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1 Introduction

As the size and complexity of safety critical real-time system are rapidly increasing due to the evolution of
functional and non-functional requirements, Model-Driven Engineering (MDE) has become a promising means to
improve the reliability and efficiency of the traditional software engineering by introducing the models and the
formal methods. We use the multi V-model proposed in the ITEA TIMMO project in Fig. 1 to illustrate the use
of process of MDE for developing real-time system. In order to generate reliable execution code, the verification
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Figure 1. V-Model in Model-Driven Engineering

and validation (V&V) are performed on each phase of system development lifecycle. The architecture design is the
phase to design hardware and software architecture which can also be referred to as high-level design. It should
involve a brief and abstract functionality of each module, their interface relationships, dependability, architecture
diagrams, etc. The detailed design model can also be called modular or function design model, where the low-
level design including detailed functional logic of the module can be specified. From the current practice, the
architecture is usually modeled using Domain Specific Language (DSL) such as AADL and EAST-ADL or specific
diagrams in a General Purpose Language (GPL) such as UML (Composite Structure Diagram), while the detailed
design is usually modeled using DSL such as Simulink and SCADE or specific diagrams such as UML Activity, State
Machine Diagrams, or ALF (Action Language for Foundational UML).

In practice, V&V in MDE is usually implemented in two manners: simulation and formal verification (such as
static analysis, theorem proving and model checking). When a requirement is not satisfied, the verification results
will be used to diagnose this failed design. The end users will analyze the verification results to locate the origin
of fault ( an activity called fault localization). The efficient and effective failure analysis method in V&V is an
important issue.



Fault localization is not trivial in MDE. In the architecture design V&V, due to the use of abstraction for scalable
model checking, some unnecessary information are removed for some specific V&V purpose. This reduces the state
space explosion problem, but usually leads to model with concurrent and indeterministic behaviors that are much
more complicated to debug. In the detailed design V&V, fault propagation is one of main issues. When a functional
constraint is violated, we detect wrong output values from some components. Usually the others’ outputs will be
affected due to failure propagation.

In order to locate the potential origin of faults from failure scenario in the model V&V, we propose to analyze
fault locations using probabilistic approaches inspired by data mining technologies. Considering the different
features of architecture design and detailed design, we use Kullback-Leibler Divergence to analyze the failure
from exhaustive model checking results in the architecture design V&V, and use hidden markov model to analyze
the failure from simulation in the detailed design V&V. This paper describes early experiments on these two aspects.

2 Probabilistic Failure Analysis in Model Checking

2.1 Problem Statements

Generating a counterexample in case a formula is violated is a key service provided by model checkers. Counterex-
amples produced by model checkers often stand for error traces, which represent sequences of system states and
transitions and are therefore usually lengthy and difficult to understand. The origin of error might be anywhere
along these traces, thus requiring a lengthy analysis by designers. Our ultimate goal is to detect and to provide
the end users with the suspicious ranked faulty elements.

Abstraction Issue Fault localization in model checking is challenging as the models have usually a concurrent
and indeterministic behavior with many possible execution traces. This behavior is due to the use of abstraction
in their design. Without precise information, fault localization may not be precise enough. Given a sequential, or
synchronized concurrent, program which exhibits less execution traces, various debugging methods are available
to detect and locate the faulty statements. In model-based diagnosis, the use of abstraction is mandatory to reduce
the state space explosion problem. At the time of writing, the conflict between model precision and verification cost
is a key issue in model checking and model-driven engineering (MDE), therefore a compromise is made to remove
the unnecessary information for some verification purpose while keeping all the property-related information.
This usually leads to model with concurrent and indeterministic behaviors that exhibits a much larger number of
execution traces and are consequently much more complicated to debug.

Fault Localization Issue Sometimes it is difficult, even for seasoned experts, to analyze the fault origin. We
take a simple example (see Ex. 1) to illustrate this issue.

Example 1 (Fault Localization Example). Assume a system consists of two concurrent processes A and B. Both
execute only once. The execution time is [5,10] for A, and [3,7] for B. The expected temporal property P is
Always A After B.

