
HAL Id: hal-02272347
https://hal.science/hal-02272347v1

Submitted on 27 Aug 2019 (v1), last revised 21 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the k-synchronizability for mailbox systems
Cinzia Di Giusto, Laetitia Laversa, Etienne Lozes

To cite this version:
Cinzia Di Giusto, Laetitia Laversa, Etienne Lozes. On the k-synchronizability for mailbox systems.
[Research Report] Laboratoire I3S. 2019. �hal-02272347v1�

https://hal.science/hal-02272347v1
https://hal.archives-ouvertes.fr


On the k-synchronizability for mailbox systems

Cinzia Di Giusto Laetitia Laversa

Etienne Lozes

Université Côte d’Azur, CNRS, I3S, France

August 27, 2019

Abstract

Asynchronous bounded or unbounded message passing is ubiquitous
in communication-centric systems. When modelling distributed scenar-
ios, it is important to understand whether buffers are bounded or not.
In this paper, we work on the notion of k-synchronizability: a system is
k-synchronizable if any of its executions, up to reordering causally inde-
pendent actions, can be divided into a succession of k-bounded interaction
phases. We show two results: first, the reachability problem is decidable
for k-synchronizable systems; second, the membership problem (whether
a given system is k-synchronizable) is decidable as well. Our proofs fix
several important issues in previous attempts to prove these two results.

1 Introduction

Asynchronous message-passing is ubiquitous in communication-centric systems;
these include high-performance computing, distributed memory management,
event-driven programming, or web services orchestration. One of the parameters
that plays an important role in these systems is whether the number of pending
sent messages can be bounded in a predictable fashion, or whether the buffer-
ing capacity offered by the communication layer should be unlimited. Clearly,
when considering implementation, testing, or verification, bounded asynchrony
is preferred to unbounded asynchrony. Indeed, for bounded systems, reachabil-
ity analysis and invariants inference can be solved by regular model-checking [5].
On the other hand, especially when designing a new system, it is easier to as-
sume that the buffering capacity is unbounded, or that the bound is not known
a priori. Thus, a question that arises naturally is whether a given system with k-
bounded buffers has the same “behaviour” as the same system with unbounded
buffers.

In a recent work [4], Bouajjani et al. introduced the notion of k-synchro-
nizable system of finite state machines communicating through mailboxes. In-
tuitively, a system is k-synchronizable if any of its executions, up to reordering
causally independent actions, can be chopped into a succession of k-bounded
interaction phases. Each of these phases starts with at most k send actions that
are followed by at most k receptions. The main motivation for k-synchronizable
system is that the reachability problem is decidable.

As explained in the present paper, this result, although valid, is surprisingly
non-trivial, mostly due to complications introduced by the mailbox semantics of

1



communications. Some of these complications were missed by Bouajjani et al.
and the algorithm for the reachability problem in [4] suffers from false positives
(see discussion in Section 6). Another problem is the membership problem for
the subclass of k-synchronizable systems: for a given k and a given system
of communicating finite state machines, is this system k-synchronizable? The
main result in [4] is that this problem is decidable. However, again, the proof
of this result contains an important flaw at the very first step that breaks all
subsequent developments; as a consequence, the algorithm given in [4] produces
both false positives and false negatives.

In this work, we present a new proof of the decidability of the reachability
problem together with a new proof of the decidability of the membership prob-
lem. Quite surprisingly, the reachability problem is more demanding in terms of
causality analysis, whereas the membership problem, although rather intricate,
builds on a simpler dependency analysis.

Outline. The next section recalls the definition of communicating systems
and related notions. In Section 3 we introduce k-synchronizability and we give
a graphical characterisation of this property. This characterisation corrects
Theorem 1 in [4] and highlights the flaw in the proof of the membership problem.
Next, in Section 4, we establish the decidability of the reachability problem,
which is the core of our contribution, and in Section 5, we show the decidability
of the membership problem. Section 6 discusses how our work is related to [4]
and finally Section 7 concludes the paper discussing other related works.

2 Preliminaries

A mailbox communicating automaton is a finite state machine where transitions
are labelled with either send or receive actions. Such an automaton may receive
messages from other automata. Messages await to be received in a mailbox: a
FIFO queue that stores all messages sent to a same automaton, regardless of
their senders.

Let V be a finite set of messages and P a finite set of processes. A send
action, denoted send(p, q,v), designates the sending of message v from process
p to process q. Similarly a receive action rec(p, q,v) expresses that process q
is receiving message v from p. We write a to denote a send or receive action.
Let S = {send(p, q,v) | p, q ∈ P,v ∈ V} be the set of send actions and R =
{rec(p, q,v) | p, q ∈ P,v ∈ V} the set of receive actions. Sp and Rp stand for
the set of sends and receives of process p respectively. A system is the parallel
composition of processes.

Definition 1 (System). A system is a tuple S =
(

(Lp, δp, l
0
p) | p ∈ P

)

where, for
each process p, Lp is a finite set of local control states, δp ⊆ (Lp×(Sp∪Rp)×Lp)

is the transition function (also denoted l
a
−→p l

′) and l0p is the initial state.

Definition 2 (Configuration). Let S =
(

(Lp, δp, l
0
p) | p ∈ P

)

, a configuration is

a pair (~l, Buf) where ~l = (lp)p∈P ∈ Πp∈PLp is a global control state of S (a local
control state for each automaton), and Buf = (bp)p∈P ∈ (V∗)P is a vector of
buffers, each bp being a word over V.

We write ~l0 to denote the vector of initial states of all processes p ∈ P, and

2



Buf0 stands for the vector of empty buffers. The semantics of a system is defined
by the two rules below.

lp
send(p,q,v)
−−−−−−−→p l

′

p b′q = bq · v

(~l, Buf)
send(p,q,v)
−−−−−−−→ (~l[l′p/lp], Buf[b

′

q/bq])

lq
rec(p,q,v)
−−−−−−→q l

′

q bq = v · b′q

(~l, Buf)
rec(p,q,v)
−−−−−−→ (~l[l′q/lq ], Buf[b

′

q/bq])

A send action adds a message in the buffer b of the receiver, and a receive action
pops the message from this buffer. An execution e = a1 . . . an is a sequence of
actions in S ∪R such that (~l0, Buf0)

a1−→ . . .
an−−→ (~l, Buf) for some Buf. As usual

e
=⇒ stands for

a1−→ . . .
an−−→. We write asEx(S) to denote the set of executions of a

system S. In a sequence of actions e = a1 · · · an, a send action ai = send(p, q,v)
is matched by a reception aj = rec(p′, q′,v′) (denoted by ai ⊢⊣ aj) if p = p′,
q = q′, v = v′, and there is ℓ ≥ 1 such that ai and aj are the ℓth actions of
e with these properties respectively. A send action ai is unmatched if there is
no matching reception in e. A message exchange of a sequence of actions e is a
set either of the form v = {ai, aj} with ai ⊢⊣ aj or of the form v = {ai} with ai
unmatched. When v is either an unmatched send(p, q,v) or a pair of matched
actions {send(p, q,v), rec(p, q,v)}, we write procS(v) for p and procR(v) for q.
Note that procR(v) is defined even if v is unmatched. Finally, we write procs(v)
for {p} in the case of an unmatched send and {p, q} in the case of a matched
send.

An execution imposes a total order on the actions. On the other hand, a
message sequence chart (MSC) will only impose an order between matched pairs
of actions and between the actions of a same process. Informally, a MSC will be
depicted with vertical timelines (one for each process) that carry some points
representing send and receive events of this process. An arc is drawn between
two matched events. We will also draw a dashed arc to depict an unmatched
send event. A MSC is a partially ordered set of events, each corresponding to a
send or receive action. For a given sequence of actions e = a1 . . . an, we let po
be the set of pairs of indices (i, j) ∈ [1..n]2 such that i < j and ai and aj are
actions of a same process, i.e., there is p ∈ P such that {ai, aj} ⊆ Sp ∪Rp. We
also write src for the set of pairs of indices (i, j) such that ai ⊢⊣ aj .

Definition 3 (MSC). The message sequence chart msc(e) associated with a
sequence of actions e = a1 . . . an is a tuple (Ev, λ,≺), where

• Ev = [1..n] is the set of events

• λ : Ev → S ∪R tags each event with its action, i.e., λ(i) = ai

• ≺ is defined as the transitive closure of po ∪ src.

We identify MSCs up to graph isomorphism (i.e., we view a MSC as a labeled
graph). We write asT r(S) to denote the set {msc(e) | e ∈ asEx(S)} of MSCs
of system S.

Mailbox communication imposes a number of constraints on what and when
messages can be read. For instance: if two messages are sent to a same process,
they will be received in the same order as they have been sent. Unmatched
messages also impose some constraints: if a process p sends an unmatched
message to q, it will not be able to send matched messages to q afterwards

3



p q r

v1

B
v2

(a)

p q r

v1

v2

B
v3

(b)

p q r

v1

v2

v3

(c)

v1 v2

v3

RS

SR

SS
SR

(d)

Figure 1: (a) and (b) : two MSCs that violate causal delivery: orphan message
v1 prevents process r from receiving message v2 that has been sent afterwards.
(c) and (d) : the MSC and the conflict graph associated with e = send(q, p,v1) ·
send(q, r,v3) · rec(q, p,v1) · send(p, q,v2) · rec(p, q,v2) · rec(q, r,v3).

(see Figure 1a); or similarly, if a process p sends an unmatched message to
q, any process r that receives subsequent messages from p will not be able to
send matched messages to q afterwards (see Figure 1b). When a sequence of
actions satisfies the constraint imposed by mailbox communication, we say that
it satisfies causal delivery. Notice that, by construction, all executions satisfy
causal delivery. More precisely:

Definition 4 (Causal delivery). Let e = a1 . . . an be a sequence of actions,
and po, src, and ≺ defined as above. We say that e satisfies causal delivery
if there is a total order << that contains ≺ such that for any two send actions
ai = send(p, q,v), aj = send(p′, q′,v′) ∈ S such that i << j and q = q′, either
aj is unmatched, or there are i′, j′ such that ai ⊢⊣ ai′ , aj ⊢⊣ aj′ , and i

′ << j′.

