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Abstract. Graphical dataflow-style modeling languages like SIMULINK and SCICOS are
widely used in the development of embedded control systems as high-level engineering lan-
guages. A significant part of their modeling power is captured in function block libraries.
In this paper we present an on-going work on the model-based formalisation of such li-
braries, which intends to bridge the gaps between the different parts of the development
process: high-level requirements, design, implementation and verification. Our approach is
based on a specification domain specific language (DSL), which captures the variability
of blocks through a software product line approach. We have defined translations to other
languages like the WHY3 language for verification, different documentation formats, code
generator configuration files, etc. These experiments have been carried out in the context
of the GENEAUTO embedded code generator project and are being extended and applied
in its successor projects PROJECTP and Hi-MoCo.

Keywords: model driven engineering, feature modeling, formal specification, software
qualification, automatic code generation, SIMULINK, SCIcOs, Xc0s, WHY3

1 Introduction

Embedded software plays an essential role in high integrity safety critical systems, for human
related activities such as transportation, healthcare or energy domains. Their use is of strategic
importance for industrial actors with regard to the impacts on safety and performance. Overall,
complexity of such systems is ever-increasing and so are the costs of development and verifi-
cation. Manual coding of semi-formal specifications is error-prone and the usual verification by
proofreading or testing is costly and often non-exhaustive. Those problems are addressed by the
development of Automatic code generators (ACGs). Although such tools are complicated soft-
ware, their correct operation and use need to be ensured. This may be hard to tackle, especially
when the tool does not have formal specification and/or is closed source.

Many guidelines and standards are meant to ensure the quality and reliability of high in-
tegrity systems. One of the most advanced and stringent ones is DO-178 dedicated to software
development in civil avionics. These guidelines provide a set of objectives to be reached in order
to prevent flaws in the system that may lead to catastrophic consequences. One of the major
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evolutions in the recent version of this guideline (DO-178C) is the account being taken of new
development techniques like: i) model-based development and verification; ii) object-orientation;
iii) formal methods; and iv) the development of tools used to facilitate some activities of the
system design, development and verification process.

The current work was started in the context of the GENEAUTO* project, where an open
source embedded code generator for SIMULINK® and Scicos® like dataflow modeling languages
was developed. The work is carried on and extended in GENEAUTO successor projects PRO-
JECTP” and H1-MoCo?®. Since one of the intended objectives of these projects is to achieve
qualification according to the DO-178C guideline, there is a significant focus on the specification
and verification of all aspects of the development, including a rigorous specification of the code
generator input languages.

Dataflow languages are widely used in the design of embedded control and command systems.
These languages are mostly made up of computational nodes (blocks) and directed connection
between them denoting data flow (signals). Some elementary blocks that are highly reused in
systems design are stored in libraries. This eases the reuse of already specified blocks and stores
industrial knowhow regarding the design of critical systems. It is common for large industrial
organisations or service providers to develop their own complete block libraries that are tailored
to the specific needs of their domain and/or customers.

In this paper we present a model-based formalisation of block libraries using as a BlockLi-
brary Domain specific Language (DSL) and its applications in the software development and
verification process. An earlier version of the work has been presented in [4]. Here we shall
develop the methodology further and show its relations and differences from a more common
Software Product Line (SPL) approach. We shall also specify some formal correctness properties
of BlockLibrary models and present an approach for verifying them. Finally, we shall present
some applications of BlockLibrary specifications for the generation of different artefacts used in
the software development lifecycle.

2 Block libraries in dataflow languages

Dataflow languages are widely used by systems engineers as they are convenient for modeling
mathematical control laws. They allow to model both continuous and discrete time dynamic
systems. As our work is closely related to embedded code generation we restrict our study to
discrete time synchronous dataflow models only.

Block libraries are an important extension point of the basic dataflow languages. They enable
software reuse and hence capture a lot of the actual modelling power. Most of the basic blocks are
in fact quite complex as their semantics can vary according to: a) parameters; b) input/output
types (double, int, ... ); ¢) input/output dimensionality (scalar, vector, ... ); d) number of input-
s/outputs; e) memory management. In the following, we will refer to those elements as structural
features of a block.

