Simon Schliecker
email: schliecker@symtavision.com

Jonas Diemer
email: diemer@symtavision.com

Kai Richter
email: richter@symtavision.com

What's the Bus Load? Real-Time Metrics for Automotive Ethernet Networks

Keywords: Automotive Ethernet, Real-Time, Architecture Design, Tools

Ethernet is the emerging technology for automotive networking. With data rates of 1GBit/s and more, Ethernet can enable new car functions and services. Leading car manufacturers and system suppliers have started introducing Ethernet to cars for advanced driver assistance systems (ADAS) like object tracking and surround-view, and they added connectivity of consumer devices such as phones, music players, etc.. Currently, car manufacturers world-wide assess new concepts that let us use a single switched Ethernet network for streaming, connectivity, and control data at the same time, with the (technical) potential of replacing CAN and FlexRay in all domains some day. This introduction of Ethernet into the existing CAN/FlexRay/MOST-dominated E/E architectures creates obvious new challenges. One top-priority requirement is the early analyzability of their real-time capability. This comes as no surprise as analyzing the real-time performance of CAN and FlexRay is a standard step in network design today. It tells us upfront, whether a planned network configuration will satisfy the real-time requirements (using metrics such as bus load, signal latency, etc.); and it points us to bottlenecks so we can fix them in early design phases. The whole aspect of "realtime" has become a must-have in network design within the last 5 years.

In this paper, we present different load and latency metrics for assessing real-time metrics for automotive Ethernet networks, and we demonstrate how these metrics help optimizing Ethernet configurations on a representative use case.

Introduction to Established Real-Time Metrics

Ethernet is (compared to CAN and FlexRay) "ultra fast" with up to 1GBit/s (and maybe even more in the future). But speed alone is not enough. Whenever (some of the) data is subject to timing constraints, we must be able to assess the network's genuine, core real-time properties in order to reliably avoid timing-related problems later in the field. These requirements can be very different. Video data is typically bandwidthsensitive, audio data is jitter-sensitive and control data is latency-sensitive. Because of this mixture, Ethernet timing assessments will be even more complex than in CAN/FlexRay-based networks, so we need real-time analysis even more. We therefore we focus on Ethernet networks for mixed, heterogeneous data incl. video and audio but also control data (for which today CAN, FR, LIN are used). In contrast, pure video stream transmission has other, significantly less complex real-time requirements, and appropriate standards exist already (e.g. MOST). Therefore, we do not include MOST in out considerations as it is unlikely that MOST will be used for mixed transmission of video and control data in the future. However, it should be noted that the metrics can be applied to any other network technology.

Knowing (forecasting) the real-time properties early has become a necessity for network design. Thus, we must have a minimum of knowledge about the timing behavior of the messages. Measuring the behavior on a real system is usually not possible at an early design stage. So we must rely on other methodologies like simulation and model-based timing analysis for which we need a timing model of our bus or network. For automotive Ethernet, these methods are available (e.g. [START_REF] Diemer | Formal Worst-Case Timing Analysis of Ethernet Topologies with Strict-Priority and AVB Switching[END_REF], [START_REF] Thiele | Formal Worst-Case Timing Analysis of Weighted Round Robin Scheduling for Ethernet[END_REF]) and accessible in tools (e.g. [10]). These methodologies are already in use by automotive OEMs like VW [START_REF] Stein | Ethernet Quality of Service @ Volkswagen[END_REF], BMW [START_REF] Gunnarsson | Trends and New Challenges In Automotive E/E Architectures[END_REF], and Daimler [6] and also industrial users [7]. Thus, timing data can be obtained efficiently for varying use cases and system configurations.

Once the timing data is available, it has to be interpreted. For this, metrics are required that condense the relevant information into an easily graspable format. In the domain of CAN and FlexRay networks, the bus load is the most prominently used metric. It captures the used bandwidth, in percentage of a certain observation interval. This value is used to highlight changes in workload of a bus over different releases, to find a good segmentation of a new network, and sometimes -with the known and accepted limitations -even assess whether the architecture can be trusted to work correctly in the field. The bus load is a very rough performance indicator with many limitations. The bus load alone cannot tell us if any particular message will exhibit a certain timing problem. To assess this, other metrics can be used:

 the response time is the "effective latency" of a message, measured from the point in time that the message is generated (in COM layer) until it is fully transmitted over the bus  the jitter is (roughly speaking) the variation in the response time of messages of the same CAN Id, i.e. variations in their "observable cycle time".

