N

N

Specifying and Verifying Model Transformations for
Certified Systems using Transformation Models

Andres Toom, Arnaud Dieumegard, Marc Pantel

» To cite this version:

Andres Toom, Arnaud Dieumegard, Marc Pantel. Specifying and Verifying Model Transformations for
Certified Systems using Transformation Models. Embedded Real Time Software and Systems (ERTS
2014), Feb 2014, Toulouse, France. hal-02272309

HAL Id: hal-02272309
https://hal.science/hal-02272309
Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02272309
https://hal.archives-ouvertes.fr

Specifying and Verifying Model Transformations for Certified
Systems using Transformation Models

Andres Toom"?3, Arnaud Dieumegard' and Marc Pantel!

Abstract—Model Driven Engineering (MDE)
makes it possible to tackle the ever-rising complexity
of developing safety critical systems by providing
early verification & validation (V & V) and au-
tomated model transformations. In order to have
confidence in them, certification guidelines require
full traceability between the transformation’s source
and target and V & V to prove the correctness of
the transformation and verification tools themselves.
This work was carried out as a separate study based
on the GENEAUTO' project for the development of
an automatic code generator for certified systems.
It focuses on the use of the MDE “Transformation
Model” approach from [1] as a compromise between
the current industrial practice, trends in software
engineering, safety standards and formal verifica-
tion. It outlines the key points for the development
of model transformations for certified systems and
illustrates the use of a form of the “Transformation
Model” on a preprocessing step in GENEAUTO.

Index Terms— MDE, transformation model, em-
bedded systems, certification, qualification, MOF,
OCL

I. INTRODUCTION

Model Driven Engineering (MDE) is a tech-
nique that has been applied successfully in the
design of complex systems. In the usual develop-
ment process the high-level system requirements
and initial coarse models are refined and formal-
ized as models, until they are precise enough to
be implemented. In many cases, software code can
be largely or fully automatically generated from
the low-level models.

This work has been funded by the FUI Project P, EuroStars
project Hi-MoCo and the Estonian Ministry of Education and
Research target-financed research theme No. 0140007s12.

LIRIT - ENSEEIHT, Universitt de Toulouse, 2,
rue Charles Camichel, 31071 Toulouse Cedex, France
FirstName.LastName@enseeiht.fr

2Institute of Cybernetics at Tallinn University of Technol-
ogy, Akadeemia tee 21, EE-12618 Tallinn, Estonia

3IB Krates OU, Maealuse 4, EE-12618 Tallinn, Estonia
FirstName@krates.ee

"http://www.geneauto.org

While verifying the compilation of traditional
programming languages has been studied a lot,
the fields of Domain Specific Languages (DSL),
model transformations and code generation are
much less established. This is largely due to the
fact that each case is somewhat unique - devel-
oped according to a particular need, the source
and target languages are likely to change over time
and moreover, there might not be a clear formal
specification of the respective languages and a
suitable semantics is usually chosen only during
the specification of the transformation. Often also
the semantic gap between the source and target
languages of such transformations is larger than
in traditional compilers.

The development of critical real-time embedded
systems is guided by normative guidelines. Some
of them are generic such as IEC 61508, while
others are domain specific: DO-178 for aeronau-
tics, ISO 26262 for automotive, EN 50128 for
railway etc. They all require that system devel-
opment is driven by precise specifications and
that each system development step is verifiable
and appropriately verified. However, the common
proofreading of the detailed development artefacts
and test-based V & V of the final products are
usually not exhaustive. As systems get more com-
plex, their coverage is less and less significant.
Using modeling instead of informal specifications
makes it possible to carry out early V & V and
build “correct by construction” systems by doing
automated model transformations. However, to
provide confidence in the final product, it is highly
desirable to also maintain traceability between the
elements of the source and target models. Addi-
tionaly, the more critical the developed system,
the more important is the clear separation between
its specification, implementation and verification
in terms of the development process, artifacts and
individuals. In particular, independence is manda-

tory between the implementation and verification
in order to reduce flaws both in the implementa-
tion and specification.

