allows easy 

read and write access to all the signals used by 

the system under test (SUT) or the simulation 

environment.  

Several approaches are available in MESSINA for 

the creation of test cases.  Search-based testing 

approaches for example using evolutionary algo-

rithms are described in [2]. Another approach is 

the application of Combinatorial Testing provid-

ed by CTE XL Professional. 



1.2 CTE XL Professional 

CTE XL Professional [3] is a popular tool for 

systematic combinatorial test design. It imple-

ments and supports the test design technique 

called Classification Tree Method [4].  

Basically the method consists of classifying the 

combinatorial aspects relevant for the SUT into 

classifications and then decomposing each into 

disjoint classes. Found classes can again be clas-

sified in different ways, so called refinements. 

This creates a tree made of classes and classifica-

tions, a Classification Tree. By means of the clas-

sification tree, the CTE XL Professional then 

generates test cases by combining the individual 

classes of the various classifications. For a test 

generation with pairwise combination coverage, 

a test suite is obtained, that uses every class pair 

from disjoint classifications at least once in a test 

case. Since large trees can generate many test 

cases due to the combinatorial explosion, CTE XL 

Professional offers prioritization of classes in a 

tree and hence the generated test cases will have 

a corresponding prioritization [5]. 

2 APPROACH 

We are illustrating, how a classification tree 

structure with test cases can be created and 

exported to MESSINA for execution.  

The general idea is to implement a general test 

case in MESSINA, which is then parameterized 

several times with test cases from CTE XL Pro-

fessional.  

2.1 Test Object: Anti-lock Braking System 

The anti-lock braking system (ABS) is a system 

which prevents the wheels of a vehicle from 

locking while braking, in order to allow the driv-

er to maintain steering control under heavy 

braking conditions and, in most situations, to 

shorten braking distances. Sensors of the ABS 

measure the speed at which the wheels are turn-

ing. If the speed decreases rapidly, the electronic 

control system reports blocking danger. The 

pressure of the brake hydraulics is reduced im-

mediately and then raised again to a point slight-

ly below the blocking threshold. This process is 

repeated several times per second. The goal of 

the anti-locking control system is to maintain the 

slip of the wheels at a level which guarantees the 

highest braking power and the highest steerabil-

ity of the vehicle. 

2.2 Test Implementation 

The first step is the creation of a system setup in 

MESSINA. The runtime environment consists of 

the SUT as well as environment simulation mod-

els. In our configuration, we start with a MiL test, 

since actual hardware is not yet available. Sen-

sors and actors are also simulated in our config-

uration. For simulating driving and braking ma-

neuvers, a car simulation model is connected to 

the SUT using the signal pool. Test cases also 

connect to the signal pool, so they are able to 

read, trigger, manipulate and assess all data flow 

between the SUT and the simulation environ-

ment. The complete setup is given in Figure 1.   

A MESSINA test case implementation typically 

consists of three sections, a pre-condition part 

(used for initialization), the actual test action 

and a post-condition part (used for cleanup).  

public class CheckBrakingDistance { 
 

  public boolean preCondition() { 

    throttle.setValue(0); 

    brakeIntensity.setValue(100); 
    ASSERT(speed.waitValue(0, 60000),  

 "Timeout-preCondition"); 

    brakeIntensity.setValue(0);   

    return true; 

  } 

Listing 1: Initialization of the system 

Figure 1: MESSINA MiL test environment configuration 



In the pre-condition part, the system is brought 

to a meaningful starting point, e.g. the speed is 

reduced to zero.  

public int run() { 
    kl15.setValue(true) 

    kl30.setValue(true) 

    throttle.setValue(50); 

    ASSERT(speed.waitValue(50, 60000), 
 "Timeout-acceleration"); 

    throttle.setValue(0); 

    int startPos = distance.getValue();     

    brakeIntensity.setValue(100); 

    ASSERT(speed.waitValue(0, 60000),  
 "Timeout-brake"); 

    int stopPos = distance.getValue(); 

    int total = stopPos - startPos; 

    ASSERT(total > 27,  

"FAIL: Distance too long with " 

+ total + "m."); 
     

    return 0; // 0 means PASS 

  } 

Listing 2: Actual test execution 

In the test implementation (the run-method), the 

car is then accelerated to a given speed (50m/s), 

then a full brake is performed (with 100% brake 

intensity). When the car has come to a full stop, 

the braking distance is evaluated. If it is below a 

given threshold (27m), the test case passes. Oth-

erwise, the test case produces a failure. 

public boolean postCondition() { 

    brakeIntensity.setValue(0); 

    return true; 
  } 

} 

Listing 3: Post-condition and cleanup 

In the post-condition part, the brake is released. 