It is obvious that P is unsatisfied. The design fault occurs either on A or on B. To remove this violation,
we can either replace the time constraint of A by [8,10], or replace the time constraint of B by [3,4]. However,
without extra information, A and B exhibit the same suspicion. If an extra information is available, e.g. the best
case execution time (BCET) of B is 5, then the time constraint of B cannot anymore be replaced by [3,4], thus the
suspicion of B is largely decreased.

This example is simple enough to be analyzed manually, while it is impossible for more complex system
with thousands of transitions. Any modification on a transition may impact the verification result through time
constraint propagation.

Proposed Approach Existing automated fault localization techniques in model checking [1–5] usually produce
a set of suspicious statements without any particular ranking. Our approach will improve the effectiveness of fault
localization by providing a suspiciousness factor which is used to rank the suspicious transitions in the verification
model. The suspiciousness factor is computed using the fault contribution of each transition on the error traces
derived from the reachability graph.



2.2 Preliminaries

Reachability Graph & Violation States Reachability graphs are used to solve reachability problem in model
checking. They contain all the states in the execution of a system and all the transitions between these states.
When a safety property is not satisfied, there exists violation states in the reachability graph. Finding all violation
states in the reachability graph is the first step of error localization.

Fault Contribution of Transition

Definition 1 (Fault Contribution). Fault Contribution (CF ) is a suspiciousness factor to evaluate a transi-
tion’s suspicion level. It is used to rank the suspiciousness of transitions.

Error Traces

Definition 2 (Error Trace). For all the states {si} on the path from an initial state s0 to a violation state sv
in the reachability graph, all the outgoing transitions of si are considered as error trace π.

We consider not only the transitions on the path that leads S0 to Sv in the definition of error trace but also
the direct outgoing transitions of all the states in execution traces that lead to correct states. Indeed, in TPN,
the transitions outgoing from the same place can mutually influence each other. A faulty transition can change
the way a correct transition is fired if they are both outgoings from the same place. The correct transition will
diminish the CF of the faulty transition.

Example 2 (Error Trace Example). In Fig. 2, s0 is initial state, sv is a violation state. On the execution trace
from s0 to sv, there exist four states {s0, s1, s2, s3} (apart from sv). The state s3 is in a correct trace. When
the system is in state s2, it is possible to transit to s7 leading to a correct trace, or to s3 leading to a violation
state. If s7 is removed from the graph, s3 will have higher fault contribution for the violation state. The outgoing
transitions of these four states are considered as error traces π, i.e., π = {t0, t1, t2, t1, t5, t4, t2, t3, t4}.
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Figure 2. Error Trace Example

2.3 Kullback-Lerbler Divergence

Kullback-Leibler Divergence (also called information divergence, information gain, relative entropy) [6] is a
fundamental equation of information theory that qualifies the proximity of two probability distributions.

Definition 3 (Kullback-Leibler Divergence). Kullback-Leibler Divergence (KL) is a measure in statistics
that quantifies in bits how close a probability distribution P = {pi} is to a model (or candidate) distribution Q =
{qi}. The KL-divergence of Q from P over a discrete random variable is defined as

DKL(P ‖ Q) =
∑
i

P (i) ln
P (i)

Q(i)
(1)

Note: In the definition above, 0 ln 0
0 = 0, 0 ln 0

q = 0, and p ln p
0 =∞.



Kullback-Leibler Divergence has many applications. We give an example of its application to text classi-
fication [7]. A textual document d is a discrete distribution of |d| random variables, where |d| is the number of
terms in the document. Let d1 and d2 be two documents whose similarity we want to compute. This is done using
DKL(d1 ‖ d2) and DKL(d2 ‖ d1).

Another major application is the TF-IDF (Term Frequency - Inverse Document Frequency) algorithm [8]. TF-
IDF is a numerical statistic which reflects how important a term is for a given document in a corpus (collection)
of documents. It is often used as a weighting factor in information retrieval and text mining. Variations of the
TF-IDF weighting scheme are often used by search engines as a central tool in scoring and ranking a document’s
relevance to a given user query.