The current paper is based on one of the
formally motivated studies related to the devel-
opment of the open source qualifiable automated
code generator GENEAUTO that transforms sub-
sets of SIMULINK? / STATEFLOW? and Scicos*
modeling languages to C and ADA code. Previous
work by one of the authors [10] focused on the
use of a proof assistant for the development of
the SIMULINK block sequencer in GENEAUTO.
This experiment was technically successful, how-
ever it raised significant concerns regarding the
predictability of development costs and transfer of
the developed components to traditional software
industry. To address these problems, this work
focuses on common MDE techniques to allow
industrial system and software engineers to write
precise specifications and conduct verification at
each step. More precisely, it relies on the “Trans-
formation Model” approach similar to the one
in [1] in order to provide both verifiability and
traceability.

The approach we present is a lightweight syn-
tactic/structural way for specifying the transfor-
mations in MDE style as model transformations
and refine the details of the transformation re-
lations by constraining them using the standard
Object Constraint Language (OCL)’. An impor-
tant part of our approach is the usage of ex-
plicit links between certain input-output elements
to facilitate the specification and verification of
the transformation. The work has been applied
on some preprocessing steps of SIMULINK and
Sc1cos models in GENEAUTO.

The paper proceeds as follows. Section II dis-
cusses briefly the general transformation specifi-
cation and verification process. Section III gives
an overview of the approach presented in this
paper. Section IV describes a case study. Sections
V, VI and VII discuss some additional aspects of
the approach. Section VIII positions the approach
relative to existing works. Section IX opens up
some extensions and summarizes.

www.mathworks.com/products/simulink
www.mathworks.com/products/stateflow
WwWw.sclilcos.org
Wwww.omg.org/spec/OCL/2.2

[T RSO)

II. ABOUT TRANSFORMATION VERIFICATION

There are two general approaches to prove
that the implementation of a transformation tool
matches its specification: (a) verification is done
once for all possible inputs to the tool or (b)
verification is performed after each run of the
tool. The first approach is more appealing as no
verification activities are conducted when the tool
is used. But, often the second one is simpler to
implement. Many studies of the first approach
have been conducted using theorem provers or
proof assistants. The CompCert C compiler [12]
is the most impressive result. But the cost of such
a process is very high and not yet applicable in a
typical industrial process.

The second approach called Translation Valida-
tion was proposed by A. Pnueli et al. in [15]. In
this approach each transformation run is followed
by a verification phase. The transformation phase
should even provide hints about the way it built
the target with respect to the source in order to
ease the verification. However, the correctness of
the verification should not depend on the hints.
The main advantage of the approach is simpler
specification of the properties of interest and a
simpler verification tool. Hence, the approach
has advantages, when the requirements for the
transformation tool are complex and evolving, as
is often the case for real compilers or domain
specific program transformers. Also, the transla-
tion validation approach supports by definition a
natural decoupling between the implementation
and verification, which is well suited for the de-
velopment of systems, where such independence
is required. Finally, since the verifier is a simpler
tool than in the first approach, it is simpler to
verify the verifier itself.

III. TRANSFORMATION VALIDATION WITH
TRANSFORMATION MODELS

A. Transformation Metamodel

In MDE, languages are specified with meta-
models and each model must conform to its
metamodel. This conformance is only structural.
The core of MOF allows only to express simple
structural properties, like associations between
elements, containment, cardinality etc. OCL is
an OMG standard that is designed for using with

UML and MOF and allows to complement meta-
models with more complex constraints like struc-
tural invariants for classes and relations and pre-
/postconditions for operations. When the model
transformation is specified by a metamodel these
constraints become correctness properties of the
transformation. This is following the spirit of the
Design By Contract paradigm.

The input and output metamodels can be the
same or different. The first kind of transformation
is also known as a refinement or endogenous
transformation and the second one as exogenous.

The specification of a model transformation
contains three essential parts: definition of the
source language, target language and transforma-
tion relation. In our approach the significant part
of the transformation relation is modeled by ex-
plicit links between the elements of the source and
target languages. These links correspond to the
hints that the Translation Validation methodology
expects from the transformation to simplify verifi-
cation. Figure 1 shows our generic transformation
metamodel. It has the three main parts stated
above: references to the source and target models
and bidirectional relation links between selected
elements of the source and target models. The
transformation tool must provide these links.

E GenericModel 1 src E TransformationModel
1tgt
elements | 0..* orc srelinks links | 0..%
g GenericElement — | B GenericLink
1.* [y

= inSrcModel : EBoolean
o inTgtModel : EBoolean | gt tgtLinks

0..*

Fig. 1. Generic Transformation Metamodel

The input and output languages are given by
their metamodels that are possibly complemented
with OCL constraints. Our transformation meta-
model assumes that the root elements in this
model implement the abstract class GenericModel
and all linked elements implement the abstract
class GenericElement. This simple addition can be
added automatically to any existing metamodel.
To simplify the writing of the model transfor-
mation constraints, a derived attribute inSrcModel
and its inverse inTgtModel have been added to the

GenericElement class.