An example of such variability is given in Figure 1 describing three of the allowed configura-
tions of the same block type Sum from the SIMULINK standard library. The block can do sum-
mation of inputs ("multi input mode”), summation of all the input elements (”single input-full
summation mode”) or summation of elements along specified dimension (”single input-dimension
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Fig. 1. Simulink model with different configurations of the Sum block

summation mode”). Furthermore, the signs at each port, rounding algorithm and other compu-
tational details can be tuned. This configuration is stored in the parameter values of each block
instance.

Such polymorphic variability makes precise specification of the block’s semantics as well as
its implementation and verification challenging. In the following section we describe a formal
model-based specification of block types that allows to manage such variability.

3 BlockLibrary specification language

3.1 Elements of the BlockLibrary language

We have defined a Domain Specific Language (DSL) named BlockLibrary for the specification
of block libraries. This DSL has several commonalities with the feature modelling or FODA [6]
approach from the software product line (SPL) engineering domain.

Our DSL is based on a custom metamodel that is tailored to formally specify the properties of
interest. The metamodel is specified as an Ecore® (a variant of the OMG MOF ! standard) model.
We have followed the common practice to complement the metamodel with OCL! constraints in
order to specify more detailed structural correctness properties. We show in figure 2 an overview
of the BlockLibrary metamodel. To avoid visual clutter, most of the inheritance relations have
been represented with colour-coding instead of links. Abstract classes (class name in italics) are
superclasses of the similarly colored concrete classes (class name in normal style).

The main elements of this metamodel are:

— BlockLibrary (not drawn): A container of BlockTypes, but also common definitions like data
types and reusable BlockVariants.

— BlockType: A container for the specification components of one block type. The specification
is structured into BlockVariants and BlockModes.

— BlockVariant: A node that encapsulates some structural or semantic variation point of the
BlockType. BlockVariants can inherit from other Block Variants.

— BlockMode: A node that encapsulates a semantically distinct and complete configuration of
a BlockType. A BlockMode always implements one or more BlockVariants. The computa-
tional semantics of a BlockModes is divided according to the common semantic operations
in dataflow languages:

e memory and output initialization
% http://www.eclipse.org/emf/
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e computation of outputs based on the current inputs and block’s memory

e updating of the block’s memory based on the current inputs and previous memory

— StructuralFeature: We model the following structural features

e ParameterType: Specification of a configuration parameter, its data range and constraints

e PortGroup: Specification of a group of input or output ports. In the actual block instance
there can be one or more ports that correspond to a PortGroup, but they all perform
similar function.

o MemoryVariable: Specification of a unit of memory that the BlockVariant requires for
one purpose. The MemoryVariable is sized according to the maximal length of history
that it must maintain.

— Annotation: All specification elements can have formal annotations. We distinguish the fol-
lowing annotation kinds: definition (constant or function), invariant, mode invariant, precon-
dition and postconditon. The mode invariants are of specific interest, since they are used in
the mode resolution process. Annotations can be specified in different languages. The choice
of the annotation language is application specific.
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Fig. 2. Simplified version of the BlockLibrary metamodel

Specification of block library instances that conform to such a metamodel can be done in
many ways. One can define either a concrete textual syntax or develop a graphical editor. We
have chosen the first approach. In Listing 1.1 there is a fragment of such a textual specification.
The example is based on another block type from the SIMULINK standard library called Delay.



This block delays the input signal by either a fixed or variable (bounded) amount of time. A
Delay block can be configured to support variable delay, external reset and external initial value.
Depending on that it has from one to four input ports. These are not the only configuration op-
tions, but splitting the block’s semantics to BlockVariants and BlockModes along these structural
parameters turned out to be a good compromise.

The inner structure of a BlockType (BlockVariants and BlockModes) forms a directed acyclic
graph (DAG). The intermediate nodes are BlockVariants. BlockModes occur as leafs of the DAG
and they contain the specification of the computational semantics of the BlockType in one valid
configuration. Since this structure is an important part of the specification, we have generated a
simple graphical representation from the textual specification. An example can be seen in Fig-
ure 3. BlockVariants are represented as ellipses, BlockModes as rectangles and relations between
them as AND and ALT nodes. The variant graph for Delay has two root variants: DelayRoot
that contains the parameters that exist in each configuration of Delay and a generic Resettable
variant that provides a Reset port, associated memory and a TriggerReset function. This variant
is included in the VarRstDelayMode. It can be seen from the figure that there are two Block Vari-
ant configurations that the VarRstDelayMode implements. In one of those, the initial value X0
is supplied via a parameter (BlockVariant FixedX0) and in the other via an input port (Block-
Variant VarX0). In our metamodel these two cases can be represented with one BlockMode by
modelling the X0 parameter as a virtual port.