These metrics represent genuine, core real-time properties of individual messages, rather than just the network as a whole. These metrics are applied in mostly every reasonable bus timing assessment of CAN and FlexRay buses. Based on core metrics, a set of advanced metrics can be established:

 the end-to-end latency. This metric extends the message response time concept to include elements like gateways or end-point COM layer or application delays (on sender and receiver side)  the slack. This metric provides the remaining time between the latency of a signal and the timing requirements mandated by its function (i.e. the signal's deadline). It allows easily identifying where in the network headroom exists.

These (and many more) metrics can be derived by measurement, simulation or formal analysis, which are available in commercial tools as [10].

In this paper, we will not explain the details of any analysis, Rather, we summarizes our experience with applying such real-time metrics in network design practice. We illustrate examples and indicate guidelines for exploiting timing data using the popular metrics from a network design practitioner's perspective.

The rest of the paper is organized as follows: In Section 2, we introduce the network timing model that allows the derivation of timing data. We present Ethernet timing metrics in Section 0, along with an example use case to which we apply the metrics. In Section 4, we discuss how the metrics can be used to optimize the network design, before we conclude in Section 5.

ECU

Network Timing Model

The network timing model provides us with basic data to be able to forecast the metrics that we have just mentioned. The timing model captures the essence, the core of the timing behavior.

Actually, a timing model must answer four questions:

1. How many messages (more general: "time consumers") do we have? 2. How often does each one arrive? 3. How much time does it consume then, when it arrives? 4. How will collisions be resolved, when more than one arrives at a time?

While there can also be other important information, these four questions are the most relevant ones. If we look at CAN networks, we find all information in the core network configuration. Everything is there, the list of frames and signals (question 1), the cycle times (question 2), their data length (question 3), and their CAN ID (question 4). Based on this information (plus the option of adding more dynamic information), in-depth assessments can be done manually or automatically by so called scheduling analysis tools. In other words, such tools take the timing model as input and generate the metrics as output.

We will not go into any details of CAN here, but we want to illustrate the importance of a timing model that allows answering four simple but essential questions. If one of them cannot be answered, we will not be able to determine even the core, genuine timing properties of our network systems. Without a timing model, we cannot apply real-time metrics; and without such metrics, over-engineering the entire network is the only solution -which is a very risky and costly work-around.

What about Ethernet?

The four questions help us remembering what "really counts" in terms of the real-time behavior.

While the fundamental approach is essentially the same as for CAN, LIN or FlexRay analysis, such a standard procedure is not yet established for Ethernet-based networks for automotive applications. In order to understand the situation fully, we will now look into a few details of Ethernet networks (for further details, see [START_REF] Thiele | Cooperating on Real-Time Capable Ethernet Architecture in Vehicles[END_REF]). In particular, we will point to two specific differences to CAN (and FlexRay) networks: collisions and message sizes.

Collisions

CAN and FlexRay are based on the use of a shared communication medium. All connected nodes listen to the bus and broadcast their messages according to a predefined arbitration scheme (or schedule). CAN arbitration is based on priorities (the CAN IDs), FlexRay schedules rely on fixed time slots in the static segment and mini-slots in the dynamic segment. On switched Ethernet, there is no such shared medium. Each node has full control over its outgoing Ethernet links. These links are private (and typically full duplex), not shared. This means that there is no collision and no arbitration on the medium (link) itself; a fundamental difference to CAN or FlexRay. But does that mean there are no collisions (remember question 4)? Not at all! In fact, the collisions appear in the switches; more precisely in the outgoing links from the switches to the end nodes (or to other switches), when two or more messages (or streams) target the same receiver, which can be an end node ECU or another switch.

