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Abstract
This paper introduces a novel partitioning algo-
rithm for 3D polygonal meshes. The proposed
approach is based on protrusion conquest which,
for a given model, takes into account both the
computed protrusion and the connectivity. The
only constraint on the input mesh is that it must
consist of one connected component. Our algo-
rithm provides a good way to decompose the
mesh into preceptually significant parts. The
parts are further modeled by ellipsoids and a
connectivity graph between them. This seman-
tic representation is compliant to the perceptual
shape description defined by the emergent stan-
dard MPEG-7.
Keywords: Part-based representation, protru-
sion, 3D meshes

1 Introduction

3D shape analysis is gaining more and more
interest, with the growing number of 3D ap-
plications. Shape analysis can improve 3D
processing from a low semantic level, such as
indexation, to a higher semantic level such as
shape recognition and classification. Further-
more, since shape is a key property of each ob-

ject, the advances in shape analysis can be par-
ticularly helpful for analyzing and understand-
ing visual content. Following the recent ad-
vances in 2D multimedia analysis where domain
knowledge, often defined by ontologies, is used
to drive semantics extraction [1], a similar ap-
proach can be applied to 3D processing, as long
as the appropriate concepts to account for the
3D space domain modeling are defined. In this
paper, we focus on polygonal meshes, which is
the most frequent representation for 3D shapes.
The design of a mesh can be done with differ-
ent approaches (3D scanners, hand-made) and as
a result the produced meshes can have different
properties. Hence, 3D mesh analysis approaches
have to deal with meshes which can be non-
closed, non-manifold, or even non-orientable.
Most of the previously existing approaches as-
sume that the input mesh is manifold, which is
a severe restriction when considering the large
number of models available on the internet that
do not have this property. In this paper, we pro-
pose a robust polygonal mesh partitioning algo-
rithm, able to process any 1-connected compo-
nent polygonal mesh. Based on protrusion con-
quest, this scheme needs only one intuitive para-
meter which is robust, since all the experiments
shown in this paper are done with the same pa-
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rameter value. The paper is organised as fol-
lows: In Section 2 we describe some previous
approaches for 3D mesh partitioning. In section
3, the protrusion computation for 3D polygonal
meshes is explained. Section 4 explains how
the protrusion was used by previous approaches,
and why this way was not suitable for surface
segmentation by itself. In Section 5 the protru-
sion conquest algorithm is described in details.
Section 6 shows some experimental results ob-
tained on a set of various meshes. Finaly, section
7 concludes and gives some insight about future
works.

2 Previous Works

The way human decomposes objects into parts is
a complex process. According to Hoffman and
Singh [2] minimal rule theory, three main fac-
tors are relevant for such a task: the relative sizes
of the parts, their protrusion, and the strength of
their boundaries. A lot of different works pro-
posed solutions to decompose 3D meshes into
visually significant parts.

Mangan and Whitaker [3] segment the re-
gions with a watershed algorithm driven by local
curvature. Some approaches followed the min-
ima rule by identifying parts boundaries as con-
cave regions (regions, with local negative curva-
ture minima). Wu and Levine [4] simulated the
repartition of 3D charges over the surface, to fur-
ther localize parts boundaries in regions of local
minimal charge distribution. Page et al. [5] also
proposed a fast-watershed algorithm following
the minima rule, in contrast with [3].

Kim et al. [6] convert the surface mesh into
a volumetric representation. The volume is fur-
ther decomposed using mathematical morphol-
ogy.

Hilaga et al. [7] proposed a quantitative pro-
trusion computing scheme for shape matching
based on Multiresolution Reeb Graph. This pro-
trusion criterion is used by Lin et al. [8] with
boundary strength constraints to segment the
mesh according to the minimal rule.

Katz and Tal. [9] decompose the mesh in a
hierarchical approach, with the help of a fuzzy
algorithm. Dey et al. [10] extract 2D and 3D
features using flow discretization.

Note that a vast majority of previous works

process polygonal meshes assuming that they
are 2-manifolds. Also, some of them can only
process meshes without holes.

