N
N

N

HAL

open science

Co-simulation of Event-B and Ptolemy I1 Models via

FMI

Jean-Charles Chaudemar, Vitaly Savicks, Michael Butler, John Colley

» To cite this version:

Jean-Charles Chaudemar, Vitaly Savicks, Michael Butler, John Colley. Co-simulation of Event-B and
Ptolemy II Models via FMI. Embedded Real Time Software and Systems (ERTS2014), Feb 2014,

Toulouse, France. hal-02272286

HAL Id: hal-02272286
https://hal.science/hal-02272286v1
Submitted on 27 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02272286v1
https://hal.archives-ouvertes.fr

Co-simulation of Event-B and Ptolemy II
Models via FMI

Jean-Charles Chaudemar!, Vitaly Savicks, Michael Butler, John Colley?

! Institut Supérieur de I’Aéronautique et de 'Espace, France
2 University of Southampton, United Kingdom

1 Introduction

In the framework of model-based design formal modelling, verification and sim-
ulation of safety-critical systems are supported by several methods and tools.
Interfacing these tools often becomes challenging for heterogeneous systems. The
FMI standard enables integration of different simulation tools through artefacts
called Functional Mockup Units (FMU) [1]. The FMI standard is mainly based
on the concept of scalability of the simulation as it deals with heterogeneous
cyber-physical systems. The combination of discrete behaviour and continuous-
time environment is a common case study in hybrid simulation. Moreover, an-
other aspect of the FMI is to enhance the capability of the tools. Thus, a collab-
orative simulation between the Rodin [2] and Ptolemy [3] is leveraged by both
platforms. While Event-B is enhanced by new models of computation of Ptolemy,
Ptolemy leverages the expressivity and properties validation (theorem/invariant
proofs) implemented by Event-B. The main rationale of the co-simulation be-
tween Event-B and Ptolemy relies on the intention of dissimilarity and com-
plementarity of the modelling viewpoints. Event-B provides formal modelling
by specifying conditions, actions and properties that manage discrete event be-
haviour, whereas Ptolemy gives a structural viewpoint in terms of actors, com-
ponents or functions with relation to concerned behaviour. Thus, the association
of Ptolemy and Event-B puts together structural and formal aspects.

This paper focuses on the collaborative simulation of models supported by
both Ptolemy II and Event-B. The ongoing work consists of the design of a
diagrammatic co-simulation surface and its application to a controller case study.

2 Event-B

Event-B is a refinement-based formal method for modelling and analysis of com-
plex safety-critical systems [4]. A system is modelled in Event-B as a collection
of state variables and events (guarded actions) that act on variables. System
properties are specified as invariants on state variables and are formally verified
by deductive proof. The key mechanism of the method is the refinement, i.e.
incremental development from an abstract to a concrete model that splits the
complex task of formal verification into manageable proofs, allowing to detect

the errors as soon as they are introduced along the modelling process. The ex-
tensible Rodin platform aids this process with automatic provers and additional
modelling features from third-party plug-ins. Models can also be validated by
the ProB model checker and animator tool [5].

In general an Event-B model consists of a static context, which contains
constants and azioms, and a dynamic machine that comprises variables (sets,
binary relations, functions, etc.), invariants (constraints on variables that must
hold) and events that model the behaviour. An event may contain parame-
ters, guards (event-enabling conditions) and actions that modify state variables.
Events are atomic (all actions happen instantaneously) and their choice is non-
deterministic, i.e. when multiple events are enabled a single event is selected
non-deterministically.

There may exist relationships in Event-B. A machine can see a context in
order to use its constants. On refinement: 1) a context can extend another con-
text by introducing new constants; 2) a machine can refine another machine by
introducing more details either in the systems state (data refinement) or in the
behaviour (horizontal refinement).

3 Ptolemy II

Ptolemy II is an open source framework for modelling and simulation of cyber-
physical systems. This platform enables the hierarchical composition of compo-
nents for the design of embedded systems. A system component is described by
a set of interfaced actors in interaction. The design of a system is actor-oriented
in Ptolemy [6].

Actors are executable Ptolemy components which have syntax and semantics.
An actor reacts to stimuli (token) at its input port and produces stimuli at
its output port. Different relations could be applied to actors like composition
(hierarchy), or high-order relation (an actor which enables a reduction and a
simplification of a model).

Directors are special components which give meaning to a model. Various
directors are implemented in Ptolemy so as to provide different models of com-
putation and determine how actors communicate. The execution of actors is
composed of three main phases:

— Setup phase divided in two steps: preinitialise and initialise. The preinitialise
step is performed once at the very beginning of the execution. This step
relates to a static analysis of the actor’s actions and communication. It is
just followed by the initialise step. The latter sets initial values to data and
resets local state.