These alternative configurations of BlockVariants that a BlockMode implements are called
Block Variant Signatures. A block instance is matched with BlockMode by computing the mode
inwvariants wrt. the parameter values of the block instance. We qualify a BlockType specification
of:

— Complete, when for all valid block instances there exists a corresponding BlockMode and
BlockVariant Signature

— Consistent, when for all valid block instances there exists exactly one corresponding Block-
Mode and BlockVariant Signature.

Delay

FixedDelay

DelayRoot .
‘ VarRstDelayMode

FixedDelayMode

VarDelayMode

Fig. 3. Variation graph of the Delay block type

3.2 Relation to Feature Models

BlockLibrary instances represent a generic block specification as a graph structure closely related
to the Feature Models (FM) [6] used in the Software Product Line (SPL) engineering approach.



Such models are made of features arranged in a hierarchical tree-like way. A FM allows to
specify all the possible features that a product can implement, the hierarchy between features
and conditions holding between features (some combinations of features may be exclusive). FM
can be extended in order to include more informations for each feature of the model (attributed
FM). This allows to be more specific and to define more precisely the features. Finally, in an
extended FM, it is both possible to define constraints between features and in a more fine grained
setting between attributes of features.

In the SPL terminology a BlockType corresponds to SPL (a software product line) and a
BlockMode to a (valid) product. All other elements are generally features. Our approach is more
related to the extended FM as we define StructuralFeatures (parameters, inputs/outputs and
memory variables) that have a datatype (called the domain of the feature in attibuted FM) and
formal Annotations. Most of the time, in FM, constraints specify conditional existence of features.
We propose to use them as constraints on the value and behavior of the StructuralFeatures
themselves. We also define different classes of Elements with different attributes, relations and
roles in the BlockLibrary metamodel. We would need to add similar structure to a FM.

A BlockType graph can be nonetheless converted to a FM. Here is an informal specification
of this transformation:

. BlockType is transformed to a FM root feature (BT_F)

. BlockModes are transformed to alternative subfeatures (BM_F) of the root feature
. BlockVariants are transformed to features (BV_F)

. StructuralFeatures are transformed as features (F_F)

. BV_F and F_F are linked with mandatory relations

. Mandatory or alternative relations are added to the FM between the BV_F-s and between
the BV_F and BM_F to represent the relations in the BlockLibrary

S UL W N

However, such a derived FM isn’t a typical feature model. It looks like top-down modeling,
which is less natural than the bottom-up modeling promoted by the BlockLibrary DSL. In
that case the elements (features) that the BlockMode semantic definitions require are specified
incrementally and the specifier has clear visibility of the full set of features that can be used
in a BlockMode. Conflicting and alternative parameter values need to be modeled as distinct
BlockVariants and/or implemented in distinct BlockModes.

A number of analysis techniques for FM have been developed in the SPL comunity over the
past 20 years. A summary of them has been presented in [1]. Not all those are directly applicable
for the BlockLibrary DSL. We comment on some of the more relevant ones below:

— Compute the set of all products: Allows to find all the possible BlockModes. This analysis is
used in the verification of completeness and consistency of a BlockType specification.

— Assess the validity of a product: Decide whether there is a BlockMode that corresponds to a
given block instance. This is part of the process that we call mode resolution.

— Detect anomalies in the model: Find if some BlockVariants are not implemented (dead fea-
tures). This check is implemented by OCL constraints on the BlockLibrary metamodel.

— Refactoring: Help to factorize the elements of a specification by finding possible sets of
factorizable elements. This could be used to provide hints to the BlockLibrary specifier to
simplify the specification.

— Filtering: Find the set of StructuralFeatures or Annotations (e.g. invariants) used in a con-
figuration (e.g. BlockMode or BlockVariant).



3.3 Correctness of a BlockLibrary specification

Structural correctness of a BlockLibrary specifications can be verified by standard ECORE-MOF
compliant tools by checking whether a BlockLibrary model conforms to the BlockLibrary meta-
model and its additional OCL constraints.

