Georg Macher
email: georg.macher@tugraz.at

Eric Armengaud
email: eric.armengaud@avl.com

Christian Kreiner
email: christian.kreiner@tugraz.at

Bridging Automotive Systems, Safety and Software Engineering with a Seamless Toolchain

Keywords: model-based development, AUTOSAR, multi-core, ISO 26262, semi-automatic toolchain

Multi-core technologies strongly support functional integration, e.g. integration of different applications on the same control unit. However, these applications require different safety concepts with different levels of criticality; and providing consistency of the safety concept during the entire product lifecycle is a tedious task. The aim of this paper is to enhance a modeldriven systems and safety engineering framework for multi-core systems, enabling the seamless description of the system, from requirements at the system level down to software component implementation.

I. INTRODUCTION

Multi-core computing platforms are strong innovation drivers for automotive control systems. Hence, this technology enables the deployment of more advanced control strategies, thus providing new benefits for the customer and environment, such as reduced fuel consumption and better driveability. Moreover, it provides a higher degree of integration, and therefore saves costs by reducing the number and complexity of electronic control units (ECU).

At the same time, the higher degree of integration and the safety-criticality of the control application raise new challenges. Hence, the correctness of the applications in both the time domain and the value domain has to be guaranteed. The independence of different applications (with different criticality levels) running on the same platform must be made evident. In parallel, new computing architectures with services integrated in hardware enable the development of new software architectures and safety concepts.

Safety standards such as ISO 26262 [START_REF]ISO 26262 Road vehicles Functional Safety Part 1-10[END_REF] for E/E/EP systems for road vehicles have been established to provide guidance during the development of safety-critical systems. They provide a well-defined safety lifecycle based on hazard identification and mitigation, and they define a long list of workproducts to be generated. The challenge in this context is to provide evidence of consistency during product development among the different work-products. Model-based development, such as Quadri and Sadovykh [START_REF] Quadri Imran Rafiq | Mades: A sysml/marte high level methodology for real-time and embedded systems[END_REF], supports the description of the product in a more structured way and enables different views for different stakeholders, different levels of abstraction, and central storage for information. This, in turn, improves the consistency, correctness, and completeness of the entire system under development. These features, according to Broy et al. [START_REF] Manfred | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF], make model-based development the most promising approach to handle upcoming issues with modern safety-critical systems in relation to ISO 26262 and multi-core hardware.

The contribution of this paper is to extend an existing model-driven system and safety engineering environment [START_REF] Mader | Computer-Aided Model-Based Safety Engineering of Automotive Systems[END_REF] with aspects related to mixed-criticality software for multicore controllers. The approach relies on the integration of software architecture description artifacts based on the AU-TOSAR [START_REF] Kreiner | AUTOSAR AUTomotive Open System ARchitecture[END_REF] methodology (e.g. component and interface configurations, timing constraints) into the system description based on SysML. The goal is to use the component-based approach to provide evidence of completeness, correctness, and consistency of the product, from requirements in an early concept phase down to single software component implementation.

The document is organized as follows: Section II discusses the state of the art. Section III presents the existing modelbased systems and safety toolchain, on which this work is based. Section IV provides a description of the proposed enhancement for software engineering. In Section V a use case of the toolchain is presented to evaluate the approach. Finally, Section VI concludes this work with an overview of what has been achieved.

II. RELATED WORK

Several existing approaches deal with model-based development, multi-core platforms or AUTOSAR configuration. Yet many configurations of AUTOSAR basic software modules and ECU description files need to be done manually with several non-interacting tools. Throughout our research we discovered several challenges. The following section is divided into the two main groups of challenges we believe must be addressed.

Challenges related to multi-core systems:

• Generation of multi-core configurations The AUTOSAR functional definition is based on the concept of single-threaded processors. Kluge et al. [START_REF] Florian | Implementing AUTOSAR Scheduling and Resource Management on an Embedded SMT Processor[END_REF] discuss the implementation of an AUTOSAR operating system interface on a simultaneous multi-threaded processor and propose some extensions to the AUTOSAR specification. The approach specially considers problems of synchronization and resource management and introduces a task filtering solution. This approach avoids deadlocks by filtering tasks in such a way that only those tasks will be executed that do not have any resource conflicts with other tasks. This does not change the external behavior of the OS and AUTOSAR compatibility, but it guarantees predictable timing behavior for the task with the highest priority. This work mainly supports predictable timing for the task with the highest priority and is therefore not applicable for automotive mixed-critical systems.

