
HAL Id: hal-02272341
https://hal.science/hal-02272341

Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A user-oriented approach to integrate formal verification
activity for DSML

Faiez Zalila, Xavier Crégut, Marc Pantel

To cite this version:
Faiez Zalila, Xavier Crégut, Marc Pantel. A user-oriented approach to integrate formal verification
activity for DSML. Embedded Real Time Software and Systems (ERTS2014), Feb 2014, Toulouse,
France. �hal-02272341�

https://hal.science/hal-02272341
https://hal.archives-ouvertes.fr

A user-oriented approach to integrate formal
verification activity for DSML

Faiez Zalila, Xavier Crégut, Marc Pantel
Université de Toulouse, IRIT – France
Email: fistname.lastname@enseeiht.fr

Abstract—Formal methods based verification activity of safety
critical embedded systems has produced very promising results in
the industrial context and raised the interest of system designers
up to the application of these technologies in real size projects.

However, these methods usually rely on specific verification
oriented formal languages that most designers do not master. It
is thus mandatory to embed the associated tools in automated
verification toolchains that allow designers to rely on their usual
domain-specific modeling languages (DSMLs) while enjoying the
benefits of these powerful methods. We propose an approach
which introduces different steps to integrate verification tasks for
a new DSML and explains the interactions between concerned
actors. This work is based on a metamodeling pattern for
executable DSML that favors the definition of generative tools
and thus eases the integration of tools for new DSMLs.

Index Terms—Verification, Formal methods, Domain specific
modeling language (DSML), Model checking

I. INTRODUCTION

Domain-Specific Modeling Languages (DSMLs) are a ma-
jor asset in the development of complex systems. In particular,
they are widely used in the early phases of the development of
safety critical systems. In this context, model validation and
verification (V&V) activities are key features to assess the
conformance of the future system to its safety and liveness
requirements. They require the introduction of an execution
semantics for the DSMLs. It is usually provided as a mapping
from the abstract syntax (metamodel) of the DSML to an
existing semantic domain, generally a formal language, in
order to reuse powerful tools (simulator or model-checker)
available for this domain [1], [2].

One key issue is that system designers (DSML end-users)
should not be required to have a strong knowledge on formal
languages and associated tools. The challenge is thus to lever-
age formal tools so that the system designer has not to burden
with formal aspects and to integrate them in traditional CASE
tools, like the Eclipse platform. Model Driven Engineering
(MDE) already provides means to define metamodels, static
properties, textual and graphical syntaxes. What should be
addressed is thus 1) provide the system designer with a user-
friendly language to formalize system requirements, 2) define
a translational semantics from the DSML to a formal lan-
guage, 3) translate formal requirements into formal language
logic formulae according to the translational semantics, and
eventually, 4) bring back formal verification results back at
the DSML level so that they are understandable by the system
designer.

Our contribution is on the methodological side as we
propose an approach to introduce the executability aspect
for DSML. We propose different elements to generate a
DSML verification framework: the selected DSML and for-
mal language, define a translational semantics to map the
DSML abstract syntax to a formal language, introduce a
behavioral properties language to express DSML behavioral
requirements, map these DSML behavioral properties into
formal ones and define backward transformations to feedback
verification results into the DSML level.

In addition, we propose different interactions between dif-
ferent actors in order to ease generating a DSML verification
framework.

The paper is organized as follows. Section II presents
different DSML verification framework elements (a transla-
tional semantics, a language to express behavioral properties
and a backward transformation) which must be defined. Sec-
tion III presents the steps to generate this DSML verification
framework. Section IV introduces the use of this proposed
verification framework by the DSML end-user. Finally, we
conclude and presents future work in Section V.

II. DIFFERENT DSML VERIFICATION FRAMEWORK
ELEMENTS

When dealing with an executable DSML (XDSML), the
usual metamodel generally only allows expressing and veri-
fying static and structural requirements. However, it does not
model the notions handled at behavioral verification and at
runtime such as behavioral requirements, dynamic information
or stimuli that make the model evolve. Figure 2 explains a set
of structured elements that must be defined to guarantee the
verification activity for a new DSML.

