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A polygonal mesh partitioning algorithm based on protrusion conquest for perceptual 3D shape description
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This paper introduces a novel partitioning algorithm for 3D polygonal meshes. The proposed approach is based on protrusion conquest which, for a given model, takes into account both the computed protrusion and the connectivity. The only constraint on the input mesh is that it must consist of one connected component. Our algorithm provides a good way to decompose the mesh into preceptually significant parts. The parts are further modeled by ellipsoids and a connectivity graph between them. This semantic representation is compliant to the perceptual shape description defined by the emergent standard MPEG-7.

Introduction

3D shape analysis is gaining more and more interest, with the growing number of 3D applications. Shape analysis can improve 3D processing from a low semantic level, such as indexation, to a higher semantic level such as shape recognition and classification. Furthermore, since shape is a key property of each ob-ject, the advances in shape analysis can be particularly helpful for analyzing and understanding visual content. Following the recent advances in 2D multimedia analysis where domain knowledge, often defined by ontologies, is used to drive semantics extraction [START_REF] Dasiopoulou | An ontology framework for knowledge-assisted semantic video analysis and annotation[END_REF], a similar approach can be applied to 3D processing, as long as the appropriate concepts to account for the 3D space domain modeling are defined. In this paper, we focus on polygonal meshes, which is the most frequent representation for 3D shapes. The design of a mesh can be done with different approaches (3D scanners, hand-made) and as a result the produced meshes can have different properties. Hence, 3D mesh analysis approaches have to deal with meshes which can be nonclosed, non-manifold, or even non-orientable. Most of the previously existing approaches assume that the input mesh is manifold, which is a severe restriction when considering the large number of models available on the internet that do not have this property. In this paper, we propose a robust polygonal mesh partitioning algorithm, able to process any 1-connected component polygonal mesh. Based on protrusion conquest, this scheme needs only one intuitive parameter which is robust, since all the experiments shown in this paper are done with the same pa-rameter value. The paper is organised as follows: In Section 2 we describe some previous approaches for 3D mesh partitioning. In section 3, the protrusion computation for 3D polygonal meshes is explained. Section 4 explains how the protrusion was used by previous approaches, and why this way was not suitable for surface segmentation by itself. In Section 5 the protrusion conquest algorithm is described in details. Section 6 shows some experimental results obtained on a set of various meshes. Finaly, section 7 concludes and gives some insight about future works.

Previous Works

The way human decomposes objects into parts is a complex process. According to Hoffman and Singh [START_REF] Hoffman | Salience of visual parts[END_REF] minimal rule theory, three main factors are relevant for such a task: the relative sizes of the parts, their protrusion, and the strength of their boundaries. A lot of different works proposed solutions to decompose 3D meshes into visually significant parts.

Mangan and Whitaker [START_REF] Mangan | Partitioning 3D surface meshes using watershed segmentation[END_REF] segment the regions with a watershed algorithm driven by local curvature. Some approaches followed the minima rule by identifying parts boundaries as concave regions (regions, with local negative curvature minima). Wu and Levine [START_REF] Wu | 3d part segmentation using simulated electrical charge distributions[END_REF] simulated the repartition of 3D charges over the surface, to further localize parts boundaries in regions of local minimal charge distribution. Page et al. [START_REF] Page | Perception-based 3d triangle mesh segmentation using fast marching watersheds[END_REF] also proposed a fast-watershed algorithm following the minima rule, in contrast with [START_REF] Mangan | Partitioning 3D surface meshes using watershed segmentation[END_REF].

Kim et al. [START_REF] Kim | Shape decomposition scheme by combining mathematical morphology and convex partitionning[END_REF] convert the surface mesh into a volumetric representation. The volume is further decomposed using mathematical morphology.

Hilaga et al. [START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3d shapes[END_REF] proposed a quantitative protrusion computing scheme for shape matching based on Multiresolution Reeb Graph. This protrusion criterion is used by Lin et al. [START_REF] Sean Lin | Visual-salience-guided mesh decomposition[END_REF] with boundary strength constraints to segment the mesh according to the minimal rule.

Katz and Tal. [START_REF] Katz | Hierarchical mesh decomposition using fuzzy clustering and cuts[END_REF] decompose the mesh in a hierarchical approach, with the help of a fuzzy algorithm. Dey et al. [START_REF] Dey | Shape segmentation and matching with flow discretization[END_REF] extract 2D and 3D features using flow discretization.

Note that a vast majority of previous works process polygonal meshes assuming that they are 2-manifolds. Also, some of them can only process meshes without holes.