For the convenient specification of complet-
ness and correctness properties, backlinks from
model elements to links are also provided. These
backlinks can be built automatically during the
verification phase.

The GenericLink metaclass makes it possible
to build n-ary relations between different model
element types. It should be noted that this is a
generic scheme and there are different ways to
implement it. To be able to write static constraints
on different kinds of links, we define specific link
classes for each relation kind, when instantiating
the transformation metamodel for a particular
model transformation. These links will be illus-
trated in the example in section I'V-A. Different
link classes relate different kinds of source and
target elements with different arities. Furthermore,
there can be distinguished roles among source
and target links, as in the GotoFrom2SignalLink
class. This allows to distinguish roles and arities
of linked elements and make the link constraints
more readable. The src and gt relations in the
GenericLink super-class can be implemented as
derived relations.

A valid transformation model needs to comply
with the transformation metamodel and a set of
associated OCL constraints. Some of these con-
straints just specify the basic consistency of a
transformation model e.g below are some rules for
the correctness of the links (represented partially).
context GenericElement
inv src_has_only_src_links

inSrcModel implies tgtLinks—>

isEmpty ()
inv tgt_has_only_tgt_links
inTgtModel implies srcLinks—>
isEmpty ()
inv src_links_start_from_src
inv tgt_links_end_in_tgt

The first constraints enforce that each model
element in the source model (resp. target model)
is linked only to sourceLinks (resp. targetLinks).
For transformation-specific constraints, we use
the following general pattern: (a) additional class
invariants are specified for the source and target
metamodel elements stating which links they must
have (b) the transformation’s correctness proper-
ties are specified as class invariants of the link
classes. Note that the invariants from (a) belong

also to the transformation specification and do
not affect the input-output metamodel definitions.
Thus they should normally be stored separately
from the metamodels.

These explicit links play a key role in this
proposal. The links must be given together with
the transformation instance to enable easy verifi-
cation of the transformation correctness and also
to provide the traceability data required by the
certification authorities. Thus, these links must be
part of the specification and it is the responsibility
of the transformation performer, be it a tool or
even human, to provide these links. Such an
approach can be also called a gray-box approach:
we require some information from the transfor-
mation performer, but not all the details of the
implementation.

The number and kinds of links that must be
specified is transformation specific and depends
on the properties that one wants to verify. For
completeness, one should require that each source
model element (or all elements of some element
classes) are related to some target model element
and vice versa. Ensuring the consistency of the
specification in the general sense and/or relation
to the semantics of the transformation is out of the
scope of this technology by itself and requires,
for example, formalization in a theorem prover.
However, this is an expensive step that is not
always required or feasible, for instance, due to
the lack of formalization of the source or target
language. Often, careful specification of the trans-
formation constraints can ensure the preservation
and verifiability of the intended properties in a
semantically sound way. For instance, by checking
confluence of related transformations and validity
of the expected local properties.

B. Transformation verification

In this configuration, the correctness of the
transformation instance can be easily verified by
checking that: a) the source model conforms to its
metamodel and associated constraints (optional as
it is a precondition for the transformation that is
checked previously); b) the target model conforms
to its metamodel and associated constraints; c)
the transformation model structurally conforms
to its metamodel; d) all the required translation
links exist; and e) all links satisfy the respective

constraints. The last four are postconditions for
the transformation. These checks can be carried
out using any standard metamodeling framework
and an OCL checker.

The main difficulty in structural correspondence
verification of a transformation relies in matching
the corresponding elements. If the transformation
is simple and structure preserving, then estab-
lishing the structural correspondence relation is
straightforward and can be even automated [5],
[14], [13]. However, if transformations are more
complex or combined, then this correspondence
is much harder to establish, resulting in com-
plex and computationally expensive verification
criteria. An example is given in Section IV-A.
Explicit transformation links, on the other hand,
make it trivial to identify the related elements.
Not all elements of source and target models
need to be explicitly linked. It is only required
that the explicit relation is given for elements,
where the location of the transformed elements
in the target model doesn’t follow directly from
the relative location of the source elements in the
source model.