A. The DSML

It provides the key concepts of the language (representing
the considered domain) and their relationships. It is the usual
metamodel used to define the modeling language in standard-
ization organisations. It is usually endowed with structural
constraints. To illustrate this paper, we consider as a running
example the SPEM process modeling language [3] (SPEM
metamodel in Figure 2). It was designed in order to experiment
V&V in the TOPCASED toolkit using an MDE approach.
The classical DSML metamodel is shown in Figure 1. For
instance, the SPEM metamodel defines the concepts of Pro-
cess composed of (1) workDefinitions that model the activities

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 resource 0..* resources

Figure 1. SPEM Metamodel

performed during the process, (2) workSequences that define
temporal dependency relations (causality constraints) between
activities.

B. The formal language

It is mandatory to choose the appropriate target tools in
order to perform formal verification. The main advantage is to
reuse tools available for this semantic domain like simulators
or model-checkers. One common drawback is the semantic gap
that may exist between the DSML and the semantics domain.
To fill this gap, we target the FIACRE formal language [4] as
it provides high level concepts.

FIACRE is a front end language to several verification tool-
boxes (TINA [5] and CADP [6] currently). This work focuses
on the TINA toolbox. FIACRE [4] is a french acronym for an
Intermediate Format for Embedded Distributed Components
Architectures. It was designed as the target language for model
transformations from different DSMLs such as AADL [7] or
PLC [8].

FIACRE is a formal language (see Figure 2) to represent
both the behavioral and timing aspects of systems, in particular
embedded and distributed systems, for formal verification and
simulation purposes. Fiacre is built around two notions:

• Processes describe the behavior of sequential compo-
nents. A process is defined by a set of control states,
each associated with a piece of program built from de-
terministic constructs available in classical programming
languages (assignments, if-then-else conditionals, while
loops, and sequential compositions), non deterministic
constructs (non deterministic choice and non determin-
istic assignments), communication events on ports, and
jumps to next state.

• Components describe the composition of processes, pos-
sibly in a hierarchical manner. A component is defined as
a parallel composition of instantiated components and/or
processes communicating through ports and shared vari-
ables. The notion of component also allows to restrict the
access mode and visibility of shared variables and ports,
to associate timing constraints with communications, and
to define priority between communication events.

C. The translational semantics

One common way to verify a DSML consists in mapping
its abstract syntax, defined by a metamodel, to a semantic
domain [2]. It is named Translational semantics in Figure 2. It
consists in generating from a DSML model (SPEM Model in

SPEM model

Fiacre model

Formal
scenario

SPEM scenario

Tina
model

Checker

LTL properties

Fiacre
specification

Translational
semantics TOCL2LTL Backward

transformations

Behavioral properties

<<uses>>

xSPEM

SPEM
metamodel

SPEM
queries

extension

SPEM
behavioral
extensions

conforms to conforms toconforms to

Fiacre
language

conforms to

Frac
compiler

TTS
Specification

Figure 2. Different DSML verification framework elements

Figure 2) a corresponding formal model (FIACRE Model). For
XSPEM, the translational semantics consists in transforming
a XSPEM model into a FIACRE specification. It is performed
with a model-to-model (M2M) transformation expressed in
ATL [9] and then based on a defined XTEXT grammar, the
FIACRE textual model is generated. Some rationale behind this
translational semantics are explained in [10].

D. Behavioral properties language

The properties of interest for the XDSML end-user are
behavioral properties relying on temporal operators. We have
chosen to reuse the TOCL language [11]. TOCL is an ex-
tension of OCL that introduces usual future-oriented temporal
operators such as always, sometimes, next, existsNext as well
as their past-oriented duals.

One first step to formalize the Behavioral properties of
interest to the DSML end-user is to analyze the properties
in order to identify the queries of interest. It consists in
introducing DSML requirements as queries in order to be used
to query the model. This extension is shown as SPEM queries
extension in Figure 2.

The key point is then to translate the properties as formulae
on the formal model. Obviously, this translation is done at the
metamodel level and thus has only to be written once for every
DSML. As our purpose is to ease the development of CASE
tools for new DSML, we focus on generic and generative
approaches advocated by MDE.