We recall from [4] the definition of conflict graph depicting the causal depen-
dencies between message exchanges. Intuitively, we have a dependency whenever

two messages share a common process. For instance a
SS
−→ dependency between

messages v and v′ expresses the fact that v′ has been sent after v by the same
process.

Definition 5 (Conflict graph). The conflict graph CG(e) of a sequence of actions

e = a1 · · ·an is the labeled graph (V, {
XY
−→}X,Y ∈{R,S}) where V is the set of

message exchanges of e, and for all X,Y ∈ {S,R}, for all v, v′ ∈ V , there is

a XY dependency edge v
XY
−→ v′ between v and v′ if there are i < j such that

{ai} = v ∩X, {aj} = v′ ∩ Y , and procX(v) = procY (v
′).

Figures 1c and 1d illustrate the MSC associated with an execution together

with its conflict graph. We write v → v′ if v
XY
−→ v′ for some X,Y ∈ {R,S},

and v →∗ v′ if there is a (possibly empty) path from v to v′.

3 k-synchronous and k-synchronizable executions

In this section, we define k-synchronous and k-synchronizable executions and
we give a characterisation of k-synchronizable executions based on their conflict
graph, correcting an error in Theorem 1 in [4]. In the rest of the paper, k denotes
a fixed integer k ≥ 1. A k-exchange is a sequence of actions starting with at
most k sends and followed by at most k receives matching some of the sends.

4



A k-synchronous execution is a sequence of k-exchanges, such that a message
sent during a k-exchange cannot be received during a subsequent one: either it
is received during the same k-exchange, or it remains orphan forever.

Definition 6 (k-synchronous). A sequence of actions e is k-synchronous if there
are e1, . . . , en such that e = e1 · e2 · · · en and

1. for all i ∈ [1..n], ei ∈ S≤k · R≤k,

2. e satisfies causal delivery,

3. for all j, j′ such that aj ⊢⊣ aj′ holds in e, aj ⊢⊣ aj′ holds in some ei.

A MSC msc(e) is k-synchronous if there is a k-synchronous execution e′ such
that msc(e) = msc(e′). A sequence of actions e is k-synchronizable if there is a
k-synchronous execution e′ such that msc(e) = msc(e′).

Example 7 (k-synchronous executions).

1. Execution e = send(p, q,v1) · send(p′, q′,v2) · rec(p, q,v1) · rec(p′, q′,v2) is
2-synchronous. Its associated MSC msc(e) is 1-synchronous, as msc(e) =
msc(e′) with e′ = send(p, q,v1)·rec(p, q,v1)·send(p′, q′,v2)·rec(p′, q′,v2).
In other words, e is 1-synchronizable.

2. The MSC in Figure 2a is not k-synchronous for any k. All messages must
be grouped in the same k-exchange, but it is not possible to schedule all
the sends first, because the reception of v1 happens before the sending of
v3. Still, this MSC satisfies causal delivery.

3. The MSC depicted in Figure 2b is 1-synchronous. This is the only way
to chop this MSC in 1-exchanges, it would not be possible for instance to
place v3 in a 1-exchange before v1. Note, also, that this MSC satisfies
causal delivery, but v3 must be sent before v1.

Following standard terminology, we say that a subset U ⊆ V of vertices is
a strongly connected component (SCC) of a given graph (V,→) if between any
two vertices v, v′ ∈ U , there exist two oriented paths v →∗ v′ and v′ →∗ v. The
statement below fixes some issues with Theorem 1 in [4] (see Section 6 for a
detailed discussion).

Theorem 8 (Graphical characterisation of k-synchronizable executions). Let
e be a sequence of actions that satisfies causal delivery. Then msc(e) is k-
synchronous iff every SCC in its conflict graph is of size at most k and if no
RS edge occurs on any cyclic path.

Proof. Let e be an execution of the system:
=⇒ If e is k-synchronous, then e = e1 · · · en where each ei is a k-exchange.

For every vertex v of the conflict graph CG(e), there is exactly one index ι(v) ∈
[1..n] such that v ⊆ eι(v). Now, observe that if there is an edge from v to v′ in
the conflict graph, some action of v must happen before some action of v′, i.e.,
ι(v) ≤ ι(v′). So if v, v′ are on a same SCC, ι(v) = ι(v′), they must both occur
within the same k-exchange. Since each k-exchange contains at most k message
exchanges, this shows that all SCC are of size at most k. Observe also that if

5



p q r

v
0

v 1v2

v3

v4

(a)

p q r

v1

v2

v3

(b)

p q r s

v
1v2

v3

v4

v5

(c) (d)

v1v2 v3

v4 v5

SR SR

S
S

RR

R
R

R
R

S
S

RR

Figure 2: (a) the MSC of Example 7.2. (b) the MSC of Example 7.3.
(c) MSC msc(e) and (d) its conflict graph, where e is the execution
e = send(p, q,v2) · send(s, q,v3) · send(p, r,v4) · send(s, r,v5) · send(q, r,v1) ·
rec(p, q,v2) · rec(s, q,v3) · rec(p, r,v4) · rec(s, r,v5) · rec(q, r,v1)

v
RS
−→ v′, then ι(v) < ι(v′), since within a k-exchange all the sends precede all

the receives. So an RS edge cannot occur on a cyclic path.
⇐= Assume now that conflict graph CG(e) neither contains a SCC of size

greater than k + 1 nor a cyclic path with an RS edge. Let V1, . . . , Vn be the
set of maximal SCCs of the conflict graph, listed in some topological order. For
a fixed i, let ei = s1 . . . smr1 . . . rm′ be the enumeration of the actions of the
message exchanges of Vi defined by taking first all send actions of Vi in the order
in which they appear in e, and second all the receive actions of Vi in the same
order as in e. Let e′ = e1 . . . en. Then CG(e′) is the same as CG(e): indeed, the
permutation of actions we defined could only postpone a receive after a send of

a same SCC, therefore it could only replace some v
RS
−→ v′ edge with an v′

SR
−→ v

edge between two vertices v, v′ of a same SCC, but we assumed that the SCCs do
not contain RS edges, so it does not happen. Therefore e and e′ have the same
conflict graph, and msc(e′) = msc(e). Moreover, also by hypothesis, |Vi| ≤ k

for all i, therefore each ei is a k-exchange, and finally e′ is k-synchronous.

Example 9 (A 5-synchronous MSC). Figure 2c depicts a 5-synchronous MSC
that is not 4-synchronous. Indeed, its conflict graph (Figure 2d) contains a SCC
of size 5 (all vertices are on the same SCC).

4 Decidability of reachability for k-synchronizable
systems

We show, now, that the reachability problem is decidable for k-synchronizable
systems. While proving this result, we have to face several non-trivial aspects
of causal delivery that were missed in [4] and that require a completely new
approach.
We write sT rk(S) to denote the set

{msc(e) | e ∈ asEx(S) and msc(e) is k-synchronous}.

Definition 10 (k-synchronizable system). A system S is k-synchronizable if
all its executions are k-synchronizable, i.e., sT rk(S) = asT r(S).

6



v1
XY
−→ v2

(Rule 1)
v1

XY
99K v2

v is matched(Rule 2)
v

SR
99K v

v1
RR
−→ v2

(Rule 3)
v1

SS
99K v2

v1 is matched v2 is unmatched
procR(v1) = procR(v2)

(Rule 4)
v1

SS
99K v2

v1
XY
99K

Y Z
99K v2(Rule 5)

v1
XZ
99K v2

Figure 3: Deduction rules for extended dependency edges of the conflict graph

In other words, a system S is k-synchronizable if for every execution e of
S, there exists another execution e′ of S such that msc(e) = msc(e′) and e′ is
k-synchronous. In particular, a system may be k-synchronizable even if some
of its executions fill the buffers with more than k messages. For a k-synchro-
nizable system, the reachability problem reduces to the reachability through a
k-synchronous execution. In order to show that k-synchronous reachability is
decidable, we establish that the set of k-synchronous executions is regular. More
precisely, we want to define a finite state automaton that accepts a sequence
e1 · e2 · · · en of k-exchanges if and only if it satisfies causal delivery.

We start by giving a graphical characterisation of causal delivery. For this,

we define the extended edges v
XY
99K v′ of a given conflict graph. The relation

XY
99K is defined in Figure 3 with X,Y ∈ {S,R}. Intuitively, v

XY
99K v′ expresses

that event X of v must happen before event Y of v′ due to either their order on
the same machine (Rule 1), or the fact that a send happens before its matching
receive (Rule 2), or due to the mailbox semantics (Rules 3 and 4), or because of
a chain of such dependencies (Rule 5). We observe that in the extended conflict
graph, obtained applying such rules, a cyclic dependency appears whenever
causal delivery is not satisfied.

Example 11. Figures 5a and 5b depict a MSC that does not verify causal
delivery together with its associated conflict graph with some extended edges.

Notice that there is a cyclic dependency v1
SS
99K v1. This is the sign that this

MSC violates causal delivery.

Theorem 12 (Graphical characterisation of causal delivery). A sequence of
actions e satisfies causal delivery iff there is no cyclic causal dependency of the

form v
SS
99K v for some vertex v of the associated extended conflict graph.

Proof. ⇒ Assume that msc(e) satisfies causal delivery. Then there is a total
order << on the events that is a linearisation of ≺= (po∪src)+ (cfr. Definition 3)

with the property stated in Definition 4. We claim that if v
XY
99K v′, {ai} = v∩X

and {aj} = v′ ∩ Y , then i << j. The proof of this claim is by induction on the

derivation tree of v
XY
99K v′:

• case of Rule 1 : (i, j) ∈ po, so i << j;

• case of Rule 2 : (i, j) ∈ src, so i << j;

• cases of Rules 3 and 4 : by definition of causal delivery;

• case of Rule 5 : there is v3 such that v1
XZ
99K v3

ZY
−→ v2. Let al be the Z

action of v3. By inductive hypothesis, i << l << j, and by transitivity of
<<, i << j.

7



So we proved our claim, and << extends
XY
99K. As a consequence, there is no

SS
99K

cycle.

⇐ Assume that the extended dependency graph does not contain any
SS
99K cycle.