An important practical property of this ap-
proach is that the transformation specification
does not need to be complete to be usable for
verification. It can initially address only parts of
the transformation and other parts can be specified
gradually.

Verification of the transformation instance with
respect to its specification is performed automat-
ically using a MOF and OCL checker. Even
stronger results can be potentially obtained, when
the soundness and completeness of the transfor-
mation specification itself wrt. to some semantic
criterion is analysed by formal methods. This
other level of verification is harder and less com-
mon than verifying the implementation against
specification. However, when the Transformation
Model approach is followed, the transformation
specification is already formal, making its deeper
analysis possible.

IV. GENEAUTO CASE STUDY

GENEAUTO is an open code generator project
for translating high-level modeling languages to
textual programming languages [18]. Currently, it
supports subsets of SIMULINK, STATEFLOW and

Scicos as input and C and ADA language as
output. It is intended to be used and qualified for
safety critical embedded systems. In that purpose
its design follows a modular MDE approach al-
lowing to independently verify different transfor-
mation phases.

There are about 50 to 60 transformation steps
in the tool, depending on the configuration. After
the initial importing step, all transformations are
carried out as refinements and transformations
of intermediate models. Most of these steps are
rather simple, but some transformations are rather
complex or change significantly the model struc-
ture. For practical purposes, only certain points in
the transformation chain are observable as inter-
mediate model files. The low-level tool require-
ments (transformation specification) are written
with respect to these intermediate models, which
are often a result of several successive transforma-
tions. Hence, verifying the structural correspon-
dence between the input and output models is non-
trivial. Explicit transformation links provided by
the transformation tool can help overcome this,
as shown by the example presented later in the
paper and provide the traceability required by
certification.

Currently, the specification for most of the ele-
mentary tools in GENEAUTO have been written in
the English language, with a notable exception of
the Block Sequencer tool that has been specified
and implemented in the Coq proof assistant [10].
Natural language requirements are of course in-
complete, ambiguous and not directly verifiable.

A. Preprocessing dataflow diagrams

In the example we shall refine the transforma-
tion requirements for a component of GENEAUTO
called Functional Model Pre-Processor (FMPre-
Processor), which handles normalizing and re-
finement of dataflow diagrams. Figure 2 shows
a section of the simplified Gene-Auto metamodel
with the relevant elements.

In SIMULINK diagrams, signals can be split us-
ing Goto-From blocks and blocks can be grouped
as virtual subsystems to avoid visual clutter. In the
pre-processing step matching Goto-From blocks
pairs are replaced by a signal; virfual subsystems
boundaries and ports are removed; signals con-
nected to these ports are connected directly to

[B SystemBlock

0..* 0..*
blocks signals

—

]

g Block g Signal
(] (] I
0..% 1 0..% 1
inPorts dstPort outPorts srcPort
H Inport E Outport

Fig. 2. A fragment of the simplified GASystemModel
metamodel
1 52 "
o Bl ﬂ sw 5|2|° e
e Gole2 From2 "

In1 512 =)
V2 53
2

Gotal

Subsyst

F1 55
= -
o o outz

MyFun1

k.

522

o2 g v ke s
Fram MyFunz ! Outz
SubsysZ
:1 52 #:1
In1 Outt
sz 2 » - Ri 55
;] R1
hyFun1
22 524
o w : SR
» Q2 Ouz
hibyFunz ! Outz
Subsys?
Fig. 3. Normalization of a dataflow diagram

inner blocks and redundant signal segments are re-
moved. Figure 3 displays a diagram with chained
Goto-From blocks, virfual subsystem Susbsysl
(thin border) and non-virtual subsystem Susbsys2
(fat border) before and after normalization.
Verifying a composition or transitive closure
of such structure-altering transformations based
on a source and target model only is complex
and computationally expensive. For example, such
analysis would have to build all signal paths in
the source. Furthermore, it would not be possible
to consider one transformation, such as Goto-
From elimination, in isolation from e.g. subsystem

flattening or any other structure-altering transfor-
mation. This task gets much simpler, locally and
compositionally verifiable, if the transformation
outputs additionally the links binding the source
and target elements.

B. Correctness of the transformation

In the case study we have formalized some
of the natural language requirements in such a
way that the specification can be directly used
for transformation verification according to the
scheme described in Section III. To specify the
formal constraints for these normalizing trans-
formations we have defined several link classes
represented in figure 4. The first three concrete
link classes relate objects of the same type with
corresponding objects in the target model. The last
one is more complex, relating a set of different
elements (a configuration) in source model with
elements (a configuration) in the target model.
Link classes such as this one do not restrict the
links to be simple binary relations and provide
lot of flexibility for specifying the transformation
while they also simplify verification and improve
traceability.