•
One way to generate static schedules for safety-critical multi-core systems for the avionics domain is mentioned by Hilbrich et al. [START_REF] Robert | Model-based Generation of Static Schedules for Safety Critical Multi-Core Systems in the Avionics Domain[END_REF]. Generating static schedules for simple single-core systems is possible manually, but novel approaches are needed as generating schedulings for multi-core systems increases in complexity. The shared access of processing units to external resources may lead to conflicts that have to be resolved at run-time. This directly influence the predictability of static scheduling tables, because conflict resolution algorithms are usually implemented in hardware and offer only minimal controllability for software. An empirical analytical approach to avoiding access conflicts to all relevant resources at design time is needed to ensure hard real-time constraints. The presented approach resolves all resource access conflicts via a globally synchronized execution of all parallel tasks. A precondition for this approach is the availability of the following information at design time:

1) Timing characteristics of all tasks (e.g. WCET)

2) Scheduling dependencies between tasks 3) Resource usage patterns of all tasks

To generate a valid static schedule, the authors developed a scheduling tool called PRECISION PRO 1 . PRECISION PRO is capable of processing models presented in a textual notation similar to Prolog clauses and generates a graphical representation of a valid scheduling of the specified tasks.

Niklas et al. [START_REF] Niklas | Safety-relevant development by adaptation of standardized safety concepts in[END_REF] deal with another issue of safety-related software development for multi-core systems. Their work deals with safe end-to-end (E2E) communication, AUTOSAR 4.0, and a set of mechanisms that are used to identify and detect communication errors.

The main topic of Scheidemann et al. [START_REF] Kathrin | Load Balancing in AUTOSAR-Multicore-Systemen[END_REF] is also related to multi-core processors and AUTOSAR. A balanced graph-cut problem approach is used to resolve the allocation of software components (SWCs) to the cores. But the problem of multicore processors is that there is no guaranty of a defined data flow between runnables of one particular task, due to parallel execution on different cores.

B. Model-based Development Related Challenges

Broy et al. [START_REF] Manfred | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF] mention basic ideas, concepts and theories for model-based development of embedded software systems. This paper illustrates why seamless solutions have not been achieved so far, which solutions are commonly used, and which problems (e.g. redundancy, inconsistency and lack of automation) arise with the use of an inadequate toolchain. The authors also claim model-based development to be best approach to manage the large amount of information and complexity of a modern embedded multi-core system with safety constraints. The focus of this work is to present basic ideas or concepts; no detailed solutions for the automotive domain are presented.

The work of Quadri and Sadovykh [START_REF] Quadri Imran Rafiq | Mades: A sysml/marte high level methodology for real-time and embedded systems[END_REF] presents a real-time embedded system for avionics and a model-driven engineering approach aiming to develop novel model-driven techniques and new tools supporting design, validation, simulation, and eventual automatic code generation. However, safety aspects are not addressed by this paper.

The work of Holtmann et al. [START_REF] Joerg | A Seamless Model-Based Development Process for Automotive Systems[END_REF] highlights process and tooling gaps between different modeling aspects of a modelbased development process. Often, different specialized models for specific aspects are used at different development stages with varying abstraction levels, and traceability between these different models is established via manual linking. The authors claim that there is a lack of automation for those linking tasks and no guidance for which models to be used at each specific development stage. The Automotive SPICE process reference model requires properties like traceability and defines development stages as well as resulting artifacts, but it does not specify how the realization of these properties or artifacts can be achieved. The paper presents a model-based development process conforming to the process reference model of Automotive SPICE. The work proposes a controlled natural language (CNL) approach, called requirement patterns, to process system requirements automatically and to transfer the information to an initial system analysis model. The approach uses SysML to specify hardware and software subsystems, including their interrelations. A further gap investigated is the gap between system architectural design and software design. The system analysis model is refined with activity, sequence or state chart diagrams and used as input for the software design. The proposed toolchain mentions two important gaps: a) missing links between system level tools and software development tools, and b) several very specific and non-interacting tools which require manual synchronization and therefore are often inconsistent, rely on redundant information, and require redundant manual work due to a lack of automation.