Suppose we have a collection of English textual documents and aim to determine which documents are most
relevant to the query ”the model checking”. We might start by eliminating documents that do not contain the
three words ”the”, ”model”, and ”checking”, but this still leaves many documents. To further distinguish them,
we might count the number of times each term occurs in each document and sum them all together; the number
of times a term occurs in a document is called its term frequency (TF).

However, because the term ”the” is so common, this might incorrectly emphasize documents which happen
to use the word ”the” more frequently, without giving enough weight to the more meaningful terms ”model” and
”checking”. The term ”the” is not a good keyword to distinguish relevant and non-relevant documents and terms,
unlike the less common words ”model” and ”checking”. Hence an inverse document frequency (IDF) factor is
incorporated which diminishes the weight of terms that occur very frequently in the document set and increases
the weight of terms that occur rarely.

2.4 Ranking Suspicious Faulty Transitions

Inspired by the TF-IDF algorithm, we propose a probabilistic fault localization approach based on the Kullback-Leibler
Divergence. A relevance weight CF (t) is computed to assess the contribution of a transition t in error traces
leading to violation states and thus its contribution to the fault.

In the TF-IDF algorithm, each term in the documents will contribute to the semantics of keywords. Some
terms are considered as significant if they are more relevant to the semantics of keywords. This is similar to the
fault contribution caused by a given transition in an error trace in model checking. Fig. 3 compares the similarity
between semantic contribution of terms in documents and fault contribution of transitions in error traces. Some
terms in documents have closer semantic relation to the keywords, the occurrence of these terms provide more
semantic contributions to the occurrence of keywords. Similarly, the fault propagation depends on the topology of
error traces, the occurrence of some transitions will provide more fault contributions to the occurrence of violation
states.

Documents

Error Traces Violation States

Keyword SemanticsTerms

Transitions
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Contribution

Fault 
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Figure 3. Comparison to TF-IDF

The semantic contribution of a term in documents is measured by TF-IDF, where TF is the contribution of a
term in single document, and IDF is the contribution of a term in a collection of documents. The fault contribution
to the violation states {svi} caused by a transition t on error traces {πi} can also be evaluated by a similar measure
CF (t), defined as TC-ITC (Transition Contribution - Inverse Trace Contribution). CF (t) = TC(t) · ITC(t).

2.5 Experimental Results

We assess our approach using two significant criteria: effectiveness and efficiency. According to the survey [9], the
effectiveness can be assessed by a score EXAM in terms of the percentage of statements that have to be examined
until the first statement containing the fault is reached [10, 11]. The fault localization techniques in model checking,
like other techniques, should terminate in a timely manner, limited by some resource constraints. The efficiency
can be assessed by the scalability and the performance.



Automated Test Bed The test bed will generate randomly systems which might have deadlock, then apply
the proposed analysis algorithm and check that it detects the introduced deadlocks. We use Time Petri Net to
model system’s behavior.

For a given TPN system S(P,R,M), P are the processes which run infinitely and need a resource before the
next task (a task is represented by a transition); R are resource which are shared by all the processes, but only
accessible in an exclusive way; M is a matrix to decide whether process Pi will need to access resource Rj . Coffman
identified four conditions that must hold simultaneously in order to have a deadlock [12]. To improve the success
of creating a deadlock in the system, we introduced another mechanism to enforce deadlocks: randomly let some
processes during some tasks forget to release a used resource. These tasks are then considered as the error source
of system’s deadlock.

Evaluation of Efficiency We have generated thousands of test cases by assigning P and R values from 5 to
20, creating 1 to 9 faulty transitions, with all the other parameters totally random. The tests are performed on a
2,4 GHz Intel Core 2 Duo processor running Mac OS X 10.6.8. The system parameters and efficiency evaluation
results are shown in Table 1. The average time of evaluation shows that the approach is efficient for large scale
system.