We have written a generic tool, TOCL2LTL, to translate a
TOCL property expressed on the XDSML level to a Linear
Temporal Logic (LTL) formulae. Technically, TOCL opera-
tors, including OCL ones, are translated in a first transfor-
mation that generates a second transformation which uses the
produced formal model (from the translational semantics) to

generate the corresponding LTL Properties. These transfor-
mations have been written using the ATL [9] transformation
language. Implementing all these queries is a kind of checklist
that ensures that all aspects of interest for the DSML end-
user are indeed modeled on the formal side. The FIACRE
textual specification is enriched with these generated FIACRE
properties.

The complete real-time FIACRE (RT-FIACRE) [12] spec-
ification (Fiacre specification in Figure 2) containing both
the FIACRE model specification and the properties to check
represents the verification entry point. It is translated by
the FRAC compiler1 (the FIACRE compiler for the TINA
toolbox) into a Timed Transition Systems (TTS) specification,
the accepted input by TINA toolbox.

E. The backward transformations

The TTS Specification is verified using SELT, the TINA
model checker2. When the properties fail, SELT generates
a Formal Scenario: a succession of Petri net transitions.
The generated scenario — also named counter-example and
verifications results — is not easy to understand for the
DSML end-user. So, Backward transformations are defined
to generate DSML verification results. They are composed
of two transformations: the first one consists of translating
the PETRINET scenario into a FIACRE one. It is illustrated
in [13]. The second transformation should be implemented
in order to feedback the FIACRE scenario into the DSML
scenario. Different ways can be found: in [14], a novel
approach based on Higher-Order transformations is defined.
It consists in analysing and instrumenting the translational
semantics expressed as a M2M transformation in order to
produce another model transformation which automatizes the
back propagation of verification results to the DSML end-
user. A second proposed approach [10] based on traceability
information consists of defining previously a traceability meta-
model. A traceability model is generated during running the
translational semantics. It will be used after by the backward
transformation to generate the DSML scenario.

III. GENERATING THE DSML VERIFICATION FRAMEWORK

Performing verification activities for a DSML requires the
collaboration of different actors. Figure 3 presents the use case
diagram which defines interactions between them.

The DSML Expert chooses the DSML which meets his
needs. In addition, the DSML Expert explains his needs for
the verification activity. Which queries should be asked on
models ? During the execution of a model, what additional data
are needed for expressing the execution itself ? In coordination
with the Formal methods Expert, they choose the appropriate
formal methods and tools.

Therefore, the DSML Designer implements verification
activity for this DSML. First, he defines the translational se-
mantics which allows to map the abstract syntax of the DSML
into the chosen formal language. Based on the proposed

1http://projects.laas.fr/fiacre/manuals/frac.html
2http://projects.laas.fr/tina/manuals/selt.html

TM3

Trace Management
MetaModel

EDMM

Events Definition
MetaModel

DDMM

Domain Definition
MetaModel

SDMM

States Definition
MetaModel

QDMM

Queries Definition
MetaModel

<<import>>

<<merge>>

<<merge>>

<<merge>>

<<merge>>

Figure 4. An abstract view of the Executable DSML pattern and its extension

translational semantics, he implements DSML extensions and
builds the DSML verification framework.

To assist the DSML designer in his work, we propose the
use of the Executable DSML pattern which is extended in
order to explain different behavioral verification elements.

A. The Executable DSML pattern and its extension

The Executable DSML pattern was proposed in [15] in order
to define the behavioral verification and the related tools for a
DSML. Figure 4 shows the abstract structure of a XDSML.
The original metamodel of the DSML, called the DDMM
(Domain Definition MetaModel) is extended with three other
metamodels (Figure 4).

The first metamodel describes stimuli that make the model
evolve. They are modeled as events in the EDMM (Event
Definition MetaModel), middle left of Figure 4. The EDMM
of a given DSML specifies the concrete stimuli (called runtime
events) that drive the execution of a model that conforms to
this DSML.

A second metamodel defines the runtime information, that is
data that model the state of the model during the execution of
the model and that are not part of the DDMM. This metamodel
is called SDMM (State Definition MetaModel), middle right
of Figure 4.