Let us first show that it does not contain any
RR
99K cycle either. By contradiction

assume there is some v such that v
RR
99K v. Since there is no

SS
99K cycle, there is

no v′ on the cyclic path such that v
RS
99K v′

SR
99K v. So v(

RR
−→)∗v, and we reach a

contradiction, as
RR
−→ is included in po which is acyclic. So

RR
99K is acyclic, and

XY
99K defines a partial order on actions. Let us pick some linearisation of that
order, and let << denote the associated order on indexes, i.e., << is a total order

such that for any X action ai ∈ vi and Y action aj ∈ vj , vi
XY
99K vj implies i << j.

We want to show that << satisfies the property of Definition 4. Let i << j with
ai, aj ∈ S and procR(ai) = procR(aj), and let vi, vj be the two vertices such

that ai ∈ vi and aj ∈ vj . Since << extends
XY
99K, either vi

SS
99K vj or ¬(vj

SS
99K vi).

• Assume that vi
SS
99K vj . If vi is unmatched, then vj must be unmatched

otherwise by Rule 4 we would have vj
SS
99K vi, which would violate the

acyclicity hypothesis. On the other hand, if both vi and vj are matched,

then vi
RR
−→ vj , otherwise we would have vj

RR
−→ vj and by Rule 3 vj

SS
99K vj ,

which would violate the acyclicity hypothesis. So there are i′, j′ such that
vi = {ai, ai′}, vj = {aj , aj′} and i′ << j′, as required by Definition 4.

• Assume that ¬(vi
SS
99K vj) and ¬(vj

SS
99K vi). Then both sends are un-

matched (because of Rules 3 and 4), therefore the property of Definition 4
holds, concluding the proof.

Let us now come back to our initial problem: we want to recognise with a
finite memory the sequences e1 ·e2 · · · en of k-exchanges that satisfy causal deliv-
ery. We proceed by reading each k-exchange one by one in sequence. This entails
that we have only a partial view of the conflict graph of the whole sequence, but
we want to determine whether the acyclicity condition of Theorem 12 is satisfied
in the whole conflict graph. The crucial observation is that the only edges that
may “go back in time” are those generated by Rule 4. This means that we have
to remember enough information from the previously examined k-exchanges to
determine whether the current k-exchange contains a vertex v that shares an
edge with some unmatched vertex v′ seen in a previous k-exchange and whether
this could participate in a cycle. This is achieved by computing two sets of
processes CS,p and CR,p that collect the following information: a process q is in
CS,p if it performs a send action causally after an unmatched send to p, or it
is the sender of the unmatched send; a process q belongs to CR,p if it receives
a message that was sent after some unmatched message directed to p. Thus, if
we assume that Unmatchedp is the set of the unmatched sends to p, we have:

CS,p = {procS(v) | v
′ SS
99K v & v′ ∈ Unmatchedp & procR(v

′) = p}

CR,p = {procR(v) | v
′ SS
99K v & v′ ∈ Unmatchedp & procR(v

′) = p & v ∩R 6= ∅}

8



These sets abstract and carry from one k-exchange to another the necessary
information to detect violations of causal delivery. We want to compute them
in any local conflict graph of a k-exchange incrementally, i.e., knowing what they
were at the end of the previous k-exchange, we want to compute them at the end
of the current one. More precisely, let e = s1 · · · sm · r1 · · · rm′ be a k-exchange,
CG(e) = (V,E) the conflict graph of e and B : P → (2P × 2P) associates to each
p ∈ P the two sets B(p) = (CS,p, CR,p). Then, the conflict graph CG(e,B) is the
graph (V ′, E′) with V ′ = V ∪ {ψp | p ∈ P} and E′ ⊇ E as defined below. For
each process p ∈ P, the “summary node” ψp shall account for all past unmatched
messages sent to p that occurred in some k-exchange before e. E′ is the set E

of edges
XY
−→ among message exchanges of e, as in Definition 5, augmented with

the following set of extra edges taking into account the summary nodes.

{ψp
SX
−→ v | procX(v) ∈ CS,p & v ∩X 6= ∅ for some X ∈ {S,R}} (1)

∪ {ψp
SS
−→ v | procX(v) ∈ CR,p & v ∩R 6= ∅ for some X ∈ {S,R}} (2)

∪ {ψp
SS
−→ v | procR(v) ∈ CR,p & v is unmatched} (3)

∪ {v
SS
−→ ψp | procR(v) = p & v ∩R 6= ∅} ∪ {ψq

SS
−→ ψp | p ∈ CR,q} (4)

These extra edges summarise/abstract the connections to and from previous

k-exchanges. Equation (1) considers connections
SS
−→ and

SR
−→ that are due to

two sends messages or, respectively, a send and a receive on the same process.

Equations (2) and (3) considers connections
RR
−→ and

RS
−→ that are due to two

received messages or, respectively, a receive and a subsequent send on the same
process. Notice how the rules in Figure 3 would then imply the existence of a

connection
SS
99K, in particular Equation (3) abstract the existence of an edge

SS
99K

built because of Rule 4. Equations in (4) abstract edges that would connect
the current k-exchange to previous ones. As before those edges in the global
conflict graph would correspond to extended edges added because of Rule 4 in
Figure 3. Once we have this enriched local view of the conflict graph, we take

its extended version. Let
XY
99K denote the edges of the extended conflict graph

as defined from rules in Figure 3 taking into account the new vertices ψp and
their edges.

Finally, let
e,k
==⇒
cd

be the transition relation given in Figure 4 among abstract

configurations of the form (~l, B) where ~l is a global control state of the system
and B : P →

(

2P × 2P
)

associates to each process p a pair of sets of processes

B(p) = (CS,p, CR,p). Transition
e,k
==⇒
cd

updates these sets with respect to the

current k-exchange e. Causal delivery is verified by checking that for all p ∈
P, p 6∈ C′

R,p meaning that there is no cyclic dependency as stated in Theorem

12. The initial state is (~l0, B0), where B0 : P → (2P × 2P) denotes the function
such that B0(p) = (∅, ∅) for all p ∈ P.

Example 13 (An invalid execution). Let e = e1 ·e2 with e1 and e2 2-exchanges
of this execution such that e1 = send(q, r,v1) · send(q, s,v2) · rec(q, s,v2) and
e2 = send(p, s,v3) · rec(p, s,v3) · send(p, r,v4) · rec(p, r,v4). Figures 5a and
5c show the MSC and corresponding conflict graph of each of the 2-exchanges.

9



e = s1 · · · sm · r1 · · · rm′ s1 · · · sm ∈ S∗ r1 · · · rm′ ∈ R∗ 0 ≤ m′ ≤ m ≤ k

(~l, Buf0)
e
=⇒ (~l′, Buf) for some Buf

for all p ∈ P B(p) = (CS,p, CR,p) and B
′(p) = (C′

S,p, C
′

R,p),

Unmatp = {ψp} ∪ {v | v is unmatched & procR(v) = p}

C′

X,p = CX,p ∪ {p | p ∈ CX,q & v
SS
99K ψq & (procR(v) = π or v = ψstart)}

∪ {procX(v) | v ∈ Unmatp ∩ V & X = S}

∪{procX(v′) | v
SS
99K v′ & v ∈ Unmatp & v ∩X 6= ∅}

for all p ∈ P, p 6∈ C′

R,p

(~l, B)
e,k
==⇒
cd

(~l′, B′)

Figure 4: Definition of the relation
e,k
==⇒
cd

Note that two edges of the global graph (in blue) “go across” k-exchanges. These
edges do not belong to the local conflict graphs and are mimicked by the incoming
and outgoing edges of summary nodes. The values of sets CS,r and CR,r at the
beginning and at the end of the k-exchange are given on the right. All other sets
CS,p and CR,p for p 6= r are empty, since there is only an unmatched message to
process r. Notice how at the end of the second k-exchange, r ∈ CR,r signalling
that message v4 violates causal delivery.

Next lemma proves that the rule in Figure 4 properly characterises causal
delivery.

Lemma 14. A sequence of actions e is a k-synchronous execution iff e =

e1 · · · en such that (~l0, B0)
e1,k
==⇒
cd

· · ·
en,k
==⇒
cd

(~l′, B′) for some global state ~l′ and

some B′ : P → (2P × 2P).

Proof. ⇒ Since e is k-synchronous then e = e1 · · · en. The proof proceeds by
induction on n.

Base case If n = 1 then e = e1. Thus there is only one k-exchange and
the local conflict graph CG(e,B) is the same as the complete global one
CG(e). By hypothesis, as e is an execution in S, we have that for some

Buf, (~l, Buf0)
e,

==⇒
cd

(~l′, Buf).

By contradiction, suppose that ∃p ∈ P such that p ∈ C′
R,p. Whence there

exists v′ matched, such that p = procR(v
′) and v

SS
99K v′ with v ∈ Unmatp.

By Rule 4 (Figure 3), an edge v′
SS
99K v has been added to the extended

conflict graph. Thus, there is a cycle
SS
99K from v to v and this violates

Theorem 12, which is a contradiction.

Inductive step If n > 1, by inductive hypothesis, we have (~l0, B0)
e1,k
==⇒
cd

· · ·
en−1,k
====⇒

cd

( ~ln−1, B), with B = (CS,p, CR,p)p∈P. By inductive hypothesis we have that

CS,p = {procS(v
′) | v

SS
99K v′ & v not matched & procS(v) = p}

CR,p = {procR(v
′) | v

SS
99K v′ & v not matched & procR(v) = p & v′ ∩R 6= ∅}

10



v1

v2

v3

v4

SS

RR

SS

SS

SS

SS

SS

(b)

p q r s

v1

v2

v3

v4

e1

e2

(a)

v1

v2

SS SS

CS,r = ∅ C′
S,r = {q}

CR,r = ∅ C′
R,r = {s}

(c)

v3

v4

ψr

SS

RR

SS

SS

SS

CS,r = {q} C′
S,r = {p, q}

CR,r = {s} C′
R,r = {s, r}

Figure 5: (a) MSC of execution e, (b) the associated global conflict graph, (c)
the conflict graphs of its k-exchanges

By contradiction, suppose that there is a process p ∈ C′
R,p. Then by

construction there exist two nodes v and v′ such that v
SS
99K v′, v ∈ Unmatp,

v′ matched and procR(v
′) = p. We can have the following situations:

1. v ∈ V , then both message exchanges v and v′ with v unmatched and
v′ matched are in the current k-exchange then we can easily reach a
contradiction and the proof proceeds as in the base case.