The main OCL constraints that check the cor-
rectness of a Goto-From pair elimination are given
below. Despite being formally precise, they should
be rather readable and understandable to someone
familiar with the nature of the given transforma-
tion. Notice the use of the getTgtInDataPort and
getTgtOutDataPort operations. Such operations
navigate from the source model to target model
based on the elementary transformation links,
which are essential for verifying the result of a
composition of transformations, as they maintain
the information between the original elements and
their corresponding images in the target model.
For instance, there are two ports corresponding to
the input port of the block Y1 on Figure 3 in the
normalized target model (ports are not shown).
These ports are the input port of the block Outl
and input port Q2 of Subsys2.

context Block
inv Goto_block_has_GotoFromLink
type = 'Goto’ implies srcLinks—>
one (oclIsKindOf (
GotoFrom2SignalLink))
inv From_block_has_GotoFromLink
type = 'From’ implies srcLinks—>

one (oclIsKindOf (
GotoFrom2SignalLink))
inv Goto_block_inSrcModel_only
type = *Goto’ implies inSrcModel
inv From_block_inSrcModel_only
type = ’From’ implies inSrcModel

These constraints state the facts that for From
and Goto blocks, one of the related links must be
a GotoFrom2SignalLink and if a Block is of Goto
or From type then it is mandatory that the element
is in the source model of the transformation.

context GotoFrom2SignalLink
inv gotoTagCheck
srcGotoBlock . GotoTag
= srcFromBlock.GotoTag
inv tgtSigSameSrc
tgtSig —>
forAll(s | s.srcPort =
tgtSig—>first (). srcPort)
inv gotoInSrcTransf
srcGotoSig.srcPort.getTgtOutDataPort
= tgtSig—>first (). srcPort
inv fromOutDstTransf
srcFromSig. dstPort.
getTgtInDataPort—asSet ()
= tgtSig.dstPort—asSet ()

The first two constraints state that in the source
model, the source port of the signal used as input
of a Goto block, is transformed as the source port
of the signal produced during the transformation.
The last one verifies if the linked Gofo and From
blocks have corresponding GotoTag parameters
(this parameter is used in order to find the paired
elements - Goto or From block).

C. Verification infrastructure

Our experimental verification framework has
been written in Java using standard components
from the Eclipse Modeling Framework (EMF®)
for model handling and OCL checking. However,
the approach is general and only requires capabil-
ities to read MOF compliant models and execute
OCL queries. The transformation tool that we
use in our case study, FMPreProcessor, has also
been implemented in Java, however, this is again
not a restriction, since it is only required from
the transformation tool to input and output MOF
compliant models and output also the required
link information relation as a MOF compliant
model.

Shttp://www.eclipse.org/modeling/emf

[B GenericLink [7]
(from elements)

i

H OutDataPort20utDataPortLink

[Signal2SignalLink

(

l

H InDataPort2InDataPortLink FH GotoFrom2SignalLink
[
[
srcFromSig
" srcFromBlock srcGotoBlock tgtSig srcGotoSig
0..1|src 0..%*| tgt 0..1 |src 0..1|tgt 0.1 o 0..% 0.% |o0.1
[InDataPort [z] [OutDataPorta] H Block [2] t—t> g Signal [
(from ports) (from ports) 0.* (from blocks) Og | (from gafunctionalmodel)
outDataPorts src

T 0..* inDataPorts

Fig. 4. Goto-From transformation links

Preferably, the formal specification should exist
before the transformation is implemented. How-
ever, it is also possible to refine an informal speci-
fication and apply the presented approach at a later
phase. In our case study the tool already existed.
We made small non-intrusive modifications in the
tool to record and output the relation links. If
the requirement to maintain the transformation
links had existed beforehand, it would have cost
no additional effort at this stage and would have
introduced minimal cost in the previous stages.