Figure 1 illustrates the collision scenarios in CAN and Ethernet. On CAN, all messages can potentially collide with each other because they use the same shared medium. In the corresponding Ethernet network, messages can VLAN (IEEE 802.1q) adds a priority scheme to the switching rules (with FIFO-scheduling within each priority level). The good news is that VLAN switches behave deterministic in their way of resolving collisions by a standardized scheduling based on priorities. On the downside, there are only 8 priority levels (3 bits), which significantly limit their use for adjusting the switch configuration to the specific timing requirements at hand. As a comparison: CAN defines up to 29 priority bits (resulting in over 500 million priority levels), and FlexRay cycles can be configured with literally countless slots.

With only prioritization, there is a risk that high priority traffic consumes all bandwidth, leading to long buffering times of lower-priority traffic. Ethernet AVB [9] extends the VLAN priority scheme by shaping capabilities. This allows allocating a certain bandwidth for real-time traffic (the higher priorities) while still guaranteeing that also non-real-time traffic will get through.

Message Sizes and Layers

The second major difference between CAN/FlexRay and Ethernet is the payload size and the layering concept. CAN offers at most 8 bytes, FlexRay 254 bytes, and Ethernet 1500 bytes (MAC frame) and 64kB for a UDP packet. Also the protocol overhead is significant. While it is roughly 8 byte on CAN, it can be 30 byte on Ethernet UDP frames. This is of particular importance when we start including control data (which typically consists of few bits up to bytes) into the Ethernet network. Just as an example: if we turn each CAN frame into exactly one Ethernet frame, then we will triple the network load (8+8 byte vs. 8+8+30 byte) and also cause additional load for packing and unpacking at the sender and receiver. In this situation, multiplexing appears as a reasonable solution. Several proposals have been made: A simpler one that relies on a static frame layout, similar to what is established in CAN and FlexRay today. And a second one that adds another ISO-OSI layer on top of the UDP/TCP protocol, called SomeIP. This was originally proposed by BMW and is now made publicly available as part of the AUTOSAR specification.

New Metrics for Ethernet

In this section, we present the metrics along with an example use case. Figure 2 shows the example use case, which is created based on experience with different realworld applications and contains many aspects of such real-world use cases. The example network consists of three switches with multiple ECUs. In particular, there are four Cameras connected to one of the switches that stream video to a vision ECU for processing. The system contains over 60 messages including low-bandwidth, regular control traffic, audio, video and best-effort traffic. The total injected bandwidth amounts to over 330Mbit/s. Of course, we cannot provide detailed insight into a specific customer system, but the key properties in this example match the realworld situations quite well.

Load Metrics

In order to assess the utilization of a given network configuration, one can take a look at the share of time that the network is actually "used" by a function for communication of data. In traditional, e.g. CAN-based networks, this is represented by the bus load, which can easily be observed by measurement in the field, or also be derived based on models of the workload (i.e. which frames are sent how often). But this metric does not apply to typical Ethernet configurations that consist of multiple links and switches, each of which will exhibit different (local) load situations (see above).

To be able to derive similar metrics for multi-hop networks, we will therefore revisit the relevant definition of workload and use together with a description of the topology and resources in order to reason about the network's overall utilization.

The basic value to quantification the workload that a network is expected to handle is the data rate per data stream: A data stream represents a logical end-to-end communication between two ECUs, and its data rate is the average amount of data sent in a given time interval. Typical values range from a few bits per second (e.g. for low priority status messages) to some 100 Bytes per second (e.g. for control function data sent in some Byte every 10 ms) up to several Megabytes per second (e.g. for video streams). An overview over all data rates imposed on the system provides an important overview over the "resource consumers" in the system. In case of any timing bottlenecks, this can guide the engineer to focus on the data intensive functions first.