3 Protrusion Computation

In this paper, we approximate the local protru-
sion of 3D shapes as done in [7]. This ap-
proach is based on the computation of the cri-
terionµ(v), defined as:

µ(v) =

∫
p∈S

g(v, p)dS (1)

for each vertexv of the mesh.g(v, p) is the
geodesic distance betweenv and a pointp on the
surfaceS. An approximation ofg(v, p) is com-
puted with Dijkstra’s algorithm [11]. For a given
vertexv, µ(v) will reflect its distance to all other
points of the mesh; this is a usefull quantitative
indication to know wether the vertex belongs to
an ”extremity” of the mesh or to its ”center”. As
proposed in [7], to reduce the computationnal
cost of equation (1), we select a set ofN base
verticesbi to compute the approximative protru-
sion defined by:

µ(v) =
∑

i

g(v, bi)area(bi) (2)

wherearea(bi) is the area of the mesh part
associated tobi. The base vertices selection is
done using a uniform vertex clustering scheme
similar to [12]. This clustering scheme distrib-
utes the base vertices uniformly over the surface
to lower the error caused by such subsampling.
For all the experiments shown in this paper, we
choseN = 150. Figure 1 shows an example
of clustering and protrusion computation for the
dinosaur model.

Finaly, for a given model, we compute the
cube root of the computed protrusion (as equa-
tion (1) has dimension[l]3) and we normalize
the result between 0 and 1. Computing the cube
root has no effect on the protrusion conquest al-
gorithm, but provides a good enhancement for
the significant regions filtering step defined in
section 5.3
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Figure 1: example of protrusion computing for
the dinosaur model. Left: the results
of the clustering scheme for the bases
vertices selection. Right: the resulting
protrusion (dark: low protrusion val-
ues, bright: high values)

4 The protrusion quantization
issue

Once the protrusion is computed, one can ex-
tract the different parts of the mesh. Most pre-
vious works using equation (1) such as [7] and
[13] aim to index the 3D models for retrieval ap-
plications. These previous works used to quan-
tize the protrusion values in a multiresolution
approach, and create regions according to this
quantization. From this clustering procedure,
the authors create the multiresolution connec-
tivity graph, the so-called Multiresolution Reeb
Graph (MRG), which is further processed for
3D retrieval.

Unfortunately, such a construction is not well
suited for 3D segmentation, because the com-
puted quantization may produce regions non
suitable for segmentation. Figure 2 shows two
examples of protrusion quantization (8 levels)
for the Dinosaur model, and for a Left Ventricle
model. While the Left Ventricle is a geomet-
ricaly simple model with a relatively uniform
sampling, the constructed graph has a complex
connectivity. Note that here, the graph construc-
tion is not theoretically correct, as for a genus
0 surface, no loops shold occur in the graph.
But we constrained the graph construction to use
only the connectivity between vertices, to avoid
problems with non manifold meshes.

Figure 2: examples of protrusion quantization
(left) and Graph construction (right):
the case of the Dinosaur model (top)
is simple, and its corresponding graph
matches the visual aspect of the shape.
On the other hand, the second model
(bottom) has a simple shape, but its
graph representation exhibits a com-
plex connectivity which may be prob-
lematic for further processing

Moreover, the constructed mesh partition may
not be faithfull to human visual perception. As
an example, the graph constructed from the Di-
nosaur model exhibits oversegmentation on the
legs (several nodes for each leg) and the bound-
aries of the created regions do not match the
boundaries that one human being would visually
expect (see figure 3 for a close-up view of the di-
nosaur legs). This problem comes from the fact
that the protrusion quantization is uniform. To
solve this problem, one could try to adjust the
quantization steps adaptively to the model car-
acteristics, but this could be a hard task. In sharp
contrast with previous works, we propose a new
approach, theprotrusion conquest. The novelty
of this approach is that it avoids a quantization
step, and the only tuning parameter is a very in-
tuitive threshold.
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Figure 3: close-up view of the Dinosaur legs
segmentation (uniform quantization)

5 Protrusion Conquest

5.1 Outline

To solve the quantization issue, we propose an
algorithm which segments the mesh more sim-
ilarly to the smooth Reeb graph definition [14]
than the discrete one. This algorithm is also
related to the split tree construction defined in
[15], which is an intermediate step to build con-
tour trees. Contour trees have been defined for
scalar fields and are related to Reeb graphs. Our
approach is decomposed into three steps: pro-
trusion conquest, selection of significant regions
and splitting the center regions. These steps
are detailed in the following sections. Figure 4
shows an example of our approach on a 2D syn-
thetic object.