The CESAR project [START_REF] Ajitha | CESAR Project Book[END_REF] proposes cost-efficient methods and processes for the development of safety-relevant embedded systems. Integrated toolchains are moving the engineering disciplines closer together and provide traceability along the development process. The main focus of the proposed toolchains in CESAR is related to systems and safety engineering. The introduced multi-domain approach, the European cross-sectoral standard reference technology platform (RTP), provides metamodels and methods. But for less abstract development phases, the RTP needs to be more specific and refined in order to more tightly couple inter-operations between different tools. This issue is also addressed by Giese et al. [START_REF] Holger | Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent[END_REF] from a slightly different point of view. They address the problems of different models along the development process, with each model designed for a specific issue. They highlight the step from system design to software design as critical. System design models have to be correctly transferred to the software engineering model, and later changes must be kept consistent. The authors propose a model synchronization approach consisting of tool adapters between SysML models and software engineering models in AUTOSAR representation. Their approach is based on bidirectional model transformations specified by triple graph grammars (TGG) between the TOP-CASED SysML tool and the AUTOSAR tool SystemDesk. One of the main features of this approach is that it supports not only a strict sequential order, but also iterative and more flexible processes, with the only limitation being that parallel changes in different models are not supported. A drawback of this approach is that hardware blocks are not reflected, and thus mapping of software to specific hardware modules is not possible.

Pagel et al. [START_REF] Pagel Mike | Definition and Generation of Data Exchange Formats in AUTOSAR, process independent model[END_REF] mention the benefit of generating XML schema files directly from a platform-independent model (PIM) for data exchange via different tools. Performing extra transformation steps would only add potential sources for error, and ambiguous mappings could result in unwanted side-effects. The result of this paper is the XML schema that is currently in use as the AUTOSAR XML data exchange format.

Current approaches focus either on system-level development and the resulting issues with requirements, their refinement and safety concepts, or on software-development level and the open issues, scheduling of multicore tasks, distribution of software onto multi-core systems, or configuration of safety drivers and basic software.

The approach proposed in this work relies on an existing model-based development tool (see Section III) and extends its domain from product development at system level to integration and generation of safety-related software in mixed-critical and multi-core systems. With the presented approach (see Section IV) we bridge the existing gap between system design and software implementation tools for multi-core systems in a way that guarantees consistency of information, due to the single source of information principle. Further, the approach minimizes redundant manual information exchange between tools and ensures a seamless safety argumentation according to ISO 26262 for the developed system. The formal model makes dependencies explicit and shares information more precisely and less ambiguously. This minimizes the effort of error-prone work without adequate tool support, test-case specification generation or document generation.

Benefits of the model-based development approach, compared to a document-centric approach, are highly noticeable in terms of re-engineering cycles, tool changes, and reworking of documentation artifacts with alternating dependencies, as also mentioned by Broy et al. [START_REF] Manfred | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF].

III. MODEL-BASED DEVELOPMENT TOOLCHAIN

This section gives a short overview of the currently used model-based development toolchain at our industrial partner AVL and the related preliminary work which led to this approach. The concept of the mentioned safety toolchain, proposed by Mader [START_REF] Mader | Computer-Aided Model-Based Safety Engineering of Automotive Systems[END_REF] is based on a specific tool-independent and language-independent methodology to support continuous safety analyses of system architecture development according to ISO 26262 at concept phase and system development level. The modeling tool in use is Enterprise Architect (EA) with special safety extension addin. This tool is capable of continuous modeling and refinement of an automotive embedded system according to ISO 26262 from the initial requirements down to the system development level.

A dedicated meta-model has been developed as an UML profile using a subset of SysML language that can be used to define a system model particularly tailored to automotive engineering and safety engineering in context of ISO 26262. This approach stems from the CESAR Project [START_REF] Ajitha | CESAR Project Book[END_REF] and was further improved by a feasibility study [START_REF] Mader | Computer-Aided Model-Based Safety Engineering of Automotive Systems[END_REF].