2. v = ψp, then by inductive hypothesis there exists a non-matched
message vp ∈ V belonging to a previous k-exchange. We want to
show that if this is the case we can reconstruct a cyclic path in the
extended conflict graph of the execution e, which is a contradiction.

We assume that by inductive hypothesis CG(e) has been reconstructed
from the local conflict graphs considering actions in e1 . . . en−1. We
now analyse the last k-exchange and describe to what each edge cor-
responds in CG(e) . There are four cases:

(a) v1
XY
−→ v2 with v1, v2 ∈ V , this edge exists also in CG(e)

(b) ψq
SX
−→ v1 with v1 ∈ V . Then in CG(e) there exists an un-

matched message vq and this extra edge has been constructed
from Equations 1, 2 or 3:

If ψq
SR
−→ v1 then procR(v1) ∈ CS,q thus by inductive hypothesis

there exists v ∈ V in CG(e) such that vq
SS
99K v and procS(v) =

11



procR(v1). Whence there exists an edge v
SR
99K v1 in CG(e). If

the edge ψq
SS
−→ v1 has been added as procS(v1) ∈ CS,q then by

inductive hypothesis there exists, in CG(e), a node v reachable

with an edge
SS
99K from vq such that procS(v) = procS(v1). Thus

an edge v
SS
99K v1 exists in CG(e).

If the edge ψq
SS
−→ v1 has been added as procR(v1) ∈ CR,q and

v1 is a matched send. Then by inductive hypothesis there exists,

in CG(e), a node v reachable with an edge
SS
99K from v such that

procR(v) = procR(v1). Whence in CG(e) there exists an edge

v
RR
−→ v1.

If the edge ψq
SS
−→ v1 has been added as procR(v1) ∈ CR,q and

v1 is an unmatched send. Then by inductive hypothesis there

exists, in CG(e), a node v reachable with an edge
SS
99K from v

such that procR(v) = procR(v1). Whence in CG(e), because of

Rule (4) in Figure 3 there exists an edge v
SS
99K v1.

If the edge ψq
SS
−→ v1 has been added as procS(v1) ∈ CR,q. Then

by inductive hypothesis there exists, in CG(e), a node v reachable

with an edge
SS
99K from v such that procR(v) = procS(v1). Whence

in CG(e), there exists an edge v
RS
−→ v1.

(c) v1
SS
−→ ψq with v1 ∈ V and v1 matched, then we know procR(v1) =

q and because of Rule (4) in Figure 3 in CG(e) there exists an

edge v1
SS
99K vq.

(d) ψq
SS
−→ ψr, thus r ∈ CR,q. This means that there exists a

matched message v such that vq
SS
−→ v and procR(v) = r. Thus,

in CG(e), we can add, because of Rule (4) in Figure 3, the edge

v
SS
99K vr.

Then it follows that if there exists an edge ψp

SS
99K v′ it means that an

edge vp
SS
99K v′ exists in the global extended conflict graph and thus

by applying Rule (4) in Figure 3 we can reach a contradiction, as we
have a cycle.

⇐ If e = e1 · · · en, where each ei corresponds to a valid k-exchange. Suppose
by contradiction that e is not an execution, thus there exists a message that
violates causal delivery. By Theorem 12 then the global extended conflict graph

must contain an edge v
SS
99K v. This means that there is an unmatched message

vp to process p that is causally followed by a matched message v to the same
process p. Since each ei is a valid k-exchange we know that such an edge cannot
appear in any of the local conflict graphs. Indeed, if such an edge existed then

there should be an edge
SS
99K from vp or ψp (if the two messages belong to two

different k-exchanges) to v. But in this case we would have p ∈ CR,P which is
a contradiction.

Note that there are only finitely many abstract configurations of the form

(~l, B) with ~l a tuple of control states and B : P → (2P × 2P). Therefore
e,k
==⇒
cd

12



is a relation on a finite set, and the set sT rk(S) of k-synchronous executions
of a system S forms a regular language. It follows that it is decidable whether
a given abstract configuration of the form (~l, B) is reachable from the initial
configuration following a k-synchronous execution. This is the content of next
theorem.

Theorem 15. Let S be a k-synchronizable system and ~l a global control state
of S. The problem whether there exists e ∈ asEx(S) and Buf such that

(~l0, Buf0)
e
=⇒ (~l, Buf) is decidable.

Remark 16. Deadlock-freedom, unspecified receptions, and absence of orphan
messages are other properties that become decidable for a k-synchronizable sys-
tem because of the regularity of the set of k-synchronous executions.

5 Decidability of k-synchronizability for mail-
box systems

We establish, here, the decidability of k-synchronizability; our approach is simi-
lar to the one of Bouajjani et al. based on the notion of borderline violation, but
we adjust it to adapt to the new characterisation of k-synchronizable executions
(Theorem 8).

Definition 17 (Borderline violation). A non k-synchronizable execution e is a
borderline violation if e = e′ · r and e′ is k-synchronizable.

Note that a system S that is not k-synchronizable always admits at least
one borderline violation e′ · r ∈ asEx(S) with r ∈ R: indeed, there is at
least one execution e ∈ asEx(S) that is not k-synchronizable, which contains a
unique minimal prefix of the form e′ · r that is not k-synchronizable; moreover
since e′ is k-synchronizable, r cannot be a k-exchange of just one send action,
therefore it must be a receive action. In order to find such a borderline violation,
Bouajjani et al. introduced an instrumented system S

′ that behaves like S,
except that it contains an extra process π, and that non-deterministically a
message that should have been sent from a process p to a process q may now
be sent from p to π, and later forwarded by π to q. In S

′, each process p has
the possibility, instead of sending a message v to q, to deviate this message to
π; if it does so, p continues its execution as if it really had sent it to q. Note
also that the message sent to π get tagged with the original destination process
q. Similarly, for each possible reception, a process has the possibility to receive
a given message not from the initial sender but from π. The process π has
an initial state from which it can receive any messages from the system. Each
reception makes it go into a different state. From this state, it is able to send the
message back to the original recipient. Once a message is forwarded, π reaches
its final state and remains idle. The following example illustrates this situation.

13



Example 18 (A deviated message). e1 is not
1-synchronous. It is indeed borderline in S

as if we delete the last reception, it becomes
1-synchronous. In msc(e2) from the instru-
mented system S

′, the message v1 is devi-
ated. Note that msc(e2) is 1-synchronous. In
this case, the instrumented system S

′ in the 1-
synchronous semantics “reveals” the existence
of a borderline violation of S.

msc(e1)

p q

v
1

v2

msc(e2)

p q π
(q,v1)

v2

v1

Definition 19 (Instrumented system S
′). Let S = ((Lp, δp, l

0
p) | p ∈ P) be a

system of communicating machines. The instrumented system S
′ associated to

S is defined such that S′ =
(

(Lp, δ
′
p, l

0
p) | p ∈ P ∪ {π}

)

where for all p ∈ P:

δ′p = δp ∪ {l1
send(p,π,(q,v))
−−−−−−−−−−→ l2 | l1

send(p,q,v)
−−−−−−−→ l2 ∈ δp}

∪{l1
rec(π,p,v)
−−−−−−→ l2 | l1

rec(q,p,v)
−−−−−−→ l2 ∈ δp}

Process π is the communicating automaton (Lπ, l
0
π, δπ) where

• Lπ = {l0π, lf} ∪ {lq,v | v ∈ V, q ∈ P}, and

• δπ = {l0π
rec(p,π,(q,v))
−−−−−−−−−→ lq,v | send(p, q,v) ∈ S} ∪ {lq,v

send(π,q,v)
−−−−−−−→ lf |

rec(p, q,v) ∈ R}.

Thus, each message can be redirected to π non-deterministically and π is
able to participate in the deviation of one and only one message. For a given
execution e · r ∈ asEx(S) that ends with a reception, there exists an execution
deviate(e ·r) ∈ asEx(S′) where the message exchange associated with the recep-
tion r has been deviated to π; formally, if e · r = e1 · s · e2 · r with r = rec(p, q,v)
and s ⊢⊣ r, then

deviate(e·r) = e1·send(p, π, (q,v))·rec(p, π, (q,v))·e2 ·send(π, q, (v))·rec(π, q,v).

Definition 20 (Feasible execution, bad execution). A k-synchronizable exe-
cution e′ of S

′ is feasible if there is an execution e · r ∈ asEx(S) such that
deviate(e · r) = e′. It is bad if e · r is not k-synchronizable.

Example 21 (A non-feasible execution). Let
e′ be an execution such that msc(e′) is as de-
picted on the right. Clearly, this MSC satis-
fies causal delivery and could be the execution
of some instrumented system S

′. However,
the sequence e · r such that deviate(e · r) = e′

does not satisfy causal delivery, therefore can-
not be an execution of the original system S.
In other words, the execution e′ is not feasible.

msc(e′)

p q π
(q,v1)

v2

v1

msc(e · r)

p q

v
1

v2

Lemma 22. A system S is not k-synchronizable iff there is a k-synchronizable
execution e′ of S′ that is feasible and bad.

Proof. ⇐ Let S be not k-synchronizable then there exists an execution that is
not k-synchronizable which contains a unique minimal prefix of the form e · r

14



with e k-synchronizable and r = rec(p, q,v) a receive action. Thus there exists
an e′ = deviate(e · r) ∈ asEx(S′).

Since e is k-synchronizable, there exists an execution e′′ such that msc(e) =
msc(e′′) and e′′ is k-synchronous. Then e′′ = e1 . . . en and there exists a k-
exchange ei containing the send action send(p, q,v). Now if we replace this
action with send(p, π, (q,v)) and we add at the end of the same k-exchange
the action rec(p, π, (q,v)). The execution in asEx(S′) remains k-synchronous.
Finally if we add to e′′ a new k-exchange with the actions send(π, q,v) and
rec(π, q,v) the execution remains k-synchronous.