The third metamodel defines elements to model a scenario
(either an input scenario or the trace of a particular execution)
as a sequence of event occurrences. It is called TM3 (Trace
Management MetaModel), top middle of Figure 4.

TM3 is not specific to one particular DSML as it only relies
on the abstract Event concept. These two extensions allow to
generate the scenario, which is a succession of events, that we
want to feedback.

Figure 4 shows a fourth metamodel aside the three meta-
models obtained by applying the Executable DSML pattern
to a DSML. This additional metamodel is called QDMM
(Queries Definition Metamodel), bottom right of Figure 4. It
is a kind of an abstract view of the SDMM: it defines queries
that may be asked on the model. SDMM and EDMM may
be seen as a way to implement the QDMM by choosing a set

DSML
Designer

Generating a DSML verification framework

Choose formal
methods
and tools

Formal
methods
Expert

Define a
translational
semantics

Choose model-
transformation

language

DSML
Expert

Introduce
DSML

requirements
to be checked

Propose
the DSML
extensions

<<refine>>

<<include>>

Define
behavioral
properties

Define the
backward

transformation

<<extend>>
<<extend>>

Figure 3. The generation of DSML verification framework

of attributes (like a Java class implements a Java inteface) and
the elements that triggers the evolution of these attributes.

B. The process of DSML verification framework generation

The use case of DSML verification framework generation
is shown in Figure 5. It shows the organisational process to
generate the DSML verification framework and interactions
between actors.

Once a DSML has been chosen to model a kind of system,
the DSML expert expects to verify models; i.e. to check
that properties derived from the system requirements hold on
that model. He targets behavioral properties that concern the
evolution of the model over time.

The DSML Expert may be interested in general properties
not specific to a given process model. For SPEM, he may
want to check whether a process model may finish. A process
finishes if all its activities finish while respecting constraints
imposed by dependencies and resource allocation. If this
property holds, he may want to get a terminating scenario
and use it to pilot the process execution.

In addition, the DSML end-user may also want to verify
properties that are specific to a particular process model.

Next, in coordination with a formal methods expert, he
chooses the appropriate formal languages and tools to guar-
antee the verification activity for this DSML. The chosen
language should ease requirements expressing in order to
verify behavioral properties. Time petri nets are chosen in
previous works as the target formal language [16]. However,
due to semantic gap between SPEM and time petri nets, the
formal methods expert propose the use of FIACRE as the target
formal language.

Once these steps are finalized, the DSML designer can start
defining the translational semantics. It consists to map the
abstract syntax elements of the DSML into FIACRE language
elements.

This translational semantics should take in account the
DSML expert needs. Different DSML expert requirements
may be referenced in the target formal language. For example,
in our case, the DSML designer chooses to encode a workdef-
inition as a FIACRE process with the same name. Based on
the QDMM, a FIACRE type called WDQueries was defined
to represent the two queries on WorkDefinition of interest for
the XSPEM expert and also for causality constraints. It is a
record type composed of the two boolean fields isStarted and
isFinished.

An array of WDQueries named WDsQueries stores the state
of all workdefinitions of an xSPEM process. It is an argument
for every workdefinition process.

Based on the defined translational semantics, the DSML
designer is able now to formalize DSML requirements. There-
fore QDMM is defined.

Considering the properties the DSML expert wants to assess
on XSPEM models, three queries isStarted and isFinished on
WorkDefinition and isFinished on Process are defined.

isFinished on Process may be defined from the other ones.
Here is its TOCL definition.

c o n t e x t P r o c e s s
def : i s F i n i s h e d () : Boolean =
s e l f . w o r k D e f i n i t i o n s

−> f o r A l l (a : W o r k D e f i n i t i o n | a . i s F i n i s h e d ())

The following invariants state respectively that a process can
always finish (Inv1) and a process can never finish (Inv2):

c o n t e x t P r o c e s s −− t h e i n v a r i a n t Inv1

<<
im

po
rt>

>
<<merge>>

DDMM

QDMM

isStarted()
isFinished()