2.3 Test Generalization 

The concrete values in the test case can also be 

extracted so that the test case can be parameter-

ized. Thus, different Speeds, Brake Intensities and 

so on can be tested using the same test template. 

For the combination of different parameter val-

ues, we use the CTE XL Professional. 

2.4 Test Variation 

The CTE XL Professional project is used to illus-

trate the campaign test cases and their parame-

ters as a tree structure. Figure 2 shows the clas-

sification tree structure as created in CTE XL 

Professional.  

All parameters (Speed, BrakeDistance, 

BrakeIntesity, KL30_Status, KL15_Status, 

ManeuverDurantion, ManeuverDataset) and 

their respective values are graphically displayed 

to illustrate their connection to the test cases. 

The test case groups each contain test cases 

which use different parameter settings as de-

fined by the tree structure. These parameter 

values will be assigned to the MESSINA test case 

for execution of the test. 

The CTE XL Professional export creates cam-

paign structures in the MESSINA project based 

on the classification tree. The parameters for 

each test case execution within each campaign 

are then also defined in the classification tree. 

The test case group (Braking Distance 

Tests) will be exported as a campaign into 

MESSINA. The actual export then consists of 

specifying the MESSINA project folder and se-

lecting the template test case. 

After a refresh of the project folder has been 

done in MESSINA, the project structure is updat-

ed (Figure 3). The new campaigns have been 

added. The test case (selected during the export 

process) is added to each campaign with the 

corresponding parameter settings as defined in 

the CTE XL Professional project.   

The parameter values for each test case (within 

each campaign) can be examined by double 

clicking on the parameter name. The values cor-

respond to those defined in the CTE XL Profes-

sional project.  

Figure 2: Classification Tree 



2.5 Test Execution 

The campaigns can then be executed in the usual 

way. All different configurations of the master 

test case are executed then one by one. In our 

example, this would be all three test cases. By 

the means of the MESSINA hardware abstraction 

layer the test cases can be run on all test config-

urations from MiL to HiL.  

For the execution of test cases in a HiL setup, 

with actual hardware of the system under test, 

the MESSINA configuration would look slightly 

different (Figure 4). In the upper part, the ABS 

Module (SUT) is missing, as it is replaced by an 

ABS Electronic Control Unit (ECU). When the 

SUT evolves to an embedded system, as in our 

case, the access is done by hardware access (e.g. 

bus system or digital I/O or analogue I/O). MES-

SINA provides adapters between these interfac-

es and the signal pool. I.e. that environment 

models and test cases can be reused without 

modifications. 

This combines both, the systematic test case 

generation and the consistent verification from 

early stages of the development process to the 

complete system test. The test reports of the 

executed test runs contain all relevant configura-

tion information including the parameter set 

generated by CTE XL Professional. Reusable test 

cases on various integration levels (e.g. MiL, SiL, 

HiL) reduce creation and maintenance efforts 

and therefore cuts cost in embedded software 

development. 

Figure 4: MESSINA HiL test environment configuration 

Figure 3: Resulting MESSINA campaign 



3 BEYOND PARAMETERIZATION  

In this work, a master test case is to be imple-

mented in MESSINA by the test engineer which 

is then parameterized using the CTE XL Profes-

sional. While this approach is already of great 

help for the test engineer, it does not benefit 

from all available test generation facilities of CTE 

XL Professional, i.e. the generation of semantical-

ly correct test sequences [6]. 

For testing state-based systems with continuous 

actions, test cases must therefore reflect these 

properties of the SUT in a certain order. The 

outcome of one test case is used as the input for 

the next test case. The composition of several 

test cases into a larger test scenario, so called 

test sequence, and their generation remains a 

challenging task. Furthermore, test steps as part 

of test sequences cannot be composed in any 

arbitrary order as it is required for some config-

urations of the software that other things have 

been done first. 

In Figure 5, an example tree for driving maneu-

vers of a car is given. Different steering wheel 

angles and speeds are available. 