V. RELATION TO EXECUTABLE SPECIFICATION

It must be noted that technologically this ap-
proach has some commonalities with the “ex-
ecutable specification” approach, as e.g. in the
QVT and ATL languages. In both approaches the
source and target are specified by metamodels
and the transformation is modeled as a relation
between them. In our approach the transformation
metamodel is used to verify that the transforma-
tion model is correct (transformation was cor-
rectly performed), while in the second approach
it produces the output model. However, complex
transformations are hard to represent in such way.
Secondly, such a transformation scheme might not
satisfy the performance or other non-functional
requirements that can be met in a custom trans-
formation implementation. Thirdly, verifying the

correctness of a generic model transformation
engine is generally more complex than verifying
a tool like an OCL checker. Finally, this approach
alone does not answer the required separation of
concerns and independence between specification,
implementation and verification described in Sec-
tion L.

But on the other hand, since our approach
presented above makes no assumptions about the
transformation implementation technology, such
formalization can be treated as a realization of the
transformation specification and it can share the
source and target metamodel definitions with the
specification. The only additional requirement is
that besides the output model it must also produce
the required explicit transformation links.

VI. ANALYZING THE VERIFICATION RESULT

In real life and during the development pro-
cess the implementation of the transformation or
even the specification might be erroneous. If the
a posteriori verification succeeds for a specific
transformation run, the output is known to satisfy
the specified properties. If the verification fails,
and assuming that the specification is correct, one
has the option to fix the transformation implemen-
tation, if possible, but also to fix the produced
output: target model and/or links. For large and
complex applications, fixing an error might be a

lengthy process and/or not under the control of
the user of the tool, while it might be possible to
correct the output instead. If the verification then
succeeds, the user has a verified output with same
guarantees as in the first case. Finally, a failure in
the verification phase is likely to give messages
that are understandable to the user. This is because
the verification checks only structural properties
of the source and target models and links. Hence,
it is possible to immediately point the user to the
violated OCL constraint and the concerned source
and target model elements.

VII. FACILITATING SPECIFICATION
DEVELOPMENT

In refinement (or endogenous) transformations
the source and target metamodels are the same.
Such transformations have significant practical
importance. For instance, in GENEAUTO the ma-
jority of the 50 to 60 transformation steps are
endogenous. Such transformations modify only a
part of the model and one also needs to specify
that the “other parts” do not change. This can be
tedious for large metamodels. However, it can be
partly automated. It is relatively easy to gener-
ate the specification (the link classes and related
OCL constraints) of an identity transformation
by using a general model-to-model transforma-
tion language like ATL or model-to-text language
Acceleo. The specification can be then manually
refined to take into account the required changes
in the model.

VIII. RELATED WORKS

Many authors target the verification of model
transformations or code generation with various
purposes and technologies (see [7] for a compiler
verification bibliography). This section focuses on
the use of model driven engineering technologies
for the specification and verification of model
transformation using the translation validation
method. The main specific aspects are that: a)
qualification with respect to certification standards
is a key target; b) the global process includ-
ing independent specification, implementation and
verification activities must be handled; c) OMG
standards are used for the specification and no
other technological constraint should be enforced
on the implementation; d) only structural proper-
ties are targeted. Semantic aspects will be handled

in a separate phase done by different people than
the one that implement the transformation (thus
some specification V & V activities) using more
appropriate technologies for the specification val-
idation; and e) it is mandatory to handle industrial
size models and transformations.

Many proposals rely on the use of formal
methods and targets both structural and semantics
issues. Regarding structural properties, declarative
languages based on rewriting rules have been
the subject of many proposals based on model
checking technologies (see Varro et al. [16]) or
rewriting technologies like confluence or termina-
tion checking (see Taentzer et al. [9], [11], [8]).
However, these technologies do not scale well to
industrial size models and transformations.

Bézivin et al. proposed in [1] to specify
the model transformations using Transformation
Models: the links between source and target lan-
guages are defined in metaclasses decorated with
OCL constraints that express the correctness of
the transformation. Their approach is methodolog-
ical and is the main basis for our application on
certified system development using model trans-
formations. Braga et al. defined in [2] the notion
of Transformation Contracts that are strongly re-
lated to Transformation Models and have applied
it to security use cases.

Biittner et al. have also proposed recently in
[3] to rely on the links inside the Transformation
Model in order to ease the verification of trans-
formation. They propose to extract the links from
declarative transformation languages taking ATL
as use case and then implement verification activ-
ities as OCL constraints on the extracted model.
This verification approach is quite similar to the
one from the previous paragraph. As the links are
derived from the transformation implementation,
the drawbacks previously stated still apply.