WorkDefinition

EDMM

Event

WorkDefinitionEvent

StartWD FinishWD

TM3

Scenario Trace
name : String
date : Int
Internal : Boolean

RuntimeEvent

startToStart
startToFinish
finishToStart
finishToFinish

<<enumeration>>
WSType

minTime : Int
maxTime : Int

Process

name : String
minTime : Int
maxTime : Int

WorkDefinition
linkType : WSType

WorkSequence

Parameter

name : String
count : Int

Resource

0 .. * workDefinitions

1 successor

0 .. * workSequences

1 predecessor linkToSuccessor 0 .. *

linkToPredecessor 0 .. *

0..* parameters

1 workDefinition

1 ressource 0..* ressources

0 .. * traces

0..* runtimeEvents

1 workDefinition

isFinished()

Process

<<merge>>

SDMM

state: ExecutionState
WorkDefinition

notStarted
running
finished

<<enumeration>>
ExecutionState

0..* dynamic_wds

<<merge>>

<<merge>>

<<implement>>

Figure 6. Executable DSML pattern applied into the SPEM metamodel

inv i s E v e n t u a l l y F i n i s h e d :
e v e n t u a l l y (s e l f . i s F i n i s h e d ())

c o n t e x t P r o c e s s −− t h e i n v a r i a n t Inv2
inv i s N e v e r F i n i s h e d :

always (not s e l f . i s F i n i s h e d ())

The queries on WorkDefinition are primitive. They should
be defined using LTL fragments and based on the proposed
translational semantics.

Using our proposed extension of OCL (TOCL) and FIACRE
properties [17], primitives queries can be defined as following:

c o n t e x t W o r k D e f i n i t i o n
def i s F i n i s h e d () : S t r i n g =
s e l f . g e t F i a c r e I d () +
" / v a l u e wds [(" + s e l f . name + " i d)] . i s F i n i s h e d "

c o n t e x t W o r k D e f i n i t i o n
def i s S t a r t e d () : S t r i n g =
s e l f . g e t F i a c r e I d () +
" / v a l u e wds [(" + s e l f . name + " i d)] . i s S t a r t e d "

These primitive queries can then be used by the DSML
end-user to express specific properties related to its model.
The DSML designer can also define some additional OCL
operations and TOCL queries in order to ease the DSML
end-user work. The following OCL operation allows to select
from a SPEM process a SPEM workdefinition whose its name
is equal to a given name WDName:

c o n t e x t P r o c e s s
def : getWD (WDName: S t r i n g) :
W o r k D e f i n i t i o n =
s e l f . w o r k D e f i n i t i o n s
−> s e l e c t
(wd : W o r k D e f i n i t i o n | wd . name = WDName)
−>a s L i s t −> f i r s t ()

Once this extension is formalized, the DSML designer can
complete the application of the Executable DSML pattern
on its DSML in order to conduct the second part of the
verification activity which is feedback verification results. So,
SDMM and EDMM should de defined.

DSML end-user
(System designer)

Create model
to describe a

system

true

Verify
structural
properties

Verify generic
behavioral
properties

Verify specific
behavioral
properties

false

falseEdit model

true

true

false

Figure 7. The use of the DSML verification framework

Start a WorkDefinition or Finish a WorkDefinition are exam-
ples of Executable SPEM (XSPEM) events. On the XSPEM
example, the SDMM includes the achievement state of a
workdefinition which is either not started, running or finished.

Therefore, the DSML Designer defines a backward trans-
formation which allows to map formal generated verification
results into DSML ones.

To ensure this step, the Executable DSML pattern is applied
in both Petri nets [16] and FIACRE levels [13]. This feedback
is made easier thanks to the Executable DSML pattern [15]
applied not only at the DSML level but also at the formal
one.

Now, we can consider that the DSML verification frame-
work has been produced. It is composed of different tasks
which guarantee the verification activity.