The basic concept of this framework is to have two consistent information repositories (UML repository and life cycle management tool repository) as central source of information, to store all information of all involved engineering disciplines in a structured way, and to allow different engineers to do their job in their specific manner. This enables a reorganization from a document-centric development approach to a seamless model-based development approach. Benefits of this switch have already been mentioned by Broy et al. [START_REF] Manfred | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF], Holtmann et al. [START_REF] Joerg | A Seamless Model-Based Development Process for Automotive Systems[END_REF], and Quadri and Sadovykh [START_REF] Quadri Imran Rafiq | Mades: A sysml/marte high level methodology for real-time and embedded systems[END_REF]. The following addin is a proprietary extension for the modeling tool EA to ensure a seamless and consistent transition of information between the two repositories in use (UML tool EA and life cycle management tool Integrity2).

Integrity assists at several development steps. To name the most important:

• Project Management: Integrity offers different views to keep the project manager up to date about the project's progress and artifacts not yet developed.

• Quality Management: The company-dependent development process can be installed in Integrity to guarantee compliance within each project.

• Management of Development Groups: Bigger development tasks can be divided and spread to groups of developers across environmental borders.

• Version Control and Configuration Management:

Source code can be version controlled by Integrity, and configurations of releases are manageable.

• Requirement Engineering: Integrity can also be used to work on requirements and version requirements, to keep track of changes, and to interchange them with customers (via RIF).

These features make Integrity a relevant counterpart to the introduced EA tool. Integrity focuses on management and quality issues, version control of software modules and code, but lacks visualization of requirement and development artifact dependencies. In addition, the levels of abstraction of the development process and its related artifacts cannot be satisfyingly visualized via Integrity. To ensure satisfying integration of both tools, defined interfaces need to be established.

The most important interface between these two tools is the Integrity addin in EA. The Integrity addin enables the import and export of requirements to and from the requirements management and application life cycle management tool Integrity. This ensures the possibility to link requirements to development tasks, test tasks, and store the requirement document in a version-traceable way in Integrity. In parallel, work on refining requirements and their relationships to one another and to development artifacts can be done more easily in UML representation in EA. We propose to extend the existing approach with a model representation of the hardware in use, an AUTOSAR aligned model for software development, and a hardware-software interface according to ISO 26262. Furthermore, the toolchain is enhanced by extractors automatically generating system and ECU configuration files from existing information at system development level. This proposed approach closes the gap, also mentioned by Giese et al. [START_REF] Holger | Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent[END_REF], Holtmann et al. [START_REF] Joerg | A Seamless Model-Based Development Process for Automotive Systems[END_REF], and Sandmann and Seibt [START_REF] Guido | AUTOSAR-Compliant Development Workflows: From Architecture to Implementation -Tool Interoperability for Round-Trip Engineering and Verification & Validation[END_REF], between system-level development at abstract UML-like representations and software-level development modeling tools (e.g. Matlab Simulink/Targetlink). Closing this gap creates a seamless toolchain from initial requirements (coming from a requirement management tool), through definition of safety concepts and software architectures (in a model-based development environment), to final decisions in code implementation in compliance with ISO 26262.

The approach relies on the AUTOSAR specification [START_REF] Kreiner | AUTOSAR AUTomotive Open System ARchitecture[END_REF] for architectural approach, definition of application software interfaces, and exchange formats. Therefore it is possible to import existing AUTOSAR components, interface configuration and timing constraints (AUTOSAR R4.0) into the system model. Figure 2 shows the conceptual overview of the approach. Furthermore, the automatic export of component containers and their interconnections is possible, which links the software architecture designed in SysML to the software development tool (e.g. Matlab/Simulink) and closes the gap between system development tools and functional software development tools. This approach has already been mentioned by Pagel et al. [START_REF] Pagel Mike | Definition and Generation of Data Exchange Formats in AUTOSAR, process independent model[END_REF] and Sandmann et al. [START_REF] Guido | AUTOSAR-Compliant Development Workflows: From Architecture to Implementation -Tool Interoperability for Round-Trip Engineering and Verification & Validation[END_REF], among others. However, as opposed to theirs, our approach does not focus merely on exporting software architecture and interface descriptions. We also take into account the ISO 26262 requirements (especially traceability) and close the existing tool gap between basic software configuration tools, OS, and scheduling tools.