Narayanan et al. first proposed in [13] to use
translation validation for verifying the correctness
of model transformation. This work focused on
the verification method and relied on the cross-
links created as part of the transformation in the
GREAT language much in the same manner as the
traceability links from the Transformation Mod-
els. Their proposal could be applied to most of the
declarative transformation languages that enforce
the use of explicit or implicit links between source

and targets in order to execute the transformations,
e.g. the QVT/Relational standard, ATL or Triple
Graph Grammar [17] based tools such as Fujaba
or Moflon. However, these links are mostly im-
plementation links and usually much more links
are produced than needed or the implementation
must be very constrained to produce exactly the
needed links. The work in [13] also focuses on
semantic verification that is significantly more
complex and cannot usually be handled by com-
mon software engineers. In order to handle partly
these aspects when the structure of the source
and target models are different, [14] proposes
to rely on the link part of the Transformation
Model: to specify the transformation as relations
between the source and target metamodels. Then
these links should be extracted automatically from
the cross-links used for the implementation of the
transformation in the GREAT language. There is
still a potential drawback: if the structures of the
source and target metamodels are very different,
it might be required to build the transformation
using several intermediate models as is usually the
case with declarative languages. Then it might get
complicated to retrieve the specification links that
are a composition of many implementation links.
The transitive closure of a transformation rule is
already a complex case: should it be translated to
a single specification link, to all the intermediate
links or to only the implementation links? We
propose to enforce the implementation to build
exactly the right links that are precisely described
in the specification. This introduces a cost on
the implementation side, but also relieves the
implementation team from the constraint of using
a declarative transformation language. Moreover,
as it is possible in the following proposal to refer-
ence the links in the transformation specification,
complex and composed transformations can be
specified and implemented quite flexibly. And in
the end, these links are required by certification
rules and thus the approach does not really intro-
duces additional costs.

To avoid specifying explicitly the links, Cariou
et al. have defined in [6] and [4], the specifi-
cation of model transformations using pre and
post conditions on the source and target meta-
model expressed using OCL constraints. The
key difference is that they propose to build the

transformation model automatically based on the
available information in the source and target
models. The implementation can thus be a black-
box one. However, if the metamodels do not
contain the appropriate information, it might not
be possible to build the mandatory links, or it
might be very costly for industrial size models.
The use of explicit traceability links through the
transformation model allows to alleviate that risk
at the cost of enforcing the transformation to build
the links. However, this kind of links are anyway
needed for the development of certified systems.

A completely different approach is that of the
verified transformation tool. A well-known exam-
ple here is the CompCert C compiler specified
and verified in Coq by X. Leroy [12]. The last
author with N. Izerrouken and X. Thirioux have
experimented this approach in GENEAUTO for the
block sequence elementary tool [10]. However,
using such a methodology is still mostly in the
domain of academic verification experts rather
than domain engineers in the industry and hence
it fits better for complex but more stable tasks,
like a complier for a traditional language.

IX. CONCLUSIONS AND PERSPECTIVE

In this paper we present a pragmatic scheme for
specifying and verifying model transformations
based on the Transformation Model approach,
which relies on standard MDE technology and
is hence suitable for industrial application. Our
scheme involves the explicit definition and main-
tenance of certain transformation links to allow
convenient specification and efficient verification
of the transformation. The methodology promotes
early formalization of the transformation require-
ments and a natural independence between the
specifier, developer and verifier, which is manda-
tory for highly critical applications.

Verification of the implementation with respect
to the specification is performed automatically
using an OCL checker. However, the specifica-
tion itself can be further verified by a semantics
expert, who can assess independently the sound-
ness and consistency of the specification using
formal techniques, e.g. theorem proving. The last
step is eased by the fact that the requirements
have already been specified in a formal language
(MOF with OCL). However, the transformation

specification does not need to be complete to be
usable, thus allowing to verify some properties of
a transformation specification and implementation
already at a very early stage.

This proposal is similar to Translation Valida-
tion [15]. It has the obvious drawback to perform
verification after each transformation run. But,
it has also advantages when the transformation
specification is complex and subject to changes,
as in many realistic tools. First, a verifier is
usually much simpler to implement than a full
correctness proof. Then, as we propose to express
the specification structurally using standard MDE
techniques, the approach is applicable also in an
industrial context by common engineers. In a cer-
tified/qualified context, it is also important to be
able to assess the verification toolchain itself. This
is eased by the fact that the approach makes use of
a rather lightweight toolchain and standard com-
ponents. An experimental verification framework
implementing the approach has been added to the
GENEAUTO toolset using Java and components
from the EMF framework. We have formalized
the specification of some of the transformations
in the GENEAUTO code generator and verified the
correctness of their implementation according to
the presented scheme.