⇒ If there is a k-synchronizable execution e′ of S′ that is feasible and bad.
Then by construction e′ = deviate(e·r) and e·r is not k-synchronizable. Whence
S is not k-synchronizable and this concludes the proof.

As we have already noted, the set of k-synchronous executions of S′ is reg-
ular. The decision procedure for k-synchronizability follows from the fact that
the set of feasible bad executions, as we will see, is regular as well, and that it
can be recognised by an (effectively computable) non-deterministic finite state
automaton. The decidability of k-synchronizability follows then from Lemma 22
and the decidability of the emptiness problem for non-deterministic finite state
automata.

Recognition of feasible executions. We start with the automaton that
recognises feasible executions; for this, we revisit the construction we just used
for recognising sequences of k-exchanges that satisfy causal delivery.

In the remainder, we assume an execution e′ ∈ asEx(S′) that contains
exactly one send of the form send(p, π, (q,v)) and one reception of the form

rec(π, q,v), this reception being the last action of e′. Let (V, {
XY
−→}X,Y∈{R,S}) be

the conflict graph of e′. There are two uniquely determined vertices υstart, υstop ∈
V such that procR(υstart) = π and procS(υstop) = π that correspond, respectively,
to the first and last message exchanges of the deviation. The conflict graph of
e · r is then obtained by merging these two nodes.

Lemma 23. The execution e′ is not feasible iff there is a vertex v in the conflict

graph of e′ such that υstart
SS
99K v

RR
−→ υstop.

Proof. ⇐ If there is v such that υstart
SS
99K v

RR
−→ υstop, this means that a message

sent after the deviated message is received before it: hence, it violates causal
delivery.

⇒ Assume now that e · r violates causal delivery and e does not. The only
difference between the two is that an unmatched message becomes matched. It
must therefore be the second item in Definition 4 that gets violated in e·r, So the

conflict graph CG(e ·r) contains two vertices vd and v such that vd
SS
99K v

RR
−→ vd,

with r ∈ vd. The node vd becomes duplicated in υstart and υstop in CG(e′), and

therefore υstart
SS
99K v

RR
−→ υstop.

In order to decide whether an execution e′ is feasible, we want to forbid
that a send action send(p′, q,v′) that happens causally after υstart is matched
by a receive rec(p′, q,v′) that happens causally before the reception υstop. So

we will consider sets of processes Cπ
S and Cπ

R similar to the ones used for
e,k
==⇒
cd

,

15



(~l, B)
e,k
==⇒
cd

(~l′, B′) e = a1 · · · an (∀v) procS(v) 6= π

(∀v, v′) procR(v) = procR(v
′) = π =⇒ v = v′ ∧ destπ = ⊥

(∀v) v ∋ send(p, π, (q,v)) =⇒ dest
′

π = q destπ 6= ⊥ =⇒ dest
′

π = destπ

Cπ
X

′ = Cπ
X ∪ {procX(v′) | v

SS
99K v′ & v′ ∩X 6= ∅ & (procR(v) = π or v = ψstart)}

∪{procS(v) | procR(v) = π & X = S}

∪{p | p ∈ CX,q & v
SS
99K ψq & (procR(v) = π or v = ψstart)}

dest
′

π 6∈ Cπ
R

′

(~l, B,Cπ
S , C

π
R, destπ)

e,k
===⇒
feas

(~l′, B′, Cπ
S
′, Cπ

R
′, dest′π)

Figure 6: Definition of the relation
e,k

===⇒
feas

but with the goal of computing which actions happen causally after the send
to π. We also introduce a summary node ψstart and the extra edges following
the same principles as in the previous section. Formally, let B : P → (2P × 2P),
Cπ

S , C
π
R ⊆ P and e ∈ S≤kR≤k be fixed, and let CG(e,B) = (V ′, E′) be the

constraint graph with summary nodes for unmatched sent messages as defined
in the previous section. The local constraint graph CG(e,B,Cπ

S , C
π
R) is defined

as the graph (V ′′, E′′) where V ′′ = V ′ ∪ {ψstart} and E′′ is E′ augmented with

{ψstart
SX
−→ v | procX(v) ∈ Cπ

S & v ∩X 6= ∅ for some X ∈ {S,R}}

∪ {ψstart
SS
−→ v | procX(v) ∈ Cπ

R & v ∩R 6= ∅ for some X ∈ {S,R}}

∪ {ψstart
SS
−→ v | procR(v) ∈ Cπ

R & v is unmatched} ∪ {ψstart
SS
−→ ψp | p ∈ Cπ

R}

As before, we consider the “closure”
XY
99K of these edges by the rules of

Figure 3. The transition relation
e,k

===⇒
feas

is defined in Figure 6. It relates ab-

stract configurations of the form (~l, B, ~C, destπ) with ~C = (CS,π, CR,π) and
destπ ∈ P ∪ {⊥} storing to whom the message deviated to π was supposed to
be delivered. Thus, the initial abstract configuration is (l0, B0, (∅, ∅),⊥), where
⊥ means that the processus destπ is undefined.

Lemma 24. Let e′ = e′1 · · · e
′
n · send(π, q,v) · rec(π, q,v) with e′1, . . . , e

′
n ∈

S≤kR≤k. Then e′ is a k-synchronizable feasible execution of S
′ iff there are

B′ : P → 2P, ~C′ ∈ (2P)2, and a tuple of control states ~l′ such that π 6∈ CR,q

(with B′(q) = (CS,q, CR,q)), and

(~l0, B0, (∅, ∅),⊥)
e′
1
,k

===⇒
feas

. . .
e′
n
,k

===⇒
feas

(~l′, B′, ~C′, q).

Proof. Let us first state what are the properties of the variables ~C, destπ.
Let e = e1 · · · en a k-synchronizable execution of S′ be fixed, and assume

that there are B, ~C, destπ such that

(~l0, B0, ∅, ∅,⊥)
e1,k
===⇒
feas

. . .
en,k
===⇒
feas

(~l, B,Cπ
S , C

π
R, destπ).

By induction on n, we want to establish that

1. destπ = q if and only if a message of the form (q,v) was sent to π in e;

16



2. there is at most one message sent to π in e;

3. let υstart denote the unique vertex in CG(e) (if it exists) such that procR(υstart) =
π; for all X ∈ {S,R},

Cπ
X = {procX(v) | (v∩X 6= ∅ & υstart

SS
99K v in CG(e)) or (v,X) = (υstart, S)}.

The two first points easily follow from the definition of
e,k

===⇒
feas

. Let us focus on

the last point. The case n = 1 is immediate. Let us assume that

(~l0, B0, (∅, ∅),⊥)
e′
1
,k

===⇒
feas

. . .
e′
n−1

,k
====⇒

feas
(~l, B, ~C, destπ)

e′
n
,k

===⇒
feas

(~l′, B′, ~C′, dest′π)

with Cπ
X = {procX(v) | (v∩X 6= ∅ & υstart

SS
99K v in CG(e1 · · · en−1)) or (v,X) =

(υstart, S)} and let us show that Cπ
X

′ = {procX(v) | (v ∩ X 6= ∅ & υstart
SS
99K

v in CG(e1 · · · en) or (v,X) = (υstart, S)}.

• LetX ∈ {S,R} and p ∈ Cπ
X

′ and let us show that there is some v such that

p = procX(v) and either υstart
SX
99K v in CG(e1 · · · en) or (v,X) = (υstart, S).

We reason by case analysis on the reason why p ∈ Cπ
X

′, according to the
definition of Cπ

X
′ in Figure 6.

– p ∈ Cπ
X . Then by induction hypothesis there is v such that p =

procX(v), and υstart
SS
−→ v in CG(e1 · · · en−1), and therefore also in

CG(e1 · · · en), or (v,X) = (υstart, S).

– p = procX(v′), v
SS
99K v′, v′ ∩ X 6= ∅, and procR(v) = π, for some

message exchanges v, v′ of en. Since procR(v) = π, v = υstart. This
shows this case.

– p = procX(v′), ψstart

SS
99K v′, v′∩X 6= ∅, for some message exchange v′

of en. It remains to show that υstart
SS
99K v′. From ψstart

SS
99K v′, there

are some v, Y such that ψstart
SY
−→ v in CG(en, B, ~C), v ∩ Y 6= ∅ and

either v
Y S
99K v′ or (v, Y ) = (v′, S). We reason by case analysis on the

construction of the edge ψstart
SY
−→ v.

∗ procY (v) ∈ Cπ
S and v ∩ Y 6= ∅. Let q = procY (v). Since q ∈

Cπ
S , by induction hypothesis there is v1 in a previous k-exchange

such that υstart
SS
99K v1 in CG(e1 · · · en−1) or v1 = υstart. Since

procS(v1) = procY (v), there is an edge v1
SY
−→ v in CG(e1 · · · en).

By hypothesis, we also have either v
Y S
99K v′ or (v, Y ) = (v′, S).

So in both cases we get υstart
SS
99K v1

SS
−→ v′, or υstart

SS
99K v′ when

v1 = υstart.

∗ ψstart
SS
−→ v, procY (v) ∈ Cπ

R and v ∩ R 6= ∅. Again by induction

hypothesis, we have v1 such that υstart
SS
99K v1

RY
−→ v, therefore

υstart
SS
99K v′.

17



∗ ψstart
SS
−→ v, procR(v) ∈ Cπ

R and v unmatched. Again by induc-

tion hypothesis, we have v1 such that υstart
SS
99K v1

RS
−→ v. If

v = v′, we have υstart
SS
99K v′, which closes the case. Otherwise,

from v
Y S
99K v′ and v unmatched we deduce v

SS
−→ v′; finally we

υstart
SS
99K v1

RS
−→ v

SS
99K v′, so υstart

SS
99K v′, which closes the case

as well.

∗ v = ψq for some q ∈ Cπ
R. Since ψq does not have outgoing edges

of the form RS, ψq

SS
99K v′. From q ∈ Cπ

R, we get by induction

hypothesis some node v1 such that υstart
SS
99K v1 and procR(v1) =

q. As seen in the proof of Lemma 14, ψq

SS
99K v′ implies that there

is a vertex v2 from a previous k-exchange that is an unmatched

send to q such that v2
SS
99K v′ in CG(e1 · · · en). Since v1 is a

matched send to q and v2 is an unmatched send to q, by rule 4

in Figure 3 v1
SS
99K v2. All together, υstart

SS
99K v1

SS
99K v2

SS
99K v′,

which closes this case.