Table 1. Efficiency Evaluation

System Evaluation

Fault Num. Test Num. Av. State/Transition Average Time (s)

1 400 4949 / 15440 2.9092

2 517 2428 / 7130 1.1244

3 500 9884 / 31237 3.3533

4 402 8811 / 26663 2.5998

5 303 6756 / 18247 1.2196

6 504 27094 / 75808 5.064

7 757 104857 / 304741 15.0072

8 100 112306 / 283004 15.0289

9 1 241920 / 583200 36.906

Evaluation of Effectiveness The effectiveness evaluation is shown in Table 2. We give out EXAM score, EXAM
score variance, rank, and rank variance for the best cases and worst cases, and then show the average EXAM score
and average rank. The EXAM score varies from 2% to 13% for best cases, and varies from 4% to 18% for worst
cases. In average, EXAM varies from 3% to 16% which corresponds to ranking results from 1 to 8. The stability is
represented by the variance result. These experimental results shows our approach is effective.

Table 2. Effectiveness Evaluation

F. N.
Best Case Worst Case Average

EXAM EXAM Var Rank Rank Var EXAM EXAM Var Rank Rank Var EXAM Rank

1 0,13335 0,00134 3,25 1,79 0,18603 0,00244 4,33 1,63 0,15969 3,79

2 0,04229 0,00219 1,1 1,75 0,09574 0,00213 2,11 1,75 0,069015 1,605

3 0,02108 0,00106 0,75 1,52 0,05892 0,0009 1,75 1,52 0,04 1,25

4 0,00722 0,0004 0,26 0,49 0,039 0,00042 1,26 0,49 0,02311 0,76

5 0,02044 0,0017 0,83 2,95 0,0478 0,00162 1,83 2,95 0,03412 1,33

6 0,05369 0,00336 2,46 7,36 0,0766 0,0033 3,46 7,36 0,065145 2,96

7 0,08857 0,00372 4,61 10,9 0,10822 0,0037 5,61 10,9 0,098395 5,11

8 0,13091 0,00099 7,3 3,95 0,14905 0,001 8,3 3,95 0,13998 7,8

9 0,10169 0 6 0 0,11864 0 7 0 0,110165 6,5



3 Probabilistic Failure Analysis in Simulation

3.1 Background

Fault localization algorithms usually follow two paradigms: cause-effect and effect-cause analyses. Cause-effect
analysis [13–15] starts from possible causes (fault models). A simulator is used to predict system’s behavior in the
presence of various faults. Then predictions are matched against observed behavior. Effect-cause analysis [16, 17]
reasons faulty localization based on observed behavior and expected good functions. It back-traces faulty causes
from the identified suspect components.

In this work, we make a trade-off of cause-effect and effect-cause analyses and propose an Hidden Markov
Model (HMM) [18] based approach for the automated localization of faulty components in the simulation. The
component can be hardware device, software modules or functional blocks in the system. This method combines
forward localization analysis and backward confidence degree evaluation. HMM, as a component’s abstraction,
provides statistically identical information to component’s real behavior. The core of this method is a fault
localization algorithm that gives out the set of suspicious ranked faulty components and a backward algorithm
that computes the matching degree between the HMM and the simulation model to evaluate the confidence degree
of the localization conclusion.

3.2 HMM Modeling and Analysis

An HMM is defined as a statistical model used to represent stochastic processes, where the states are not directly
observed. A basic HMM can be described as follows:

– N: number of states
– M: number of observations

– MI: initial probability distribution;

N∑
i=1

MI(i) = 1

– MT: probability distribution of transitions from states to states;

N∑
j=1

MT(i, j) = 1, i = 1...N

– ME: emission distribution for the observations associated with states;

M∑
j=1

ME(i, j) = 1, i = 1...N

Example 3 (HMM Example). A two states HMM example abstracting a system’s health condition is given by Fig.
4, where the system owns two states Healthy (H) and Faulty (F), and two observations which represent the
ouputs respect the functional constraints (R) or violate the functional constraints (V). The three distributions

MIMTME are:
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Figure 4. A Two States Hidden Markov Model



HMM, as abstract model of real system, is statistically identical to system’s real behavior. When modeling
a system, HMM separates the concept into two conceptually independent paradigms: behavior and observation.
Behavior refers to what the system really is; while observation to what the system exhibits that is used for
its recognition. MI gives indication about the probability that a behavior becomes the first behavior when
system runs. MT decides how probably will the system behave from one state to the other states. This is
statistically equivalent to the real system’s behavior. ME provides a distribution that connects the behavior and
the observation: if at a given time the behavior is known, how probably an observed sequence will occur.