— Iterate phase or sequence of iterations divided into three steps: prefire, fire,
postfire. The prefire step enables to meet preconditions related to the exe-
cution termination. The fire step reads the input data, computes the actor’s
behaviour and produces output data. Then the postfire step updates the
state. Iteration is resumed possibly several times to reach a steady state.

— Wrapup phase: this phase ensures that the execution is properly terminated.

The execution of an actor is enabled through the implementation of a model
of computation (MoC) associated with this actor. The MoC describes how the
actor interaction is related to other actors. Indeed the MoC defines the commu-
nication semantics.

4 Co-simulation Approach

The FMI standard relies on the development of artefacts called Functional
Mockup Units (FMU). An FMU is a zipped file, which contains an xml docu-
ment describing the variables and capabilities of the model, and a dynamic-link
library (dll) implementing the behaviour performed by the tool that simulates it.
We are using the FMI standard and the structure of the FMU to bundle Ptolemy
models for co-simulation framework developed in the Rodin platform [7].

Our approach to perform a co-simulation between Rodin and Ptolemy con-
sists of several steps. First, we develop an Event-B model of controller in Rodin
and a Ptolemy model of the environment behaviour we want to co-simulate.
The latter model consists of a composite actor and sub-actors coordinated by
the Synchronous Data Flow (SDF) director. The model takes an input signal,
generated by the model of controller, and produces a dependant feedback out-
put signal. The controller model is a standard Event-B machine extended with
modal semantics using the state machines plug-in for Rodin [§].

As a second step we generate C code from the Ptolemy model via automatic
code generator module and transform it into a .dll using FMU SDK?. DLL and
corresponding model description XML are bundled into an FMU file.

Next we import the FMU into the Rodin co-simulation environment together
with Event-B model and compose two models into a component graph. The
component composition is achieved using the Component diagram plug-in for
Rodin — a front-end of the co-simulation framework, developed as part of the
ADVANCE project?.

Finally we implement the FMI master algorithm in Groovy scripting language
on top of ProB animator for Event-B and integrate it with the composition
graph model. This algorithm initialises and coordinates the simulation process
between two components, as well as provides the simulation output. The Event-
B component (controller) is coordinated by the master via ProB API, while the
Ptolemy component (environment) is coordinated using FMI.

5 AOA Sensor Processing

5.1 Case Study

Traditionally in aeronautics, safety-critical systems are based on a rigorous dis-
similarity applied to the architectures to avoid common points of failure. One of

3 FMU SDK source code is available at https://github.com/cxbrooks/fmusdk
* ADVANCE: EU Project IP-287563, http://www.advance-ict.eu

Groovy EMI Library (DLL)

—@— Ptolemy II
4@)— Event-B

Fig. 1. Co-simulation process in Rodin

Master

the widely used technics is the COM/MON architecture which consists of two
separated command and monitoring units [9]. All input and output data are
monitored permanently and only the command unit sends the command data
to actuators under the control of the monitoring unit. This dual behaviour is of
interest in the application of the co-simulation between Ptolemy and Event-B.
The environment and the command data generation are devoted to Ptolemy
model whereas Event-B model is in charge of the monitoring unit and controls
the output data to be sent.

Likewise our case study extracted from a J. Rushby’s presentation [10] relates
to the utilisation of three Angle of Attack (AOA) sensors in the Flight Control
System (FCS). As safety is the first objective that is required for aircraft avionics
systems, these three sensors are combined in an algorithm which provides the
most relevant value of measurement. The algorithm is synthetically based on
the computation of the median of the three measures so as to detect erroneous
values and erroneous devices, along with on the computation of the average value
between two of the three sensors.

From this illustration, our study consists in modelling the strategy of com-
bination of the sensors by distinguishing an AOA sensors algorithm modelled in
Ptolemy and the same algorithm modelled in Event-B.

5.2 Ptolemy Model

The Ptolemy model of AOA sensors consists of a SDF MoC as a first abstrac-
tion in order to only focus on the specification of the algorithm part (figure 2).
Indeed the time aspect is modelled by series of iterations based on the measure-
ment sampling frequency of 20Hz. Thus to represent a delay of 1.2 seconds, 24
iterations are performed. The first CompositeActor mainly describes the process-
ing for the detection of erroneous measures: the median of the three measures
is computed, then the difference between each measure and the median is com-
pared to a threshold; the result of this comparison indicates if the measure is
erroneous or not. This processing is followed by the F'SMActor for each sensor.
The FSMActor enables to identify a erroneous sensor after 1 second of erroneous
measures sent by this sensor.

Similarly a second CompositeActor2 follows the previous and deals with the
strategy about the final AOA measure (figure 3). Its output is either the current
mean of sensor 1 and sensor 2 or the previous mean held during 1.2 seconds. It is

provided by the Case actor associated with the FSMActor. The CompositeActor2
behaviour is also modelled in Event-B.