By combining the data rate per stream with the information about the sending and receiving ECUs, the aggregate point-to-point data rate can be easily computed. It represents the amount of data that is exchanges between two end nodes (ECUs) of the system. This metric is important for designing an appropriate network topology, in which heavily communicating ECUs (or other networking segments) should be located relatively close to each other. Figure 3 depicts the aggregate point-to-point data rate on a logarithmic scale for the example network. One can see that the most data in this system is produced by the four cameras (CAM 1,2,3,4). In addition, there are some broadcast messages sent by the central gateway ECU (likely status messages from the other network segments). Finally, there is some heterogeneous point-to-point communication between a small number of other ECUs. Figure 4 shows the same data in a graph representation that allows an easier identification of the significant communication partners. The workload information above can be put into relation to the actual network configuration, i.e. the topology, routing information, and link speeds, in order to compute the actual aggregate load on per port 1 . This provides a top level view on the utilization of the system, and allows pinpointing hot spots (heavily loaded ports), but also reserves for possible function extensions. Every data stream that passes over a number of hops in the network will be influenced by the conflicting traffic at each hop. The higher the load at a certain port, the higher the potential impact (delay). Thus, for each endto-end communication, the port with the highest 1 We prefer the term "port load" over "link load", because links in switched Ethernet networks are typically full-duplex, and the "port" allows to indicate the direction.

load indicates the amount of potential distortions that a certain stream can experience. This leads to the squeeze load diagram: it is the maximum load of any port that a data stream passes over on its way from sender to receiver ECU. Figure 5 shows the squeeze load for the example system. It can be seen, that quite a few communication partners observe a squeeze load of around 22%. The highest squeeze load is observed by streams going to the vision ECU, which amounts to about 28%.

Latency Metrics

While the load-based metrics introduced above allow identifying the utilization of systems, they actually provide little information about the realtime capability. It is a known fact from CAN design that even on a lowly loaded bus, messages may not be received in time if the deadline is short. To investigate this, one must be able to reason about message latencies in the system. Furthermore, we assume that the timing constraints imposed by the functions have been broken down to timing constraints for individual messages.

The end-to-end latency represents the delay between the injection of a message to the network from the end-node and the reception of that message at the destination end-node, including all intermediate delays at the ports and switches and of course the transmission times themselves. These latencies can be directly compared to the timing constraints as imposed by the function, i.e. the deadline. This allows assessing the quality of a certain transmission for the function level. The same information is considered by the relative latency, which puts the end-to-end latency in relation to the messages deadline for easier identification of critical messages. For example, a message with a latency of 3ms and a deadline of 100ms has a relative latency of 3%. If the same message had a deadline of 5ms, its relative latency would be 60%, which can be perceived as much more critical. Another similar comparative view is the message slack that is defined by the difference between the deadline and the latency. A small or even negative slack indicates that the timely transmission of this message is jeopardized.

Figure 6 shows the relative latencies of all messages in the example system. For three message (highlighted), the relative latency is larger than 100% (1.0), thus they can likely not be communicated in time. This relative view is gaining importance, because it shows in one chart which messages are critical and which are not. As a summary of this view for evaluation of a complete configuration, one can even condense this chart into a relative latency histogram (Figure 3). This shows the total amount of messages that are "safe", e.g. because their relative latency is smaller than e.g. 0.4, and those that may cause trouble during runtime, because the relative latency is close to or beyond 1.

Maximum Relative Latency

The above metrics are well suited to provide an overview over the system behavior, timing quality, and timing reserves and pinpoint the source of problems. They do however not maintain the simplicity of the established bus load metric. In order have a comparable metric that also represents the timing quality, the information needs to be further condensed.

From perspective of real-time system, the most outstanding aspect of the above considerations is the maximum relative latency (MRL), which expresses the maximum ratio between the endto-end latency and the deadline over all messages (at least for those that have a deadline). The interpretation of the MRL is relatively simple:

 If MRL > 1 then there is a timing problem for at least one message.  If MRL < 1 then one can assume that all timing critical messages are transmitted in time.  If MRL is much smaller than 1 then the system is generously dimensioned, maybe one can take a more detailed look in order to save some resources.

Of course, the MRL can also be computed for different service classes separately. For example, demanding an MRL < 1 may be required only for the safety critical messages, while higher values are tolerated for other streams. Obviously, the MRL in the example is 2.5.