MI,MT and ME can be obtained by modeling or through a learning process. Once all these matrix parameters
are estimated, HMM is capable to deduce, given an observed output sequence or a set of such sequences, the
maximum likelihood estimation of inner-state transition sequences.

3.3 Automated Fault Localization Based on Hidden Markov Model

This approach is based on component analysis. Each component is mapped to an HMM. If all the input/output pair
of a component can be exhaustively listed, we can get an exact distribution of how this component respects the
functional constraints. This approach can be explained by using Fig. 5. An HMM, as a component’s abstraction,
provides statistically similar information to simulation by MI. That is equally saying, a component can be
simulated by HMM if we can be sure they behave statistically in the same way. To measure whether they behave
the same, we introduce an evaluation approach by using test results. The returned evaluation metrics are used to
revise or refine the parameters in HMM, until it approximates the component’s real behavior.
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Figure 5. HMM Fault Localization Framework

System States A component C is mapped to an HMM. Hmm’s states are the combination of component’s faulty
status and its inputs faulty status. System’s behavior is modeled by 4 states:

– PIp: C is not faulty, C’s inputs are passed
– PIf : C is not faulty, C’s inputs are failed
– FIp: C is faulty, C’s inputs are passed
– FIf : C is faulty, C’s inputs are failed

Observation & Observed Sequence The observation is defined by the test results of component’s outputs.
There are only 2 observations:

– Op: outputs are passed
– Of : outputs are failed

The dependency between components is built By defining HMM states and observations in this way. For com-
ponent C, its output observation is the input (contained in the defined states) of the successor.

Initial Probability Matrix MI Assume components’ faulty probability is ω, MI is defined as following table
3. If ω is not available, we assume each state has identical initial faulty probability, i.e. ω = 1

2 .



Table 3. Initial Probability Matrix MI

PIp PIf FIp FIf
Init 1−ω

2
1−ω
2

ω
2

ω
2

Table 4. Transition Probability Matrix MT

PIp PIf FIp FIf

PIp
α(1−ω)
α+β

β(1−ω)
α+β

αω
α+β

βω
α+β

PIf
γ(1−ω)
γ+δ

δ(1−ω)
γ+δ

γω
γ+δ

δω
γ+δ

FIp
α(1−ω)
α+β

β(1−ω)
α+β

αω
α+β

βω
α+β

FIf
γ(1−ω)
γ+δ

δ(1−ω)
γ+δ

γω
γ+δ

δω
γ+δ

Transition Probability Matrix MT MT contains statistical values derived from test results. If n test cases
are observed, a component with m inputs corresponds to m · n input sequences. Using the m · n input sequences,
we can compute the fault probabilities α, β, γ, δ respectively for the transitions the states, where α+β+γ+δ = 1.
MT is then calculated as following table 4. If ω is not available, we assume ω = 1.

Emission Probability Matrix ME The key of this approach is evaluating ME . According to previous analysis,
we need to measure how well an HMM statistically simulates a given component, which is represented by Matching
Level.

Definition 4 (Matching Level (µ)). Matching level evaluates how well HMM simulates a component’s real be-
havior.

The objective is to find an HMM with the highest matching level. This turns the problem to be an optimization
problem, and many techniques can be applied, e.g. exhaustive search by minimum internal, heuristic algorithm,
evolution algorithm, experimental design, etc. In this work, the matching level is derived by calculating the
probability that a component’s outputs pass the tests through HMM observations. However, this matching level
is a local value relative to one component, making it have no meaning to compare with others. Therefore, the
forward search only is not enough to guarantee the matching level. We introduce the concept of Confidence Level
to evaluate the global confidence of matching level.