In addition, the AUTOSAR architectural approach ensures hardware-independent development of application software modules until a very late development phase and therefore enables application software developers, basic software developers, and hardware developers to work in parallel. Simultaneously the AUTOSAR approach provides the possibility to extend the abstract UML-like representation at system level with a syntax and semantics to describe the interconnections between modules, timing constraints, and information dependencies. These features are the basis of providing traceability, from requirements to implementation, and enable the automated analysis of the system architecture, which provides a seamless safety argumentation for the developed system.

Automotive OS do not have dynamic scheduling parts, in that all OS settings are static and can be specified during the development phase. The available information from system development can be exported and used to integrate OS and scheduling tools to automatically generate a distribution of tasks onto cores and AUTOSAR-compliant ECU configuration files. Furthermore, basic software configuration tools (e.g. Vector EAD or EB tresos Studio) can be integrated into the toolchain in a way that automatically generates essential configurations of AUTOSAR BSW modules and the AU-TOSAR OS. Our approach therefore also helps to specify tasks with their priority, duration, and safety-criticality; the mapping of tasks to cores; generate task activation policies; and support specification of task resources, alarms, and interrupts. In combination with an RTE configuration tool (e.g. Vector DaVinci Configurator Pro or EB tresos) and the AUTOSAR compliant interface extraction, the RTE can also be generated automatically.

Most of above mentioned tools generate AUTOSARconform code and description files. These AUTOSAR description files can be re-imported into our system model to ensure bidirectional traceability. Other tools, e.g. OS and task scheduling configurators, can be easily integrated into the toolchain via separate import/export functions, e.g. OIL files. Therefore, this establishes a tight linking of the independent tools along the development process, to a seamless model-based development toolchain interacting via AUTOSAR-aligned and de facto automotive standard exchange formats, in accordance with ISO 26262. An additional advantage for multi-core systems is based on the definition of the software architecture in our system development environment and the automatic configuration of safety drivers, BSW and RTE, which can be generated from the SysML representation. Within this environment the allocation of software components to cores can be changed and supported more easily via automatic approaches, e.g. collection of safety-relevant software on one specific core or a switch to static work balancing between cores. In addition, tasks, inter-core communications, and synchronizations can be investigated at this higher abstraction level, and resource bottlenecks can be minimized earlier. Furthermore, different compilers, linkers, and even development or configuration tools can be used within the established toolchain due to its linkage via AUTOSAR-conform interchange formats. This allows the inclusion of additional multi-core configuration tools or task distribution tools into the toolchain (e.g. the mentioned tool PRECISION PRO by Hilbrich et al. [START_REF] Robert | Model-based Generation of Static Schedules for Safety Critical Multi-Core Systems in the Avionics Domain[END_REF]).

AUTOSAR Description Files

The next few sections give an overview of the introduced extensions and explain how these extensions bridge individual tools into a seamless toolchain.

A. Integration of Software Tools

The toolchain uses several SysML profiles to limit the great number of possibilities UML offers to address the needs for system development and to make the information manageable for constraints checker. This approach is also used for software development phase. We define a profile for SysML that gives software architects the possibility to design software architecture in an AUTOSAR-aligned representation. This AUTOSAR-aligned representation has the benefit, that it can be exported via the Software Architecture EA addin in ARXML AUTOSAR format, which many software engineering tools are able to import, process, and re-export by default. This profile and the integrated definition of system artifacts and software module in one tool furthermore offers the possibility to keep on track of system errors to involved software sub-modules. It further supports the work of safety engineers by adding values and visual labels for safety-relevant software modules. Information that is not importable by default AUTOSAR import functions of third-party tools is transferred via description and long-name values of individual models and therefore still available for the user of this particular tool. Further means of support for safety engineers is a selectable decomposition of safety-critical software modules according to ISO 26262 and the 3-Level safety monitoring architecture pattern [START_REF] Thomas | Method for checking the safety and reliability of a software-based electronic system[END_REF]. Figure 1 shows an example of a safety-relevant software module (AUTOSAR Composition) and its ASIL decomposition in two components with lower ASIL levels, represented in Enterprise Architect.