FSMActor2
i CCodeGenerator

SDF Director
Double click to @
generate co .

FSMActor3
Ramp FSMActor " @
ngger,
SE:’:E ‘ b—p @ FSMActord

Const

vggv@

Const2

—’ (E 1 >
l p-CompositeActor2
Composite Actor [g

Fig. 2. Ptolemy model of AOA processing

port

port2 l Case Display
port3 f E
port?
portd
Expression FSMACtor
port5 in1 || in2 @

Fig. 3. Modelling of output strategy in CompositeActor2

5.3 Event-B Controller

The controller actor of the Ptolemy model has been duplicated, which is a stan-
dard practice in aeronautics [9], by an Event-B model. The model has been
implemented using a state machine plug-in for Rodin [8], which allowed the con-

trol flow, i.e. the ordering of events, to be specified. Two state machines have
been defined in the controller:

— controlSM (Figure 4(a)), which defines the control flow from an interface
(to master) perspective, with a readInputs event for reading sensor inputs

and two output events useCurrent and usePrev that model current and
previous mean output, respectively.

— modeSM (Figure 4(b)), which defines the modal semantics of the controller
and models a delay in the output. The controller operates in either sCurrent
or sPrevious mode, switching to the latter when a threshold is exceeded,
and to the former after 1.2 seconds since the threshold crossing.

. Init 5 sControl
INITIALISATION = readlnouts ——— switchPrey ——
> ' INITIALISATION_[SCurrent S (AL
‘ T T 7 switchCurrent '
useCurrent
usePrev useCurrent usePrey
(a) Control (b) Mode

Fig. 4. State machines of the Event-B controller

The delay of 1.2 seconds is modelled by a variable modeCounter that is set on
a switchPrev execution and is decremented by usePrev event until it reaches 0,
at which point a switchCurrent event becomes enabled. The Event-B code for
switch events is given below. Note that sPrevious and sCurrent are modelled
as boolean variables (translated from the state machines automatically).

event switchPrev
where sCurrent = TRUFE
medianS1 > THRESHOLD V medianS2 > THRESHOLD
then sCurrent := FALSFE
sPrevious := TRUFE
modeCounter .= DELAY
end

event switchCurrent
where sPrevious = TRUE
modeCounter = 0
then sPrevious := FALSE
sCurrent := TRUFE
end

5.4 Simulation Master

Our simulation master, displayed below, is written in the Groovy language to
facilitate the scripting capabilities of the ProB animator tool, which is used in
the Rodin for animating (simulating) Event-B models. The design of the master
is based on a proposed algorithm demonstrated in the FMI for Co-simulation
specification [11].

import de.prob.cosimulation.FMU

ctrl = api.eventb_load("./eventBControl.bum") as Trace
ctrl = ctrl.anyEvent(); // setup constants
ctrl ctrl.anyEvent(); // initialize machine

fmu = new FMU("./ptolemySensors.fmu")
fmu.initialize(0.0, 30.0)

time = 0.0
decimals = 2

while(time < tStop) {
// read sensor outputs
mdsl = (fmu.getDouble("vl") * decimals) as int // |median - s1i|
mds2 = (fmu.getDouble("v2") * decimals) as int // |median - s2|
mn = (fmu.getDouble("v3") * decimals) as int // mean

// write control input
ctrl = ctrl.readInputs("mdsl="+mds1+"&mds2="+mds2+"&mn=""+mn)

// simulate a step

while (!ctrl.current.edge.name in ["useCurrent","usePrev"])
ctrl = ctrl.anyEvent ()

time = fmu.doStep(time, 1);

The key aspects of the master script are the passing of the sensor values,
read from the Ptolemy FMU, to the Event-B controller via readInputs event
parameters, and the semantics of a simulation step of the Event-B component
— a non-deterministic execution of events until one of the step-finishing events
(useCurrent or usePrev) is executed. The step of an FMU component is per-
formed by a standard FMI call doStep. Another important aspect is the treat-
ment of the Real-typed signals by Event-B, which currently does not support
the Real type [12]. Real values from the FMU are converted to Event-B integers
by agreed decimal point shift.

5.5 Co-Simulation Results

A successful simulation has been carried out for 30 seconds with a step size 1.
The results are shown in Figure 5.

The specification of the system defines the operational frequency of 20Hz,
which we have mapped to 20 steps. Consequently, the delay of the mean value
for 1.2 seconds was modelled by 24 steps, visible as a meanOut signal on the
plot. Notice that the actual delay is 25 steps due to a delay of the control signal
for 1 step, caused by the discrete data synchronisation and simplistic algorithm
of the master, i.e. a mean signal received by the controller at t=N is processed

ptolemySensorsvl —+—
1 ptolemySensorsv? —s—

ptolemySensorsv3 —#—
eveﬂthContraHeLmeanOut —e—

0 5 10 15 20 25 30

Fig. 5. Co-simulation output (simulation time = 30s, step size = 1s)

and output at t=N+1. This behaviour can be improved by adapting a predictive
control logic and a master with a rollback and step-size prediction [13].