5.2 A priority and conquest algorithm

The main step of our approach is the protrusion
conquest. This algorithm is a variation of Carr
et al. split tree construction [15]. The split tree
is constructed by analysing how the components
of C, which is defined as

C = {p ∈ S|µ(p) ≥ x}, (3)

evolve while decreasing the parameterx. In this
paper,µ(p) denotes the protrusion computed in
section 3. Note that although this tree is called a
split tree, while decreasingx, the components of
C will actually merge. A tree nodeNi is a point
where several components merge for a given
valueµ(Ni). Note that here we associate a tree
node to a geometrical vertex of the surface, as-
suming that several regions can simultaneously

(a) (b)

(c) (d)

Figure 4: the algorithm on a 2D example: (a)
original shape, (b) after protrusion
conquest (7 regions), (c) after signif-
icance filtering (4 regions), (d) after
center regions splitting (6 regions)

merge at only one vertex. This is not an issue,
as the proposed algorithm is discrete and we
process the vertices of the mesh one at a time.
A tree edgeJβ

α corresponds to a connected part
of the mesh, adjacent toNα andNβ for which
every pointp satisfiesµ(Nα) ≤ µ(p) ≤ µ(Nβ)
(assuming thatµ(Nα) ≤ µ(Nβ)). The surface
can then be segmented according to the edges
Jβ

α . Figure 5(a) shows such a segmentation on
the horse model. Although the model is geomet-
rically smooth, a lot of small regions are con-
structed. This is mainly due to the protrusion
computation, which is only an approximation
and exhibits a large number of local maxima.

We solve this issue by modifying the previ-
ous algorithm: while decreasing parameterx of
equation (3), if several components meet at a
given pointp, we calln(p) the set of these re-
gions. Instead of creating a new region and stop-
ing the evolution of the setn(p), we select the
biggest regionrbig of n(p) in terms of area, and
stop the evolution of the other ones. The area
of rbig will be increased by the sum of the other
regions contained inn(p). This provides a good
means to merge the different created regions.
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for all verticesvi do
pushvi into Queue with priority = µ(vi)

end for
while Queue not emptydo

pop a vertexv from Queue

if |n(v)| = 0 then
Create a new regionrnew

SetFocus[rnew] = rnew

SetClass[v] = rnew

end if
if |n(v)| = 1 then

SetClass[v] = focus(n(v))
end if
if |n(v)| > 1 then

Find the regionrbig in n(v) with the
biggest area
SetClass[v] = Focus[rbig]
for all regionsrj ∈ n(v) do

SetFocus[rj ] = rbig

end for
Update area ofrbig

end if
end while

Table 1: protrusion conquest pseudo-code

Table 1 presents the pseudo-code for the pro-
trusion conquest, assuming that the protrusionµ

has already been computed.Queue is a priority
queue. n(v) is the set of regions adjacent to a
vertexv. |n(v)| is the number of regions adja-
cent tov. As an example, if no direct neighbour
of v is associated to a region, thenn(v) = ∅ and
|n(v)| = 0. Class[] is an array which associates
every vertex to a specific region (it is the output
of the algorithm). Focus[] is an array storing
the associations of the regions. It is useful to
stop the growth of some regions and to let some
others grow. Figure 5(b) shows the segmenta-
tion created with our algorithm. Note that there
are still small regions due to the noise present in
the protrusion, but the removal of these regions
is easy, as explained in the following section.

5.3 Filtering out non significant regions

To keep only the significant segmented regions,
we apply a simple filtering step, which is the
only step needing an input parameter. Basically,
we remove all the regions whom significance is
lower than a certain percentage of the most sig-

nificant region. The significance is chosen ac-
cording to the protrusion: For each created re-
gion Rk, we locate the verticesvmax

k andvmin
k

having respectively the maximal and minimal
protrusion value. Then for each region, we com-
pute

∆k = µ(vmax
k ) − µ(vmin

k ) (4)

∆k gives a good estimation of the significance of
the regionRk. The filtering consists in removing
all the regions for which

∆k < PRatio.∆
max (5)

where∆max is the maximum among the val-
ues∆k. PRatio is the input parameter. Note that
for all the experiments shown in this paper (fig-
ure 6 excluded) we usedPRatio = 10%. Af-
ter this cleaning step, the vertices belonging to
deleted regions are no more associated to any
region. We associate them to the nearest regions
with a simple region growing algorithm. Figure
5(c) shows the results on the horse model after
the filtering step.