IV. THE USE OF THE DSML VERIFICATION FRAMEWORK

Once, the DSML verification framework is built, the
DSML end-user is able to use it in order to verify defined

DSML Expert DSML Designer Formal methods Expert

Introduce
requirements

Choose the
appropriate

formal language
and tools

possible

Define the
translational
semantics

Formalize
requirements

as queries

Introduce
runtime

extensions

Define backward
transformations

impossible

Figure 5. DSML verification framework generation process

models. Figure 8 explains different DSML end-user tasks to
use the DSML verification framework. First, he proceeds to
static properties which can be verified using an OCL checker.
Next, he can verify generic behavioral properties and obtain
user-friendly verification results. Another kind of properties
can be targeted: model specific properties. i.e. properties
specific to a given process model.

Based on Figure 7, we illustrate the use of our DSML
verification framework.

First, the DSML end-user defines a SPEM model which is
conform to our SPEM metamodel.

Figure 9 shows an example of a process model. It corre-
sponds to a simplified development process composed of four
activities, each represented in an ellipse: Programming, De-
signing, Test case writing and Documenting. Arrows between
activities indicate dependencies: the target activity depends on
the source activity. The label specifies the kind of dependency.
The word before the “To” is the state that should have been
reached by the source activity in order to perform the action
on the target activity, action which appears after the “To”. For
example, the “finishToStart” dependency between Designing
and Programming means that Programming can only be started
when Designing has been finished. Documenting and Test-
CaseWriting can start once Designing is started (startToStart)
but Documenting cannot finish if Designing is not finished
(finishToFinish). The dependencies put between Programming

2

finishToFinish

2 2

finishToFinish

Programming

Documenting

TestCaseWriting

Designing

startToStart
finishToStart startToStart

Developer

count = 32
1

Designer

count = 2

2

1

Computer

count = 3

1

startToStart

Figure 9. A SPEM development process

and TestCaseWriting enforces a test driven development: pro-
gramming can only starts when test cases are already started
and, obviously, test case writing can only be finished when
programming is finished in order to take into account test
coverage.

Rounded rectangles represent the number of available re-
sources (2 Designers, 3 Developers and 3 Computers). Dashed
arrows indicate how many resources an activity requires.
Programming needs two developers and two computers. Re-

DSML
end-user

The use of the DSML verification framework

Define models
Verify static
properties

Model-checking
of generated

formal
specification

Map models
and behavioral
properties into

formal ones

<<include>>

<<include>>

Verify
 behavioral
properties

Obtain
friendly-user
verification

results

<<include>>

<<include>>

Verify
specific

 behavioral
properties

<<extend>>

Figure 8. Different DSML verification framework uses

sources are allocated when an activity starts and freed when
it finishes.

Once the model is defined, the DSML end-user can verify
structural properties. They are defined to overcome the lack of
expressivity of the graphical representation of metamodeling
languages, like MOF. OCL is the OMG standard defined to
request this kind of properties on models. For example, in
SPEM metamodel, Listing 1 introduces an OCL property
which verifies whether the workdefinitions names are unique
on a process. In addition, the OCL property shown in the
Listing 2 verifies the non-reflexivity of a worksequence.

context Process :
s e l f . processElements

−>s e l e c t (pe | pe . oclIsTypeOf (SPEM!
WorkDefini t ion)

−>f o r A l l (wd1 , wd2 | wd1 <> wd2
impl ies wd1 . name <> wd2 . name)

Listing 1. OCL property to verify the uniqueness of workdefinitions names

context WorkDefini t ion :
s e l f . p redecesso r <> s e l f . successo r

Listing 2. OCL property verifying the non-reflexivity of a worksequence

To assess these properties, the DSML end-user can use OCL
checkers like for example TOPCASED3 OCL checker.

For our SPEM model shown in Figure 9, all structural
properties are verified. Therefore, the DSML end-user can
assess the behavioral properties using the predefined invariants
(Inv1 and Inv2).

So, If the Inv2 (a process is never finished) is satisfied, it
means the process cannot finish.

For our SPEM model shown in Figure 9, the Inv2 is
satisfied. Therefore, he can now refer to the Inv1 which
verifies whether the process can always be finished. The
invariant Inv1 does not hold and there is indeed a deadlock
during process execution. The user can be provided with a

3http://topcased.org/

counter-example that explains the deadlock as a scenario like
the one of Listing 3 which lists the actions (start or finish)
applied on activities.