B. Integration of Hardware Tools

The same practice is used for the hardware profile. The hardware profile also limits the possibilities of UML to the needs of hardware developers. Due to the fact that this toolchain is developed together with an industrial partner whose main focus is on system development and software development, the hardware profile is tailored to the needs of basic software configurators (a.k.a. firmware developers) and system/safety engineers. Therefore this profile might need updates in order to work efficiently on hardware development as such.

C. Definition of Hardware-Software-Interface

Another important task within the system development process is the definition of the Hardware-Software Interface (HSI). The HSI document is the last development artifact of the system development and the starting point for parallel development of hardware and software. Insufficient definition of the HSI can cause several additional iteration cycles and communication issues between development teams. An HSI definition is also required by ISO 26262 and is created via linking artifacts of our profiles for software and hardware development. (For an example see Figure 4)

D. Integration of Multicore Tools

As mentioned by several related works (see chapter II) additional constraints occur during development of multicore systems. The initiation of software development in an AUTOSAR-aligned way supports this development with the virtual functional bus (VFB) abstraction level (see [START_REF]AUTOSAR development cooperation[END_REF] for further details). But several issues of multi-core systems cannot be addressed via AUTOSAR, e.g. correct timing and resource-efficient scheduling. These issues can usually be solved using third-party tools, which interoperate via either AUTOSAR ARXML files or proprietary interchange formats. These formats and supporting information from the model can be extracted via EA plugins (so-called MDG technologies) to interchange information with those special-purpose tools. The re-import of generated solutions into the model is also supported. In Figure 3 the extensions for OIL File export and AUTOSAR ECU configuration files can also be seen.

E. Integration of Test Tools

Enterprise Architect supports the generation of documentation. This feature can be used to automatically generate test specifications of the provided use-case diagrams. Furthermore, as for integration of special-purpose tools, MDG technology extensions can be used to export test signal vectors for stimulation of the software models and thus ensure test coverage of all typical use-case scenarios.

V. EVALUATION OF THE PROPOSED APPROACH

This section demonstrates the ISO 26262 aligned development of a battery management system (BMS) prototype with the proposed toolchain. As mentioned previously, the toolchain is intended for development of systems with more focus on software than hardware development. Hardware is mainly seen as purchased part and only included for safety analysis and configuration aspects. This section is thus subdevided according to the software safety requirement process structure of ISO 26262 (see Figure 10 in ISO 26262- Part 10 [7]). Main deliverables to be mentioned are:

• Item definition, safety goals, and use cases As a first step of ISO 26262 related development, the boundaries of the system and its interacting environment must be specified. This definition in the context of ISO 26262 is called item definition. An item is defined by ISO 26262 as a system or array of systems to implement a function at the vehicle level, to which ISO 26262 is applied.

A system consists at least of a sensor, a controller, and an actuator. Due to the large dimensions of a vehicle, five levels of abstraction are defined within our system model. For each system on each level of abstraction, system targets (e.g. requirements and use cases), a system structure, and hazard analysis and risk assessment can be linked and refined. As a result, every system on a specific level of abstraction has a defined link with its use cases, requirements, and involved components. Based on this item definition, possible malfunctions of all described functions need to be identified. As second step, hazards are added and linked to operational situations. This results in hazardous events, which are classified according to ISO 26262 in terms of severity, controllability, and exposure. Finally, this results in a specific ASIL and a related safety goal.

B. FSC, Preliminary Architecture, FMEA, and FTA

The functional safety concept consists of functional safety requirements. These requirements can be defined with the help of the model of the system under development. The identified requirements can furthermore be linked to the system and subsystem components; this supports identification of dependencies and structuring of requirements. The identified functional safety requirements and structure of requirement dependencies can further be transfered to the requirement management tool.

In addition the created model can be analyzed and evaluated using Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA). FMEA and FTA can further be used to evaluate system design decisions against each other, e.g. for indicators for the most probable cause of a failure and therefore for a robust design.

C. TSC, System Design, and HSI

Technical safety requirements compose the TSC and represent the technical completion of the FSC. These requirements are generally divided into hardware-related and softwarerelated requirements and linked to specific parts of the system design. Furthermore, these requirements are re-imported into MKS hardware or software requirement documents.