More complex properties are related to the completeness and consistency of the specification.
These concepts were informally introduced in Section 3. In order to specify and verify such
properties we have implemented a model transformation taking as input a BlockLibrary instance
and translating it to a Why3[2] theory: StructuralFeatures and their annotations are translated
to axioms; BlockVariants are translated to predicates and finally the properties are translated
to verification goals. This generated Why3 theory is then fed to an SMT solver that will solve
and discharge it. Using this approach, we have successfully managed to verify these properties
on several block instances. Technical details, examples and formalizations of this transformation
can be found on our development page'2.

4 Applications of the BlockLibrary DSL

A BlockLibrary model contains information that can be used for different purposes. We will
briefly explain here the motivation for different applications and the experiments we have done
in the context of the development of automatic code generators and their verification.

Specification editor: In the state of the art MDE methodology, it is common to automatically
generate editors for DSL-s based on metamodels, making it easy for the domain engineers to
develop syntactically and to some extent also semantically sound specifications. We have devel-
oped a textual editor that integrates the BlockLibrary elements and action/constraint languages.
The approach is similar to [5,3]. These editors allow to verify static properties on the model
and allow to perform a first verification of the specification while writing. The verification is
performed according to the metamodel structure and associated OCL constraints. An extract of
the Delay block type specification in a textual form is provided in Listing 1.1.

Documentation generation: From the formal BlockLibrary specification, it is possible to gen-
erate clear and rich user documentation. Automatic generation helps to maintain the consistency
of the documentation, which is essential in high integrity systems. One of the main problems of
documentation generation is that they suffer from a lack of automated verification techniques.
It is therefore difficult to directly gain some qualification credit from its use in a qualified devel-
opment chain.

Annotation generation: The constraints specified for the elements of the BlockLibrary are
pre/post conditions and invariants providing both structural constraints and expected semantics.
This approach, close to the design by contract ones [7], can be used to generate annotations in the
generated code. The contract in the BlockLibrary can be related to a contract in the generated
code template. This will help to verify the final generated code using proof checkers or other static
analysis tool. An extension of GENEAUTO is being experimented in that purpose by generating
ACSL annotations along with the generated C code for SIMULINK or SCICOS input models. A
prototype already exists for generating annotated code for simple yet realistic systems (horizontal
control for an helicopter [8]).

Generation of typing and code generation backends: The BlockLibrary specification contains
detailed information about type inference rules for different block types and configurations, as well
as the dynamic semantic functions related to block executions. These information can be used to
generate parts of the code generator. It might be used for the generation of skeletons for functions
that needs to be implemented manually by code generator developers. These skeletons can be

12 http://dieumegard.perso.enseeiht.fr/bl/Progress/BlockLibInstanceVerification.html



augmented with automatically generated verification conditions taken from the BlockLibrary
specification. Implementors must ensure that the implementation satisfies these properties. This
together with generated documentation increases the extensibility and reliability of BlockLibrary
specification.

Generation of test-cases: For each Constraint Signature that is associated to a BlockMode
and Variant Signature we can extract a set of StructuralFeatures along with their specifica-
tions provided as structural annotations. Each of these pairs of elements specifies the definition
domain of a StructuralFeature. This definition domain is potentially extended with additional
constraints defined for this StructuralFeature, containing Block Variants or BlockMode. We trans-
late this definition domain as a constraint satisfaction problem (CSP) (we used the MiniZinc!?
language) that is solved by an automated solver. For example, we can apply this approach to
the InitialConditionSource StructuralFeature defined in the Delay block specification in List-
ing 1.1. The corresponding generated CSP is a search for a value for an enumeration of type
TValueSource according to the constraint: value = INPUT. Applying this approach to each
StructuralFeature of the BlockMode Signature provides us with a set of specification-satisfying
values for the inputs and parameters of an instance of this BlockMode. The values provided by
this computation can be used as input and configuration data for the execution of generated
code. Additionally, it is possible from the semantic specification expressed in a BlockMode to
generate an EMBEDDED MATLAB or SCILAB function. This function will take some configura-
tion values provided through parameters and inputs values. Once this function is fed with the
expected values (either automatically generated or provided by the tester) it will give us the
expected values for the computation of a block instance. In this way, we generate an oracle that
provides reference data for testing a code generator that has been implemented according to the
same specification. We have developed first prototypes of such generators and plan to extend the
approach in the future.