S t a r t D e s i g n i n g
F i n i s h D e s i g n i n g
S t a r t Documenting
F i n i s h Documenting
S t a r t T e s t C a s e W r i t i n g

Listing 3. A scenario from Inv1

The deadlock is due to the fact that Programming cannot be
started because a Computer is missing. So, the SPEM model
should be corrected. An occurrence of the Computer resource
should be added.

Now, four occurrences of Computer resource are available.
The DSML end-user will restart the verification activity. The
verification of Inv2 is not satisfied, it means the process can
finish and the DSML end-user expects that a model checker
would exhibit a counter example that corresponds to a scenario
that finishes the process and thus all its activities. This scenario
is shown in Listing 4.

S t a r t D e s i g n i n g
F i n i s h D e s i g n i n g
S t a r t Documenting
F i n i s h Documenting
S t a r t T e s t C a s e W r i t i n g
S t a r t Programming
F i n i s h Programming
F i n i s h T e s t C a s e W r i t i n g

Listing 4. A terminating scenario

The DSML end-user may also want to verify properties that
are specific to a particular process model. As an example, he
might want to check whether it is required that Documenting
is finished before TestCaseWriting is finished. Based on our
TOCL tool and using OCL operations and TOCL queries
defined by the DSML designer, he can define the following
invariant Inv3:

c o n t e x t P r o c e s s
inv Inv_3 :

always (
s e l f . getWD (" Documenting ") . i s F i n i s h e d ()
precedes
s e l f . getWD (" T e s t C a s e W r i t i n g ") . i s F i n i s h e d ()

) ;

The invariant Inv3 does not hold and there is indeed a
possible execution when TestCaseWriting can finish before
Documenting. The generated counter-example is generated in
the following Listing 5:

S t a r t D e s i g n i n g
F i n i s h D e s i g n i n g
S t a r t T e s t C a s e W r i t i n g
S t a r t Programming
F i n i s h Programming
F i n i s h T e s t C a s e W r i t i n g
S t a r t Documenting
F i n i s h Documenting

Listing 5. A terminating scenario

The use of the DSML verification framework shows that the
DSML end-user performs behavioral verification without hav-
ing to deal with the formal verification language nor with the
underlying translational semantics. Based on the Executable
DSML pattern and the provided tools, this DSML verification
framework will provide seamless verification facilities to the
system designer without requiring him to deal with target
verification language and associated model-checkers.

V. CONCLUSION

We have presented an user-oriented approach to integrate
verification tools on a new DSML in order to assist the DSML
end-user into the verification of safety and liveness properties
on executable models.

It has been illustrated using SPEM as DSML. We explained
different communications between DSML verification frame-
work actors. We introduced a user-friendly language, TOCL,
to the DSML designer and the DSML end-user which allows
to specify behavioral properties as it is close to OCL. However,
the use of OCL and TOCL have shown that it is still not well
suited to many system designers. Therefore, we might need
to investigate a suited user-oriented language for expressing
behavioral constraints like Dwyer patterns [18]. So, TOCL
can be considered as an intermediate language between LTL
and the high-level property language.

To ease feedback verification results, relying on the exe-
cutable DSML pattern, we assist the DSML designer to define
the backward transformation to feedback verification results
at the DSML level. This approach has been designed for
domain specific languages. It is currently being experimented
for several significantly different DSMLs. But, it is still to be
shown if it can scale up to more complex languages or to
languages combining different models of computation.

As future works, we propose to further ease the DSML
designer task by providing automatically the backward trans-
formation which feedbacks verification results into the DSML
level. It can be inspired from the previously defined transla-
tional semantics.

REFERENCES

[1] J. Merilinna and J. Pärssinen, “Verification and validation in the
context of domain-specific modelling,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 9:1–9:6. [Online]. Available:
http://doi.acm.org/10.1145/2060329.2060351

[2] D. Harel and B. Rumpe, “Meaningful Modeling: What’s the Semantics
of "Semantics"?” Computer, vol. 37, no. 10, pp. 64–72, 2004.