Applying the Metrics for Network Optimization

While load-based metrics only provide a rough indication about the system timing and resource utilization, the latency-based metrics provide sound information about the timing quality of a network implementation. Using the relative latency and the message data rates, one can now easily identify the critical messages, and which messages should be reconsidered to improve the design. We can quickly demonstrate this using the above example. To improve the design and its timing quality, we had to reduce the latencies of some messages significantly. The lat ency diagrams helped us identifying the most critical messages quickly.

For the corresponding traffic, we have elevated the VLAN priority (and we required the switch to provide 802.1q VLAN capabilities). This way, we could reduce the latency of critical communication significantly, below the given deadlines. The drawback is of course that other messages may be negatively impacted by this reprioritization. Thus, we executed another timing analysis to see, if the overall system timing was improved by this decision. In our example, there was no negative impact on any other stream (see Figure 8). The optimized system now has an MRL of 0.9 (down from 2.5 originally) and can now be considered sufficiently dimensioned.

We can generalize this way of assessment and optimization into few key steps: On important aspect is the availability of tools that automate as much of this procedure as possible. Without such tools, it will be an academic exercise for timing experts only. With efficient tooling, we can apply the procedure in an industry environment with network designers that have only basic knowledge in timing issues.

Conclusion

Ethernet is about to become the key automotive communication (backbone) technology for the next decades with heterogeneous, mixed traffic including audio, video and control data. One of the top-priority requirements for the broad introduction of Ethernet in vehicles is the early analyzability of the real-time capability of a given Ethernet configuration (and its optimization). In the very near future (at some OEMs already now), Ethernet is transitioning from the research departments into the pre-series developments departments with strong maturity requirements on methods, processes and tools, including timing analysis.

In this paper, we have presented different load and latency metrics for assessing real-time properties for automotive Ethernet networks, and we have demonstrated how these metrics help optimizing Ethernet configurations on a representative use case. We have sketched out a generalized assessment procedure that is used today already by large automotive OEMs such as BMW, Daimler, Volkswagen and others. All these OEMs report that one key step for effective and efficient network timing design is the availability of clear metrics, be it for CAN, FlexRay, Lin, and now Ethernet.

Figure 2 .

 2 Figure 2. Topology of the Example Use Case

Figure 3 .Figure 4 .

 34 Figure 3. Aggregate point-to-point data rate for the example Ethernet system

Figure 5 .

 5 Figure 5. Squeeze load for the example system

Figure 7 .

 7 Figure 7. Relative latency histogram

Figure 1 Collisions on CAN and Ethernet networks only

 collide when they have the same receiver and go through the same outgoing port of a switch.

	The actual arbitration happens inside the
	switches. The switches include buffers to store
	messages during collision periods and transmit
	them later. And they are responsible for selecting
	which one to transmit. In order to answer
	question 4, we need to understand how this
	storing and selecting works. Interestingly, the
	Ethernet standard IEEE 802.3 does not define
	any specific rules for the switches. Just as a
	comparison: CAN and FlexRay define an
	arbitration scheme at the core of the standard,
	while Ethernet does not. This means that each
	standard switch manufacturer can freely choose
	an arbitration rule set, which might not even be
	documented publicly. This renders standard
	Ethernet	unusable	reliable	real-time
	communication, simply because it is unclear
	what happens in the event of collisions.	
	Real-time capable extensions to standard
	Ethernet (with downwards compatibility) have
	been proposed including VLAN (IEEE 802.1q),
	AVB (IEEE 802.1AS, 802.1Qat, 802.1Qav, and
	801.2BA). Other solutions (proprietary and/or
	without downwards-compatibility) include ARINC
	664 (known as AFDX), TTEthernet (from
	TTTech), Ethercat and others, see e.g. [1]. For
	cost and interconnectivity reasons, the
	automotive industry seeks a downward-
	compatible solution which offers (a minimum of)
	real-time predictability, with VLAN and AVB
	being candidates under investigation.	

[6] Streichert, T., Seyler, J. , Schuhmacher, P., Brendle, R.