6 Conclusions and Outlook

In this work we have tried to demonstrate the proof of concept of a co-simulation
between a well-known formalism, such as Event-B, and a heterogeneous simu-
lation tool Ptolemy II. A mixture of domain specific modelling and simulation
tools, which is based on the rigorous analysis approaches for verifying safety and
reliability constraints, is arguably an essential technology in the face of the de-
velopment of cyber-physical systems [14-16]. Our simulation results have showed
that an integration is possible, even more advantageous, as it is based on the
tool-independent FMI standard, which in theory allows a Ptolemy FMU to be
used in any other FMI-compliant simulator. The results have also revealed the
existing problems and limitations of both tools, namely limited support of di-
rectors and actors by the Ptolemy’s C code generator and a strong requirement
for Real type support in the Event-B language. We hope that these issues will
be addressed as the tools develop.

This ongoing work highlights the ability of the FMI co-simulation between
Ptolemy and Event-B, although both tools do not provide a support for FMI
standard yet. The main difficulties have been to generate the FMU file from
Ptolemy model manually since its code generation component is working par-
tially. Therefore, several Ptolemy models have been carried out to ease the code
generation.

Within the framework of the FMI co-simulation the outlook is twofold: to
take into account continuous time and to implement the verification of combined
system properties.

References

1. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauf}, C., Elmqvist, H., Jung-
hanns, A., Mauss, J., Monteiro, M., Neidhold, T., et al.: The functional mockup

10.

11.

12.

13.

14.

15.

16.

interface for tool independent exchange of simulation models. In: Modelica’2011
Conference, March. (2011) 20-22

Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. International journal on
software tools for technology transfer 12(6) (2010) 447-466

Brooks, C., Lee, E.A., Liu, X., Zhao, Y., Zheng, H., Bhattacharyya, S.S., Cheong,
E., Goel, M., Kienhuis, B., Liu, J., et al.: Ptolemy II-heterogeneous concurrent
modeling and design in Java. (2005)

Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
International Journal on Software Tools for Technology Transfer 10(2) (2008) 185—
203

Lee, E.A.: Heterogeneous actor modeling. In: Proceedings of the ninth ACM
international conference on Embedded software. EMSOFT ’11, New York, NY,
USA, ACM (2011) 3-12

Savicks, V., Bendisposto, J., Butler, M., Colley, J.: Co-simulation of Event-B and
Continuous Models in Rodin. In Butler, M., Hallerstede, S., Waldén, M., eds.:
Proceedings of the 4th Rodin User and Developer Workshop. Volume 18 of TUCS
Lecture Notes., TUCS (2013)

Savicks, V., Snook, C., Butler, M.: Event-B Wiki: Event-B Statemachines. http:
//wiki.event-b.org/index.php/Event-B_Statemachines (2011)

Sghairi, M., Aubert, J.J., Brot, P., De Bonneval, A., Crouzet, Y., Laarouchi, Y.:
Distributed and Reconfigurable Architecture for Flight Control System. In: Digital
Avionics Systems Conference, 2009. DASC ’09. IEEE/ATAA 28th. (2009) 6.B.2—
1-6.B.2-10

Rushby, J.: Safety, Fault-tolerance, Verification, and Certification for Embedded
Systems. http://chess.eecs.berkeley.edu/eecs149/lectures/Rushby-SFVC.
pdf (2009)

MODELISAR: Functional Mock-up Interface for Co-Simulation, Version
1.0. https://svn.modelica.org/fmi/branches/public/specifications/FMI_
for_CoSimulation_v1.0.pdf (October 2010)

Abrial, J.R., Su, W., Zhu, H.: Formalizing hybrid systems with Event-B. In:
Abstract State Machines, Alloy, B, VDM, and Z. Springer (2012) 178-193
Broman, D.; Brooks, C., Greenberg, L., Lee, E.A.,; Masin, M., Tripakis, S., Wet-
ter, M.: Determinate composition of FMUs for co-simulation. In: Proceedings of
the Eleventh ACM International Conference on Embedded Software, IEEE Press
(2013) 2

Lee, E.A.: Cyber physical systems: Design challenges. In: International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing
(ISORC). (May 2008) Invited Paper.

Rajkumar, R., Lee, 1., Sha, L., Stankovic, J.: Cyber-physical systems: the next
computing revolution. In: Proceedings of the 47th Design Automation Conference,
ACM (2010) 731-736

Marwedel, P.: Embedded and cyber-physical systems in a nutshell. (2010)