The system design is finalized by the definition of the hardware-software interface (HSI). This mapping is done in a separate diagram and provides a basis for parallel development of software and hardware. Figure 4 The definition of the software architecture is usually done by a software architect within the software development tool (e.g. Matlab/Simulink). By including this work package in the system development tool EA in an AUTOSAR-aligned representation, the work of the software system architect and software developers is not hampered. Software modules can be exported to the software development tool, and the software unit design remains unaffected. But this change offers the possibility to define a logical mapping of functions independent of a technical mapping to processors. This is a significant benefit for development of safety-critical multi-core software and supports a further parallelization in software development. The feature extractor of the system model can export information to special-purpose tools (e.g. scheduling generator or basic software configuration tools). Therefore function software and basic software can be developed in parallel and by independent developers. The previously mentioned Figure 4 shows the HSI and the first part of the software/hardware mapping. The second part of the software/hardware mapping is shown in Figure 3 and depicts the mapping of tasks to specific processors.

The presented approach enables modeling of the system under development throughout the entire development cycle, from initial requirements to system level design and implementation in software and hardware. The toolchain bridges the existing gap between system design and software implementation tools for multi-core systems. Additional tools, e.g. for development of multi-core specific features or scheduling analysis, can be added via standardized AUTOSAR and proprietary exchange formats. Furthermore, the approach guarantees consistency of safety concepts throughout the entire development cycle, due to the single source of information principle, as well as traceability between decisions and development artifacts (e.g. for the presented simplified use case, 435 artifacts and 828 traces). Required documentation to prove consistency with ISO 26262 can be generated automatically from the model, as can test specifications and basic software configurations available at system development level. This minimizes the effort of errorprone work without adequate tool support.

In summary, the presented approach shares information from different tools and different departments in a precise and less ambiguous way to overcome the complexity of modern automotive systems and to enable faster mutually independent development cycles of involved departments without errorprone manual work-overhead for documentation or information transfer between tools or departments. In the automotive domain the complexity of control systems and the need for systematic hazard identification and mitigation lead to a large amount of documentation material. This information, combined with the significant degree of expertise required to generate this information, makes the manual establishment and maintenance of specification consistency almost unfeasible. Moving to a more formal (and automated) component-based approach enables the definition of a framework (e.g. guidelines, automated checks) to identify and correct (and thus minimize) the number of errors and lessen their impact. This work presented an approach to enhancing an existing model-driven system and safety engineering framework with software engineering aspects for multi-core systems. The main benefit of this enhancement is an improved consistency and traceability from the initial requirements at the system level down to the single software components,as well as a reduction of cumbersome and error-prone manual workflows along the system development path. Further improvements include the concept change from a document-centric approach to a seamless model-based approach with a single source of information for all involved engineering disciplines.

 Resource management and access • Task scheduling and task allocation • Safe communication Challenges related to model-based development: • Management of complexity • Traceability of different artifacts on different levels of abstraction • Linking of system engineering and software engineering information • Tool integration A. Multi-core Related Challenges

Fig. 1 .

 1 Fig. 1. Software Architecture Representation within EA

Fig. 2 .

 2 Fig. 2. Improvement Concept of the Toolchain

 shows a mapping of hardware ports and software signals within an HSI diagram. D. Software Architecture, Software Unit Design, and Software/Hardware Mapping

Fig. 3 .

 3 Fig. 3. HSI Mapping of SW Tasks to Specific Cores and OIL File Generation

Fig. 4 .

 4 Fig. 4. HSI Mapping of Hardware Ports and Software Signals

http://www.fokus.fraunhofer.de/de/fokus/publikationen/presse/pressearchiv/20110214 precision pro.html However, there is no discussion with respect to the seamless description of timing requirements from system level to software components presented.

http://www.mks.com/platform/our-product

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support of the "COMET K2 -Competence Centers for Excellent Technologies Programme" of the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT), the Austrian Federal Ministry of Economy, Family and Youth (BMWFJ), the Austrian Research Promotion Agency (FFG), the Province of Styria, and the Styrian Business Promotion Agency (SFG).

Furthermore, we would like to express our thanks to our supporting project partners, AVL List GmbH, Virtual Vehicle, and Graz University of Technology.