Since the different configurations are only avail-

able depending on previous states of the car (e.g. 

steering to left is not directly reachable if steer-

ing is currently to right), not all possible tests 

can be performed in any arbitrary order. There-

fore, the tester can assign allowed transitions to 

the classes of the classification tree. 

The resulting valid transitions for Steering can 

be seen in Figure 6. Initially, the steering is neu-

tral, straight forward (indicated by green back-

ground of the class). From neutral, the steering 

wheel can be turned to left and right, and also 

back from left and right, but there is no direct 

connection between left and right. 

The available transitions for the car’s speed are 

given in Figure 7. Initially, the car is always 

standing still (stop, again indicated by green 

background). It can accelerate to slow, medium 

and fast, but only in that order, and decelerate in 

reverse order from fast to medium to slow. 

The allowed transitions can then be used for test 

sequence generation in CTE XL Professional. 

The resulting test sequence is given in Figure 8. 

The sequence covers each transition at least 

once. The steering wheel is turned from neutral 

to the left, back to neutral, to the right and back 

to neutral, covering all four transitions for steer-

ing (as given in Figure 6). For the speed of the 

car, the sequence uses all possible transitions by 

accelerating from the stopped car to fast speed 

traversing low and medium speed and deceler-

ates back to stop using medium and low speed 

again. The sequence containing of seven steps 

covers all possible six transitions of speed (as 

given in Figure 7). 

For further use in MESSINA, the resulting se-

quence currently needs to be implemented in 

Java manually. By assigning Java statements to 

the corresponding elements of the classification 

tree (i.e. setter-/getter-methods to the classifica-

tions, concrete values to classes) the whole pro-

cess can be further automatized. We are also 

evaluating the use of different coverage criteria 

for the actual generation of sequences. 

Figure 5: Classification Tree for Driving Car 

Figure 6: Allowed Transitions for Steering  

Figure 7: Allowed Transitions for Speed 

Figure 8: Resulting Test Sequence 



4 SEARCH-BASED TESTING 

The use of search-based techniques for function-

al testing of embedded systems has been de-

scribed in [2].  

Evolutionary testing is based on meta-heuristic 

search techniques such as evolutionary algo-

rithms. An evolutionary algorithm is an optimi-

zation technique based on the principles of the 

Darwinian theory of evolution. It implements an 

iteratively process of evaluation, selection, 

crossover, mutation and population update, 

which is repeated unless a termination criterion 

applies, such as that the ideal solution is found. 

With evolutionary testing, the test objective 

considered is transformed into an optimization 

problem. The input domain of the test object 

forms the search space in which an evolutionary 

algorithm searches for test data that fulfils the 

respective test objective.  

Through the EvoTest project, an extensible and 

open automated evolutionary testing architec-

ture and framework was developed [7] that 

provides general components and interfaces to 

facilitate the automatic generation, execution, 

monitoring and evaluation of test cases using 

evolutionary computation.  

Empirical evaluation in an industrial context 

using MESSINA has been evaluated in [8]. In 

summery the study identifies the creation of 

appropriate fitness functions the most challeng-

ing task, although results indicate that evolu-

tionary functional testing using MESSINA is scal-

able and applicable. 

5 CONCLUSSION 

In this paper, we presented an approach for 

systematic test design and test automation of 

MiL, SiL and HiL tests. We have laid out a simple 

system configuration for MESSINA consisting of 

a SUT and an environment simulation. An exist-

ing single test case is then parameterized allow-

ing the use of CTE XL Professional for systematic 

test case design. Resulting test suites are export-

ed from CTE XL Professional to MESSINA for 

execution and evaluation. The repeated instanti-

ation of the master test cases reduces the manu-

al effort of test case creation and maintenance. 

For future work, we see a more tightened inte-

gration of both tools, to ease the systematic 

specification of embedded system tests and their 

automated execution. This might include actual 

Java test case generation from CTE XL Profes-

sional instead of parameterizing existing test 

cases. The distinction between pre-condition, 

test action and post-condition requires special 

attention, which might be handled more natural-

ly with the test sequence generation facilities [6] 

of CTE XL Professional.  

Post evaluation is another topic we would inves-

tigate further. CTE XL Professional supports the 

analysis of test results for specified test case to 

assess the influence of individual parameter 

values (the class) on test success or failure. Hav-

ing a test suite with test results available allows 

for an in-depth root-cause-analysis.  

We will also continue on the Search-based Soft-

ware Testing track, as already described in [2]. 
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