– p = procX(v), procR(v) = π, and X = S. Then v = υstart, which
closes this case.

• Conversely, let us show that for all X ∈ {S,R} and v such that υstart
SS
99K v

in CG(e1 · · · en), procS(v) 6= π, and v∩X 6= ∅, it holds that procX(v) ∈ Cπ
X

′

(the corner case to be proved, (v,X) = (υstart, S), is treated in the last
item). Again, we reason by induction on the number n of k-exchanges.
If n = 0, it is immediate as there are no such v,X . Let us assume

that the property holds for all choices of v1, X1 such that υstart
SS
99K v1

in CG(e1 · · · en−1), procS(v1) 6= π, and v1 ∩ X1 6= ∅. Let v,X be fixed

with υstart
SS
99K v in CG(e1 · · · en), and v ∩ X 6= ∅, and let us show that

procX(v) ∈ Cπ
X

′. We reason by case analysis on the occurrence in en, or
not, of both υstart and v.

– υstart and v are in en. Then from υstart
SS
99K v in CG(e1 · · · en) and

the proof of Lemma 14, we get that υstart
SS
99K v in CG(en, B). By

definition of Cπ
S
′ (first line), it contains procX(v)

– υstart in en and v in e1 · · · en−1. Then there are v1, v2, q such that

∗ v1 is in en, and either υstart
SS
99K v1 in CG(e1 · · · en) or v1 = υstart,

∗ v2 is in e1 · · · en−1, v1
SS
99K v2 by rule 4 of Figure 3, i.e., v1 is a

matched send to q and v2 is an unmatched send to q

∗ either v2
X2S
99K v in CG(e1 · · · en−1), or v2 = v

From the first item, by the proof of Lemma 14, we get either υstart
SS
99K

v1 in CG(en, B) or v = v1. From the second item, we get v1
SS
−→ ψq

in CG(en, B). From these two, we get ψstart

SS
99K ψp in CG(en, B, ~C).

By definition of Cπ
X , we therefore have CX,q ⊆ Cπ

X . From the third
item, we get procX(v) ∈ CX,q. So finally procX(v) ∈ Cπ

X .

– υstart in e1 · · · en−1 and v in en. Then there are v1, v2, Y, Z such that

18



∗ either υstart
SY
99K v1 in CG(e1 · · · en−1), or (v, S) = (v1, Y )

∗ v1
Y Z
−→ v2

∗ either v2
ZS
99K v in CG(e1 · · · en), with both v2 and v in en, or

(v2, Z) = (v, S)

From the first item, by induction hypothesis, we get procY (v1) ∈ Cπ
X .

From the second item, we get procY (v1) = procZ(v2), and from

the definition of outgoing edges of ψstart, we get ψstart
SZ
−→ v2 in

CG(en, B, ~C). From the third item and the proof of Lemma 14, we

get either v2
ZS
99K v in CG(en, B) or (v2, Z) = (v, S). All together, we

get ψstart

SS
99K v in CG(en, B, ~C). By definition of Cπ

S
′ (first line), it

contains procX(v) .

– υstart and v in e1 · · · en−1. If υstart
SS
99K v in CG(e1 · · · en−1), then

procX(v) ∈ Cπ
R holds immediately by induction hypothesis. Other-

wise, there are v1, v2, v3, v4, Y, Z, q such that

∗ either υstart
SY
99K v1 in CG(e1 · · · en−1), or (v, S) = (v1, Y )

∗ v1
Y Z
−→ v2

∗ either v2
ZS
99K v3 in CG(e1 · · · en), with both v2 and v3 in en, or

(v2, Z) = (v3, S)

∗ v3
SS
99K v4 due to rule 4 in Figure 3, i.e., v3 is a matched send to

q and v4 is an unmatched send to q

∗ either v4
SS
99K v in CG(e1 · · · en−1), or (v4, T ) = (v, S)

From the first item, by induction hypothesis, we get procY (v1) ∈ Cπ
X .

From the second item, we get procY (v1) = procZ(v2), and from

the definition of outgoing edges of ψstart, we get ψstart
SZ
−→ v2 in

CG(en, B, ~C). From the third item and the proof of Lemma 14, we

get either v2
ZS
99K v3 in CG(en, B) or (v2, Z) = (v3, S). From the

fourth item, we get v3
SS
99K ψq in CG(en, B). To sum up, we have

ψstart
SS
−→ ψq in CG(en, B, ~C). By definition of Cπ

X , we therefore have
CX,q ⊆ Cπ

X . From the fifth item, we get by the proof of Lemma 14
that procX(v) ∈ CX,q, which ends this case.

• Finally, let us finish the proof of the converse implication, and show the
remaining case, i.e., let us show that procS(υstart) ∈ Cπ

S . This is immediate
from the definition of Cπ

S
′ (cfr. the set {procS(v) | procR(v) = π & X =

S}).

We are done with proving that Cπ
X = {procX(v) | (v ∩ X 6= ∅ & υstart

SS
99K

v in CG(e)) or (v,X) = (υstart, S)}. It is now time to conclude with the proof of
Lemma 24 itself.

Let e′ = e′1 · · · e
′
n · send(π, q,v) · rec(π, q,v) with e′1, · · · e

′
n ∈ S≤kR≤k be

fixed.
⇐ Let us assume that e′ is a k-synchronizable feasible execution of S′ and

let us show that

(~l0, B0, (∅, ∅),⊥)
e′
1
,k

===⇒
feas

. . .
e′
n
,k

===⇒
feas

(~l′, B′, ~C′, destπ).

19



for some B′, ~C′, destπ with π 6∈ CR,destπ . By definition of
e,k

===⇒
feas

, B′, ~C′ and

destπ are uniquely determined, and it is enough to prove that destπ 6∈ Cπ
R.

Let us assume by absurd that destπ ∈ Cπ
R. Then, by the property we just

proved, there is v such that procR(v) = destπ, v ∩ R 6= ∅, and υstart
SS
99K v in

CG(e′1 · · · e
′
n). So we get υstart

SS
99K v

RR
−→ υstop in CG(e′), and by Lemma 23,

e′ should not be feasible: contradiction. Finally, π 6∈ CR,π because e′, as an
execution of S′, satisfies causal delivery.

⇒ Let us assume that

(~l0, B0, (∅, ∅),⊥)
e′
1
,k

===⇒
feas

. . .
e′
n
,k

===⇒
feas

(~l′, B′, ~C′, destπ).

for some B′, ~C′, destπ with π 6∈ CR,destπ , and let us show that e′ is a k-synchro-

nizable feasible execution of S′. From the definition of
e,k

===⇒
feas

, we get

(~l0, B0)
e′
1
,k

==⇒
cd

. . .
e′
n
,k

==⇒
cd

(~l′, B′)

and from Lemma 14, e′1 · · · e
′
n is k-synchronizable. Since the last two actions

send(π, q,v) · rec(π, q,v) can be placed in a specific k-exchange, and since they
do not break causal delivery (because π 6∈ CR,destπ)), e

′ is a k-synchronizable
execution of S′. It remains to show that e′ is feasible. Again, let us reason
by contradiction and assume that e′ is not feasible. By Lemma 23, there is v

such that υstart
SS
99K v

RR
−→ υstop in CG(e′). In other words, procR(v) = destπ,

v ∩R 6= ∅, and υstart
SS
99K v in CG(e′1 · · · e

′
n). So, by the property we just proved,

destπ ∈ Cπ
R, and the contradiction.

Recognition of bad executions. Finally, we define a non-deterministic finite
state automaton that recognizes bad executions, i.e., feasible executions e′ =
deviate(e · r) such that e · r is not k-synchronous. We come back to the “non-

extended” conflict graph, without edges of the form
XY
99K. Let Post∗(v) = {v′ ∈

V | v →∗ v′} be the set of vertices reachable from v (not necessarily through
a causal path), and let Pre

∗(v) = {v′ ∈ V | v′ →∗ v} be the set of vertices
co-reachable from v. For a set of vertices U ⊆ V , let Post∗(U) =

⋃

{Post∗(v) |
v ∈ U}, and Pre∗(U) =

⋃

{Pre∗(v) | v ∈ U}.

Lemma 25. The feasible execution e′ is bad iff one of the two holds

i) υstart −→
∗ RS
−→−→∗ υstop, or

ii) the size of the set Post∗(υstart) ∩ Pre
∗(υstop) is greater or equal to k + 2.

Proof. Since e′ is k-synchronous, e (without the last reception r) is k-synchronous.
By Theorem 8, e′ is bad if and only if CG(e · r) contains either a cyclic path
with an RS edge, or a SCC with of size ≥ k + 1. This cyclic path (resp. SCC)
must contain the vertex associated with the last receive r of e ·r. In CG(e′), this
cyclic (resp. SCC) corresponds to a path from υstart to υstop (resp. the set of
vertices that are both reachable from υstart and co-reachable from υstop). Since
the υstart and υstop account for the same node in the conflict graph of e · r, the
size of the SCC is one less than the size of the set Post∗(υstart)∩Pre∗(υstop).

20



In order to determine whether a given message exchange v of CG(e′) should
be counted as reachable (resp. co-reachable), we will compute at the entry and
exit of every k-exchange of e′ which processes are “reachable” or “co-reachable”.

Example 26. (Reachable and co-reachable processes)

Consider the MSC of an execution e on the
right composed of five 1-exchanges. While
sending message (s,v0) that corresponds to
υstart, process r becomes “reachable”: any sub-
sequent message exchange that involves r cor-
responds to a vertex of the conflict graph that
is reachable from υstart. While sending v2, pro-
cess s becomes “reachable”, because process r
will be reachable when it will receive message
v2. Similary, q becomes reachable after receiv-
ing v3 because r was reachable when it sent v3,
and p becomes reachable

msc(e)

p q r s π
(s,v0)

v1

v2

v3

v4

v0

after receiving v4 because q was reachable when it sent it. Co-reachability works
similarly, but reasoning backwards on the timelines. For instance, process s stops
being “co-reachable” while it receives v0, process r stops being co-reachable after
it receives v2, and process p stops being co-reachable by sending v1. The only
message that is sent by a process being both reachable and co-reachable at the
instant of the sending is v2, therefore it is the only message that will be counted
as contributing to the SCC.