Definition 5 (Confidence Level (ρ)). Confidence level evaluates the confidence of the matching level.

We propose the following algorithm to evaluate the ME in HMM (h) corresponding to component C. Tm,n =
{τ1, τ2, ..., τn}m are test cases results for m outputs of C. The threshold of matching level µ and confidence level
ρ are pre-defined.

Figure 6. Algorithm: evaluation of ME

3.4 Estimating System’s Behavior & Locating Fault

When the HMM with high matching level and high confidence level is confirmed, we can estimate the component’s
status. With the states calculated from function Get Behaviour States(h, Tm,n), e.g. a states behavior sequence
like (FIp, F Ip, P If , F Ip, ...F If , F Ip, ...).



In the states behavior sequence, we focus on the status of component, i.e. (F, F, P, F..., F, F, ...) . The status
with higher occurrence probability is confirmed as this component’s faulty status.

This result’s confidence is guaranteed by the confidence level (ρ), and the HMM’s similarity to the component is
guaranteed by the matching level (µ). ρ and µ are computed within system’s topological structure, therefore we
can compare all the faulty component’s ρ and µ, and give a set of suspect faulty components ordered by ρ and µ.

3.5 Experimental Results

We design a specific test bed to assess the method’s accuracy and efficiency by generating a large number of use
cases. Each use case includes: the system architecture which defines the components and the ports, and their
interconnections; the failure probability of each component; the functional specification corresponding to
the inputs/outputs.

The method assumes that each component in the system has a chance to fail if it has design problems. This
probability will be 0 if no design fault is presumed for this component. All functional constraints are based
on input/output’s value itself, and for simplification, they are all range constraint, which means they delimit
only the min/max value of the input/output. If a faulty component exists, the test bed will by chance give
out an out-of-range value for this component’s output. This emulates how a system fails, whatever the model
is. Each component’s input and output will be allocated to a variable by the test bed. It guarantees that the
interconnected ones share the same variable. The variable will be associated with a random range, which is the
functional specification. If a device is more probable to fail, the test-bed-generated value for its entire output
variables will be more probable to go out of the defined range. The approach will use the generated data and
the functional specification to automatically locate the faulty component. The test bed will then compare this
computed conclusion with the initial context to deduce whether the method is efficient.

The test bed generated 1000 use cases to assess the performance in terms of accuracy. The criteria that impacts
the accuracy is the complexity of system’s architecture. This can be measured by component number (Fig. 5).
and component’s average input & output number (Fig. 6). We find out that this method is more sensible to the
average input & output number, while it is more scalable to component number. This method deals with the fault
localization for middle-range systems with a accuracy superior to 90%.
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Table 6. Accuracy by Input number

The computation of ME parameters by iteratively searching algorithm consumes time, which is bounded by
the iteration limit. This Monte-Carlo algorithm runs from several seconds to several minutes. However, as the
computation of each component is independent, the whole method is linearly scalable. For a large system, a
parallel cluster will locate the probable design faults within minutes.

4 Conclusion

Automated fault localization is an important issue in model V&V. It helps the end users in analyzing the origin
of failure. In this work, we have shown the early experiments with probabilistic analysis approaches in fault



localization. Inspired by the Kullback-Leibler Divergence from Bayesian probabilistic theory, we propose a
suspiciousness factor to compute the fault contribution for the transitions in the reachability graph of model
checking. The potential faulty transitions are then ranked according to this suspiciousness factor. To automat-
ically locate design faults in the simulation model of detailed design, we propose to use the statistical model
Hidden Markov Model (HMM). HMM, as a component’s abstraction, provides statistically identical information to
component’s real behavior. The core of this method is a fault localization algorithm that gives out the set of
suspicious ranked faulty components and a backward algorithm that computes the matching degree between the
HMM and the simulation model to evaluate the confidence degree of the localization conclusion.
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