5 Conclusions and future work

We have presented in this paper a DSL for the formal specification of function block libraries
for dataflow modeling languages. Our BlockLibrary DSL intends to provide a structured, formal
and multi-purpose specification method for the semantic definition of such blocks. The method-
ology is especially targeting blocks with a high degree of structural and hence also algorithmic
polymorphism.

This specification methodology can be used: i) for extending the functionalities of existing
languages like SIMULINK, ScicOs and XCOs by developing custom block sets for end-user specific
applications; ii) for the generation of development support artifacts like documentation; iii) as
a basis for formal verification of block libraries; iv) as a source for the generation of verification
artifacts like test inputs and expected outputs.

We have developed some tools and transformations using BlockLibrary instances as input.
Each transformation interprets the specification from its specific point of view and by applying
a filter on it, will extract relevant data. We have shown that multiple languages can be used
as formal annotation languages. One of the technical challenges of this work is to be able to
transform these various languages to the target analysis-focused languages like the CSP languages
or the Why3 language, or execution-focused languages like EMBEDDED MATLAB. We plan to
address this problem in the future by relying on suitable pivot languages.

This approach has been currently validated on a small number of SIMULINK blocks that have
distinctive polymorphic nature such as the Delay block and some other typical Simulink blocks.

13 http://www.minizinc.org/



We plan to refine this language further and use it as a formal specification for the block library
of the GENEAUTO successor toolset developed in the projects PROJECTP and Hi-MoCo.
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type enum TValueSource { INPUT, DIALOG }
type enum TTriggerType { NONE, RISING, FALLING, EITHER,
LEVEL, LEVELHOLD, FUNCTION.CALL }

blocktype Delay {

definition ocl U : Port {
blockType () .variants (” DelayRoot”) .inputs (” UPort” )—>portImpl. first ()

variant DelayRoot {
in data UPort : allowedtypes : TAny
out data YPort : allowedtypes : TAny
parameter DelayLengthSource : TValueSource
parameter InitialConditionSource : TValueSource
parameter ExternalReset : TTriggerType
invariant ocl { ExternalReset.value <> FUNCTION.CALL }
}
variant VarDelay extends DelayRoot {
modeinvariant ocl { DelayLengthSource.value = INPUT }
in data DelayPort : TNumeric { invariant ocl { value > 0 }}
parameter DelayUpperLimit : TNumeric {
invariant ocl { value > 0 }
invariant ocl { dataType.isScalar }
}
memory DelayBuffer {
datatype ocl { U.dataType }
length ocl { DelayUpperLimit.value / blockInstance().samplePeriod }
}
}
variant FixedX0 extends DelayRoot {
modeinvariant ocl { InitialConditionSource.value = DIALOG }
in data virtual XOPort : TAny { implementedby InitialConditionParam }
definition ocl X0 : TypedElement { InitialConditionParam .parameterImpl}
invariant ocl {
X0.dataType.isSubType ( U.dataType )
&& CompatibleDimensions( X0.dimensions, U.dimensions )
}
}
variant VarX0 extends DelayRoot {
modeinvariant ocl { InitialConditionSource.value = INPUT }
in data XOPort: TAny
definition ocl X0 : TypedElement { XOPort.portImpl-—>first () }
invariant ocl {
X0.dataType.isSubType( U.dataType )
&& CompatibleDimensions( X0.dimensions, U.dimensions )
}
}
mode VarRstDelayMode implements anyof (
allof (VarDelay, FixedX0),
allof (VarDelay, VarX0) ) {
modeinvariant ocl { ExternalReset.value <> NONE }

definition matlab [y, m, last] = Delay_Rst_Init {
y = X0.value; m = X0.value; last = X0.value;
}
definition matlab y = Delay_Compute_-Var_Rst_Delay (u, d, r, x0) {...}
definition matlab [m, last] = Delay_Update_Var_Rst_Delay (u, d, r, x0)
initsemantics : Delay_Rst_Init
computesemantics : Delay_Compute_Var_Rst_Delay
updatesemantics : Delay_Update_Var_Rst_Delay

Listing 1.1. Extract of the Delay block specification