5.4 splitting center regions

Since the protrusion conquest algorithm can be
considered to be a merging algorithm for regions
created with the split tree construction, some
”extremities” of the mesh will be merged with
”center” regions. As an example, for the horse
model shown in figure 5(c), the rear left leg has
been merged with the back of the horse, and
the head and the neck has been merged with the
horse body. We have to split these regions, in
order to make the difference between ”extrem-
ities” (the head+neck and the rear left leg) and
”center” (body and back). The regions to be split
are the regions with more than one neighbour
region. To choose how to split them, we pro-
vide a simple approach: for a regionRk to be
split, several vertices are boundary vertices (they
are neighbours to other regions). Among these
vertices, we pick the vertexvsplit

k with maximal
protrusion. Then all the verticesv in Rk satisfy-
ing

µ(v) > µ(vsplit
k ) (6)

are associated to a new region. Figure 5 shows
the segmentation after this final step for the
horse model. Finally, the extremities of this
model are well separated from the center re-
gions.
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(a) (b) (c) (d)

Figure 5: segmenting the horse model: (a) regions created with the split tree approach of Carr et al.,
(b) protrusion conquest, (c) after filtering out regions with low significance, (d) after the
splitting step

5.5 Complexity

The algorithm complexity is inNlog(N), N

being the number or vertices of the processed
model. Most of the processing time is dedicated
to the computation of the protrusionµ(v). As an
example, our implementation segments a model
with about 50k vertices in 40 seconds with an
Intel Pentium III runing at 1GHz.

6 Results

Figure 7 shows the results obtained on a
set of various meshes, from synthetic ones
(Octoflower, Mushroom) to models acquired
with 3D scanners.

For each mesh, the left image corresponds
to the segmentation, and the right image cor-
responds to a perceptual 3D shape description
of the model, proposed in [16]. To compute
this representation, we take each segmented re-
gion independently, and represent it by an el-
lipsoid, which features can easily be computed
with the 3D covariance matrix of the region ver-
tices. By providing the connectivity graph of the
constructed regions, we build a description of
the models which is compliant to the descriptors
defined in [16], with only one difference: our
description is surface-based while the initial de-
scriptors are volume-based. This representation
has also proven its efficiency for 3D retrieval ap-
plications [17].

Visually, the provided representations follow
what we could expect from a 3D shape segmen-
tation algorithm. Although this segmentation
is not the most precise one, it is very robust,
and can be applied to a wide range of polygo-

nal models, may they have holes, handles or non
manifold vertices or edges.

Figure 6 shows 4 different ellipsoidal repre-
sentations for the cow model. These results were
obtained with 4 different values ofPRatio: 0.04,
0.12, 0.2, 0.28. The number of regions (or ellip-
soids) is respectively 16, 12, 10, 8. One can see
that the main features of the model are kept, and
while increasingPRatio, the small parts (horns,
ears) dissapear.

7 Conclusion and perspectives

We proposed in this paper a new segmentation
algorithm for 3D polygonal meshes for percep-
tually significant parts representation. Our ap-
proach is driven by only one intuitive input pa-
rameter and can process polygonal meshes with-
out any constraint on their topology.

Further works include the extension of this
method for 3D models made of several discon-
nected components, by selectively connecting
the components altogether.

We also explore the possibility of extend-
ing the presented approach to an ontology-
driven 3D shape classification and parts recog-
nition framework. The knowledge infrastructure
would consider both kinds of information asso-
ciated with visual content, namely the low-level
features that can be automatically extracted and
the underlying semantics. The ontology would
formally define the syntax and semantics of the
examined visual features and additionally asso-
ciate them with the conceptualization of the 3D
objects of interest. Enriching the knowledge
base with appropriate prototypes for the mod-
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Figure 6: the cow model represented by ellipsoids. The values ofPratio are respectively : 0.04, 0.12,
0.2, 0.28

eled concepts is adequate for extracting mean-
ingful descriptions with respect to the examined
domain.
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Figure 7: Results on a set of various meshes: segmentation and semantic representation with linked
ellipsoids
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