The developed tools have been integrated into
the GENEAUTO testing verification framework.
However, only a limited number of transfor-
mations have been currently specified in this
style. The resources related to the case study
can be found at http://cs.ioc.ee/~toom/
verification. We plan to refine the approach
and apply it on a wider scale and different set of
transformations in the GENEAUTO continuation
projects PROJECTP’ and HI-MOCO8. 1t is of our
special interest to study further the relations and
the benefit such a scheme can bring to the certified
software development process.

REFERENCES

[1] Bézivin, J., Biittner, F., Gogolla, M., Jouault, F., Kurtev,
1., Lindow, A.: Model transformations? Transformation
models! In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) Model Driven Engineering Languages and
Systems, Lecture Notes in Computer Science, vol. 4199,
pp. 440-453. Springer (2006)

Thttp://www.open-do.org/projects/p/
8http://www.eurekanetwork.org/project/-/
id/6037

(2]

(3]

(4]

(3]

(6]

(71
(8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Braga, C., Menezes, R., Comicio, T., Santos, C., Landim,
E.: Transformation contracts in practice. IET Software
6(1), 16-32 (2012)

Biittner, F., Cabot, J., Gogolla, M.: On Validation of
ATL Transformation Rules By Transformation Models.
In: Proc. Workshop on Model-Driven Engineering, Ver-
ification, and Validation (MODEVVA’2011) (2011)
Cariou, E., Ballagny, C., Feugas, A., Barbier, F.: Con-
tracts for model execution verification. In: France, R.B.,
Kiister, J.M., Bordbar, B., Paige, R.F. (eds.) ECMFA.
Lecture Notes in Computer Science, vol. 6698, pp. 3—
18. Springer (2011)

Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL
contracts for the verification of model transformations.
ECEASST 24 (2009)

Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL
contracts for the verification of model transformations.
In: OCL workshop of MoDELS (oct 2009)

Dave, M.A.: Compiler verification: a bibliography. ACM
SIGSOFT Software Engineering Notes 28(6), 2 (2003)
Ehrig, H., Ehrig, K., de Lara, J., Taentzer, G., Varro,
D., Varr6-Gyapay, S.: Termination criteria for model
transformation. In: FASE. Lecture Notes in Computer
Science, vol. 3442 (2005)

Heckel, R., Kiister, J.M., Taentzer, G.: Confluence of
typed attributed graph transformation systems. In: ICGT.
Lecture Notes in Computer Science, vol. 2505 (2002)
Izerrouken, N., Pantel, M., Thirioux, X.: Machine-
checked sequencer for critical embedded code generator.
In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. Lecture
Notes in Computer Science, vol. 5885, pp. 521-540.
Springer (2009)

de Lara, J., Taentzer, G.: Automated model transfor-
mation and its validation using atom 3 and agg. In:
Diagrams. Lecture Notes in Computer Science, vol. 2980
(2004)

Leroy, X.: Formal verification of a realistic compiler.
Commun. ACM 52(7), 107-115 (2009)

Narayanan, A., Karsai, G.: Towards verifying model
transformations. Electr. Notes Theor. Comput. Sci. 211
(2008)

Narayanan, A., Karsai, G.: Verifying model transforma-
tions by structural correspondence. ECEASST 10 (2008)
Pnueli, A., Siegel, M., Singerman, E.: Translation vali-
dation. In: Steffen, B. (ed.) TACAS. Lecture Notes in
Computer Science, vol. 1384, pp. 151-166. Springer
(1998)

Rensink, A., Schmidt, A‘, Varré, D.: Model checking
graph transformations: A comparison of two approaches.
In: ICGT. Lecture Notes in Computer Science, vol. 3256
(2004)

Schiirr, A., Klar, F.: 15 years of triple graph grammars.
In: ICGT. Lecture Notes in Computer Science, vol. 5214
(2008)

Toom, A., Izerrouken, N., Naks, T., Pantel, M., Ssi-Yan-
Kai, O.: Towards reliable code generation with an open
tool: Evolutions of the Gene-Auto toolset. In: ERTS?.
Société des Ingénieurs de 1’ Automobile (2010)