[3] Software & Systems Process Engineering Metamodel (SPEM) 2.0 ,
Object Management Group, Inc., Oct. 2007.

[4] B. Berthomieu, J.-P. Bodeveix, M. Filali, P. Farail, P. Gaufillet, H. Gar-
avel, and F. Lang, “FIACRE: an Intermediate Language for Model
Verification in the TOPCASED Environment,” in ERTS’08, Jan. 2008.

[5] B. Berthomieu, P.-O. Ribet, and F. Vernadat, “The tool TINA – con-
struction of abstract state spaces for Petri nets and time Petri nets,” Int.
Journal of Production Research, vol. 42, no. 14, pp. 2741–2756, 2004.

[6] H. Garavel, F. Lang, R. Mateescu, and W. Serwe, “CADP 2010: A
toolbox for the construction and analysis of distributed processes,” in
TACAS, 2011, pp. 372–387.

[7] T. Correa, L. Becker, J.-M. Farines, J.-P. Bodeveix, M. Filali, and
F. Vernadat, “Supporting the Design of Safety Critical Systems Using
AADL,” in Engineering of Complex Computer Systems (ICECCS), 2010
15th IEEE International Conference on, March, pp. 331–336.

[8] J.-M. Farines, M. H. De Queiroz, V. De Rocha, A. M. Carpes, F. Ver-
nadat, and X. Crégut, “A model-driven engineering approach to formal
verification of PLC programs (regular paper),” in Emerging Technologies
and Factory Automation (ETFA), Toulouse, France. IEEE, septembre
2011, pp. 1–8.

[9] F. Jouault and I. Kurtev, “Transforming Models with ATL,” in Proceed-
ings of the Model Transformations in Practice Workshop at MoDELS,
ser. LNCS. Jamaica: Springer, 2005.

[10] F. Zalila, X. Crégut, and M. Pantel, “Formal verification integration
approach for DSML,” in The ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems (MODELS 2013).
Miami: Springer-Verlag, Sep. 2013.

[11] P. Ziemann and M. Gogolla, “An Extension of OCL with Temporal
Logic,” in Critical Systems Development with UML – Proceedings of
the UML’02 workshop, vol. TUM-I0208, Sep. 2002, pp. 53–62.

[12] S. Dal Zilio and N. Abid, “Real-time Extensions for the FIACRE
modeling language,” in MoVep 2010, Summer School on Modelling and
Verifying Parallel Processes, Aachen, Allemagne, Jun. 2010, 6 pages
FNRAE Quarteft. [Online]. Available: http://hal.archives-ouvertes.fr/
hal-00494617

[13] F. Zalila, X. Crégut, and M. Pantel, “Verification results feedback
for FIACRE intermediate language,” in Conférence en Ingénierie du
Logiciel (CIEL), Jun. 2012. [Online]. Available: http://gpl2012.irisa.fr/
?q=node/31

[14] F. Zalila, X. Crégut, and M. Pantel, “A transformation-driven approach
to automate feedback verification results,” in MEDI, ser. Lecture Notes
in Computer Science, A. Cuzzocrea and S. Maabout, Eds., vol. 8216.
Springer, 2013, pp. 266–277.

[15] B. Combemale, X. Crégut, and M. Pantel, “A Design Pattern to Build
Executable DSMLs and associated V&V tools (short paper),” in Asia-
Pacific Software Engineering Conference (APSEC), Hong Kong, China,
2012.

[16] F. Zalila, X. Crégut, and M. Pantel, “Leveraging formal verification
tools for DSML users: a process modeling case study,” in ISoLA, 2012.
[Online]. Available: http://hal.archives-ouvertes.fr/hal-00720917

[17] N. Abid, S. Dal-Zilio, and D. L. Botlan, “A verified approach for
checking real-time specification patterns,” CoRR, vol. abs/1301.7531,
2013.

[18] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Property specification
patterns for finite-state verification,” in Proceedings of the second
workshop on Formal methods in software practice, ser. FMSP ’98.
New York, NY, USA: ACM, 1998, pp. 7–15. [Online]. Available:
http://doi.acm.org/10.1145/298595.298598