More formally, let e be an execution, CG(e) its conflict graph and P,Q two

sets of processes, Poste(P ) = Post∗
(

{v | procs(v) ∩ P 6= ∅}
)

and Pree(Q) =

Pre∗
(

{v | procs(v)∩Q 6= ∅}
)

are introduced to represent the local view through

k-exchanges of Post∗(υstart) and Pre∗(υstop). For instance, for e as in Example 26,
we get Poste({π}) = {(s,v0),v2,v3,v4,v0} and Pree({π}) = {v0,v2,v1, (s,v0)}.
In each k-exchange ei the size of the intersection between Postei(P ) and Preei(Q)
will give the local contribution of the current k-exchange to the calculation of

the size of the global SCC. In the transition relation
e,k

===⇒
bad

this value is stored

in variable cnt. The last ingredient to consider is to recognise if an edge RS be-
longs to the SCC. To this aim, we use a function lastisRec : P → {True,False}
that for each process stores the information whether the last action in the pre-
vious k-exchange was a reception or not. Then depending on the value of this
variable and if a node is in the current SCC or not the value of sawRS is set
accordingly.

The transition relation
e,k

===⇒
bad

defined in Figure 7 deals with abstract con-

figurations of the form (P,Q, cnt, sawRS, lastisRec′) where P,Q ⊆ P, sawRS
is a Boolean value, and cnt is a counter bounded by k + 2. We denote by
lastisRec0 the function where all lastisRec(p) = False for all p ∈ P.

Lemma 27. Let e′ = e′1 · · · e
′
n be a k-synchronizable feasible execution of S′.

Then e′ is bad iff there are P ′, Q ⊆ P, sawRS ∈ {True,False}, cnt ∈ {0, . . . , k +
2}, such that

({π}, Q, 0,False, lastisRec0)
e′
1
,k

===⇒
bad

. . .
e′
n
,k

===⇒
bad

(P ′, {π}, cnt, sawRS, lastisRec)

21



P ′ = procs(Poste(P )) Q = procs(Pree(Q
′)) SCCe = Poste(P ) ∩ Pree(Q

′)

cnt
′ = min(k + 2, cnt+ n) where n = |SCCe|

lastisRec
′(q) ⇔ (∃v ∈ SCCe.procR(v) = q ∧ v ∩R 6= ∅) ∨ (lastisRec(q)∧ 6 ∃v ∈ V.procS(v) = q)

sawRS
′ = sawRS ∨ (∃v ∈ SCCe)(∃p ∈ P \ {π}) procS(v) = p ∧ lastisRec(p) ∧ p ∈ P ∩Q

(P,Q, cnt, sawRS, lastisRec)
e,k

===⇒
bad

(P ′, Q′, cnt′, sawRS′, lastisRec′)

Figure 7: Definition of the relation
e,k

===⇒
bad

and at least one of the two holds: either sawRS = True, or cnt = k + 2.

Proof. ⇒ Let us suppose e′ = e′1 · · · e
′
n be a k-synchronous bad and feasible

execution. We show that

({π}, Q,False, 0)
e′
1
,k

===⇒
bad

. . .
e′
n
,k

===⇒
bad

(P ′, {π}, sawRS, cnt)

for some P ′, Q and either sawRS = True, or cnt = k + 2.
We proceed by induction on n.

Base n=2 Notice that, for a feasible execution, there are at least two k-
exchanges as the deviation cannot fit a single k-exchange: the send from
process π to the original recipient must follow the reception of the devi-
ated message, thus it has to belong to a subsequent k-exchange. Then

e′ = e′1 · e
′
2 and we show ({π}, Q,False, 0)

e′
1
,k

===⇒
bad

(P ′, Q′, sawRS′, cnt)
e′
2
,k

===⇒
bad

(P ′′, {π}, sawRS, cnt′).

By Lemma 25, we have that either υstart −→
∗ RS
−→−→∗ υstop, or the size of

the set Post∗(υstart) ∩ Pre∗(υstop) is greater or equal to k + 2.

If υstart −→
∗ RS
−→−→∗ υstop, then since a label RS cannot exists in a local

conflict graph, there exist two paths υstart −→
∗ v1 in CG(e1) and v2 −→∗

υstop in CG(e2), with procR(v1) = procS(v2). We have that v2 ∈ Pree2(π)
and lastisRec(procS(v2)) is True, thus sawRS becomes True concluding
this part of the proof.

Now suppose that the size of the set Post∗(υstart) ∩ Pre∗(υstop) is greater
or equal to k + 2. We show that all nodes in Post∗(υstart) ∩ Pre∗(υstop)
have been counted either in the first or in the second k-exchange. Take
v ∈ Post∗(υstart) ∩ Pre∗(υstop) then there exists a path υstart −→

∗ v −→∗

υstop and v is an exchange that belongs either to the first or the second
k-exchange. If v belongs to the first one then we can divide previous path
in two parts such that υstart −→∗ v −→∗ v1 is in CG(e1), v2 −→∗ υstop
is in CG(e2) and procs(v1) ∪ procs(v2) = {p} 6= ∅. From this it follows
that process p ∈ Q′ and thus v ∈ Pree1(Q

′). Moreover, v ∈ Poste1(π) and
therefore the node v is counted in the first k-exchange.

Similarly, if v belongs to the second k-exchange, we can divide the path
into two parts such that υstart −→

∗ v1 is in CG(e1), v2 −→∗ v −→∗ v1υstop
is in CG(e2) and procs(v1) ∪ procs(v2) = {p} 6= ∅. From this it follows
that process p ∈ P ′ and thus v ∈ Poste2(P

′). Moreover, v ∈ Pree2(π) and
therefore the node v is counted in the second k-exchange.

22



Thus all nodes in Post∗(υstart)∩Pre
∗(υstop) are considered and if Post∗(υstart)∩

Pre∗(υstop) ≥ k + 2 so is variable cnt′, concluding this part of the proof.

Inductive step It is an easy generalisation of what has been said in the pre-
vious part of the proof. By considering that by inductive hypothesis sets
Postei(P ) and Preei(Q) contains respectively all the processes that are
reachable from the exchange to process π and are co-reachable from the
exchange from process π.

⇐ Let e′ = e′1 · · · e
′
n a k-synchronous feasible execution and P ′, Q ⊆ P,

sawRS ∈ {True,False}, cnt ∈ {0, . . . , k + 2} such that

({π}, Q,False, 0)
e′
1
,k

===⇒
bad

. . .
e′
n
,k

===⇒
bad

(P ′, {π}, sawRS, cnt)

We have either sawRS = True or cnt = k + 2.

1. We suppose that sawRS = True. If sawRS = True then ∃e′i where sawRS =
False and sawRS

′ = True. In this k-exchange, ∃p ∈ P such that p ∈ P ,
lastisRec(p) = True and ∃v such that procS(v) = p and v ∈ Pree(Q

′).

Since p ∈ P , then there is a path υstart −→∗ RS
−→ v in CG(e). On the

other hand, since v ∈ Pree(Q
′) then v ∈ Pre∗(υstop) and there is a path

v −→∗ υstop in CG(e). Therefore, there is a path υstart −→
∗ RS
−→ v −→∗ υstop

in CG(e) and so e′ is bad.

2. We suppose that cnt = k + 2. As previously, e′ is feasible by Lemma 24.
Each v belongs to Poste′

i
(Pi)∩Pree′

i
(Q′

i)\υstart also belongs to Post
∗(υstart)∩

Pre∗(υstop) then | Post∗(υstart) ∩ Pre∗(υstop) |≥ k + 2. Therefore, e′ is bad.

Therefore, in both cases, e′ is feasible and bad, concluding the proof.

We can finally conclude this section proving the decidability of k-synchro-
nizability.

Theorem 28. The k-synchronizability of a system S is decidable for k ≥ 1.

Proof. Let S be fixed. By Lemmata 22, 24, and 27, S is not k-synchronizable
if and only if there is a sequence of actions e′ = e′1 · · · e

′
n · s · r such that ei ∈

S≤kR≤k, s = send(π, q,v), r = rec(π, q,v),

(~l0, B0, (∅, ∅),⊥)
e′
1
,k

===⇒
feas

. . .
e′
n
,k

===⇒
feas

(~l′, B′, ~C′, q)

and

({π}, Q,False, 0)
e′
1
,k

===⇒
bad

. . .
e′
n
,k

===⇒
bad

s·r,k
===⇒
bad

(P ′, {π}, sawRS, cnt)

for some ~l′, B′, ~C′, Q, P ′ with π 6∈ CR,q. Since both relations
e,k

===⇒
feas

and
e,k

===⇒
bad

are

finite state, the existence of such a sequence of actions is decidable.

23



6 Comparison with [4]

We just showed that whether a system is k-synchronizable for a fixed k is de-
cidable, and we also showed that the reachability problem for k-synchronizable
systems is decidable. Our proof may seem, on the surface, quite similar to the
one presented in [4], and it could be believed that we only corrected a few mi-
nor typos. This section intends to expose some of the flaws we found in [4] so
as to defend that, on the contrary, the changes we introduced were far from
foreseeable in the original presentation.

Differences in the graphical characterisation of k-synchro-
nizable executions

In [4], Bouajjani et al. give the following characterisation of k-synchronous
executions in terms of a structural property of the conflict graphs of their MSC.

Characterisation of k-synchronizability [4, Theorem 1]. A
MSC t1 satisfying causal delivery is k-synchronous iff every cycle in
its conflict graph does not contain a RS edge and is of size at most
k.

If the word cycle in this statement means Hamiltonian cycle (i.e., a cyclic
path that does not go twice through the same vertex), then this statement is
not correct. Indeed, consider again Example 9. This graph is not Hamiltonian,
and the largest Hamiltonian cycle indeed is of size 4 only. But as we already
discussed in Example 9, the corresponding MSC is not 4-synchronous.

It is true that the word cycle could be understood, with some open minded-
ness, as equivalent to SCC. But the subsequent developments in [4] indicate that
what is meant by cycle in the above statement really is Hamiltonian cycle. In
particular, the algorithm that is later used for deciding whether a system is k-
synchronizable is not correct either: the MSC of Figure 2c would be considered
as 4-synchronizable according to this algorithm.

Differences in the definition of
e,k
==⇒
cd

In [4] the authors define
e,k
==⇒
cd

in a rather different way: they do not explicitly

give a graphical characterisation of causal delivery; instead they compute, for
every process p, the set B(p) of processes that either sent an unmatched message
to p or received a message from a process in B(p). They then make sure that
any message sent to p by a process q ∈ B(p) is unmatched. According to that,

relation
e,k
==⇒
cd

in [4], considers that the following execution (see also Example 11)

send(q, r,v1) · send(q, s,v2) · rec(q, s,v2) · send(p, s,v3) · rec(p, s,v3)·

send(p, r,v4) · rec(p, r,v4)

satisfies causal delivery and is 1-synchronous. However, this is not the case:
we saw in Example 11 that neither this execution nor any causally equivalent
satisfy causal delivery.

1A trace t, as in the original terminology.

24



p q r s π

(r,v1)

v2

v3

v4

v1

(a)

p q r π

(r,v1)

v2

v3

v1

(b)

p q r π

(r,v1)

v2

v3

v4

v1

(c)

Figure 8: MSCs of problematic executions

Differences in the definition of
e,k

==⇒
feas

In [4] the authors verify that a trace is feasible with a monitor which reviews
the actions of the execution and adds processes that no longer are allowed to
send a message to the receiver of π, in the same way as function B. According
to this monitor, the following execution e′ = deviate(e · r) (MSC in Figure 8a)
is feasible, i.e., is runnable in S

′ and e · r is runnable in S.

e′ =send(q, π, (r,v1)) · rec(q, π, (r,v1)) · send(q, s,v2) · rec(q, s,v2) · send(p, s,v3)·

rec(p, s,v3) · send(p, r,v4) · rec(p, r,v4)send(π, r,v1) · rec(π, r,v4)

However, as previously, this execution is not feasible because there is a causal
dependency between v1 and v3. This execution would then be considered as
feasible and therefore would belong to set sT rk(S

′). As there is no correspond-
ing execution in asT r(S), the comparison and therefore the k-synchronizability,
could be distorted and appear as a false negative.

Differences in the definition of
e,k

==⇒
bad

As for the notion of feasibility, to determine if an execution is bad, in [4] the
authors use a monitor that builds a path between the send to process π and the
send from π. In addition to the problems related to the wrong characterisation
of k-synchronizability, this monitor not only can detect an RS edge when there
should be none, but also it can miss them when they exist. In general, the
problem arises because the path is constructed by considering only an endpoint
at the time. Figure 8b depicts the MSC associated to an execution feasible and
without label RS. Still, the monitor considers the reception of v2 followed by
the send of v3. A label RS is thus wrongly detected. Conversely, Figure 8c
depicts the MSC associated to an execution feasible but bad. With the monitor
in [4], the action seen after the send of v3 is the send of v4 and so the existing
label RS is ignored at the profit of a non existing label SS.

Other differences

Due to to the above errors, that concern fundamental points in [4], we had to
propose a considerably different approach. The extended edges of the conflict

25



graph, and the graphical characterisation of causal delivery as well as summary

nodes, have no equivalent in [4]. As underlined above, transition relations
e,k

===⇒
feas

and
e,k

===⇒
bad

build on the graphical characterisations of causal delivery and k-

synchronizability, they depart considerably from the proposal in [4].

7 Concluding remarks and related works

In this paper we have studied k-synchronizability for systems communicating
via mailboxes. We have corrected the reachability and decidability proofs intro-
duced in [4] by proposing a more involved characterisation via conflict graphs
of k-synchronizability.

We conclude by commenting on some related works. The idea of “commu-
nication layers” is present in the early works of Elrad and Francez [8] or Chou
and Gafni [7]. More recently, Chaouch-Saad et al. [6] verified some consensus
algorithms using the Heard-Of Model that proceeds by “communication-closed
rounds”.

The concept that an asynchronous system may have an “equivalent” syn-
chronous counterpart has also been widely studied. Lipton’s reduction [13]
reschedules an execution so as to move the receive actions as close as possi-
ble from their corresponding send. Reduction recently received an increasing
interest for verification purpose, e.g. by Kragl et al. [11], or Gleissenthal et
al. [15].

Existentially bounded communication systems have been studied by Gen-
est et al. [10, 14]: a system is existentially k-bounded if any execution can be
rescheduled in order to become k-bounded. This approach targets a broader
class of systems than k-synchronizability, because it does not require that the
execution can be chopped in communication-closed rounds. In the perspec-
tive of the current work, an interesting result is the decidability of existential
k-boundedness for deadlock-free systems of communicating machines with peer-
to-peer channels. Despite the more general definition, these older results are in-
comparable with the present ones, that deal with systems communicating with
mailboxes, and not peer-to-peer channels.

Basu and Bultan studied a notion they also called synchronizability, but it
differs from the notion studied in the present work; synchronizability and k-
synchronizability define incomparable classes of communicating systems. The
proofs of the decidability of synchronizability [3, 2] were shown to have flaws by
Finkel and Lozes [9]. A question left open in their paper is whether synchroniz-
ability is decidable for mailbox communications, as originally claimed by Basu
and Bultan. Akroun and Salaün defined also a property they called stability [1]
and that shares many similarities with the synchronizability notion in [2].

Context-bounded model-checking is yet another approach for the automatic
verification of concurrent systems. La Torre et al. studied systems of com-
municating machines extended with a calling stack, and showed that under
some conditions on the interplay between stack actions and communications,
context-bounded reachability was decidable [12]. A context-switch is found in
an execution each time two consecutive actions are performed by a different
participant. Thus, while k-synchronizability limits the number of consecutive
sendings, bounded context-switch analysis limits the number of times two con-

26



secutive actions are performed by two different processes. It would be interest-
ing to explore how both context-boundedness and communication-closed rounds
could be composed.

References

[1] Lakhdar Akroun and Gwen Salaün. Automated verification of automata
communicating via FIFO and bag buffers. Formal Methods in System De-
sign, 52(3):260–276, 2018.

[2] Samik Basu and Tevfik Bultan. On deciding synchronizability for asyn-
chronously communicating systems. Theor. Comput. Sci., 656:60–75, 2016.

[3] Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for
verification of asynchronously communicating systems. In Viktor Kun-
cak and Andrey Rybalchenko, editors, Verification, Model Checking, and
Abstract Interpretation - 13th International Conference, VMCAI 2012,
Philadelphia, PA, USA, January 22-24, 2012. Proceedings, volume 7148
of Lecture Notes in Computer Science, pages 56–71. Springer, 2012.

[4] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. On
the completeness of verifying message passing programs under bounded
asynchrony. In Hana Chockler and GeorgWeissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV 2018, Held as
Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings, Part II, volume 10982 of Lecture Notes in Computer
Science, pages 372–391. Springer, 2018.

[5] Ahmed Bouajjani, Peter Habermehl, and Tomás Vojnar. Abstract regular
model checking. In Rajeev Alur and Doron A. Peled, editors, Computer
Aided Verification, 16th International Conference, CAV 2004, Boston, MA,
USA, July 13-17, 2004, Proceedings, volume 3114 of Lecture Notes in Com-
puter Science, pages 372–386. Springer, 2004.

[6] Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A re-
duction theorem for the verification of round-based distributed algorithms.
In Olivier Bournez and Igor Potapov, editors, Reachability Problems, 3rd
International Workshop, RP 2009, Palaiseau, France, September 23-25,
2009. Proceedings, volume 5797 of Lecture Notes in Computer Science,
pages 93–106. Springer, 2009.

[7] Ching-Tsun Chou and Eli Gafni. Understanding and verifying distributed
algorithms using stratified decomposition. In Danny Dolev, editor, Proceed-
ings of the Seventh Annual ACM Symposium on Principles of Distributed
Computing, Toronto, Ontario, Canada, August 15-17, 1988, pages 44–65.
ACM, 1988.

[8] Tzilla Elrad and Nissim Francez. Decomposition of distributed programs
into communication-closed layers. Sci. Comput. Program., 2(3):155–173,
1982.

27



[9] Alain Finkel and Étienne Lozes. Synchronizability of communicating fi-
nite state machines is not decidable. In Ioannis Chatzigiannakis, Piotr
Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Col-
loquium on Automata, Languages, and Programming, ICALP 2017, July
10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 122:1–122:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017.

[10] Blaise Genest, Dietrich Kuske, and Anca Muscholl. On communicating
automata with bounded channels. Fundam. Inform., 80(1-3):147–167, 2007.

[11] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing
the asynchronous. In Sven Schewe and Lijun Zhang, editors, 29th Inter-
national Conference on Concurrency Theory, CONCUR 2018, September
4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 21:1–21:17. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[12] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato.
Context-bounded analysis of concurrent queue systems. In C. R. Ramakr-
ishnan and Jakob Rehof, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings, volume 4963 of Lecture Notes in Computer Science, pages
299–314. Springer, 2008.

[13] Richard J. Lipton. Reduction: A method of proving properties of parallel
programs. Commun. ACM, 18(12):717–721, 1975.

[14] Anca Muscholl. Analysis of communicating automata. In Adrian-Horia
Dediu, Henning Fernau, and Carlos Mart́ın-Vide, editors, Language and
Automata Theory and Applications, 4th International Conference, LATA
2010, Trier, Germany, May 24-28, 2010. Proceedings, volume 6031 of Lec-
ture Notes in Computer Science, pages 50–57. Springer, 2010.

[15] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Ste-
fan, and Ranjit Jhala. Pretend synchrony: synchronous verification of
asynchronous distributed programs. PACMPL, 3(POPL):59:1–59:30, 2019.

28


	Introduction
	Preliminaries
	k-synchronous and k-synchronizable executions
	Decidability of reachability for k-synchronizable systems
	Decidability of k-synchronizability for mailbox systems 
	Comparison with DBLP:conf/cav/BouajjaniEJQ18
	Concluding remarks and related works