Protrusion Computation

In this paper, we approximate the local protrusion of 3D shapes as done in [START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3d shapes[END_REF]. This approach is based on the computation of the criterion µ(v), defined as:

µ(v) = p∈S g(v, p)dS (1) 
for each vertex v of the mesh. g(v, p) is the geodesic distance between v and a point p on the surface S. An approximation of g(v, p) is computed with Dijkstra's algorithm [START_REF] Dijkstra | A note on two problems in connection with graphs[END_REF]. For a given vertex v, µ(v) will reflect its distance to all other points of the mesh; this is a usefull quantitative indication to know wether the vertex belongs to an "extremity" of the mesh or to its "center". As proposed in [START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3d shapes[END_REF], to reduce the computationnal cost of equation (1), we select a set of N base vertices b i to compute the approximative protrusion defined by:

µ(v) = i g(v, b i )area(b i ) (2) 
where area(b i ) is the area of the mesh part associated to b i . The base vertices selection is done using a uniform vertex clustering scheme similar to [START_REF] Valette | Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening[END_REF]. This clustering scheme distributes the base vertices uniformly over the surface to lower the error caused by such subsampling. For all the experiments shown in this paper, we chose N = 150. Figure 1 shows an example of clustering and protrusion computation for the dinosaur model.

Finaly, for a given model, we compute the cube root of the computed protrusion (as equation (1) has dimension [l] 3 ) and we normalize the result between 0 and 1. Computing the cube root has no effect on the protrusion conquest algorithm, but provides a good enhancement for the significant regions filtering step defined in section 5.3 

The protrusion quantization issue

Once the protrusion is computed, one can extract the different parts of the mesh. Most previous works using equation ( 1) such as [START_REF] Hilaga | Topology matching for fully automatic similarity estimation of 3d shapes[END_REF] and [START_REF] Tung | Augmented reeb graphs for content-based retrieval of 3d mesh models[END_REF] aim to index the 3D models for retrieval applications. These previous works used to quantize the protrusion values in a multiresolution approach, and create regions according to this quantization. From this clustering procedure, the authors create the multiresolution connectivity graph, the so-called Multiresolution Reeb Graph (MRG), which is further processed for 3D retrieval. Unfortunately, such a construction is not well suited for 3D segmentation, because the computed quantization may produce regions non suitable for segmentation. Figure 2 shows two examples of protrusion quantization (8 levels) for the Dinosaur model, and for a Left Ventricle model. While the Left Ventricle is a geometricaly simple model with a relatively uniform sampling, the constructed graph has a complex connectivity. Note that here, the graph construction is not theoretically correct, as for a genus 0 surface, no loops shold occur in the graph. But we constrained the graph construction to use only the connectivity between vertices, to avoid problems with non manifold meshes. On the other hand, the second model (bottom) has a simple shape, but its graph representation exhibits a complex connectivity which may be problematic for further processing Moreover, the constructed mesh partition may not be faithfull to human visual perception. As an example, the graph constructed from the Dinosaur model exhibits oversegmentation on the legs (several nodes for each leg) and the boundaries of the created regions do not match the boundaries that one human being would visually expect (see figure 3 for a close-up view of the dinosaur legs). This problem comes from the fact that the protrusion quantization is uniform. To solve this problem, one could try to adjust the quantization steps adaptively to the model caracteristics, but this could be a hard task. In sharp contrast with previous works, we propose a new approach, the protrusion conquest. The novelty of this approach is that it avoids a quantization step, and the only tuning parameter is a very intuitive threshold. 5 Protrusion Conquest

Outline

To solve the quantization issue, we propose an algorithm which segments the mesh more similarly to the smooth Reeb graph definition [START_REF] Reeb | Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique[END_REF] than the discrete one. This algorithm is also related to the split tree construction defined in [START_REF] Carr | Computing contour trees in all dimensions[END_REF], which is an intermediate step to build contour trees. Contour trees have been defined for scalar fields and are related to Reeb graphs. Our approach is decomposed into three steps: protrusion conquest, selection of significant regions and splitting the center regions. These steps are detailed in the following sections. Figure 4 shows an example of our approach on a 2D synthetic object.

A priority and conquest algorithm

The main step of our approach is the protrusion conquest. This algorithm is a variation of Carr et al. split tree construction [START_REF] Carr | Computing contour trees in all dimensions[END_REF]. The split tree is constructed by analysing how the components of C, which is defined as

C = {p ∈ S|µ(p) ≥ x}, (3) 
evolve while decreasing the parameter x. In this paper, µ(p) denotes the protrusion computed in section 3. Note that although this tree is called a split tree, while decreasing x, the components of C will actually merge. A tree node N i is a point where several components merge for a given value µ(N i ). Note that here we associate a tree node to a geometrical vertex of the surface, assuming that several regions can simultaneously
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Figure 4: the algorithm on a 2D example: (a) original shape, (b) after protrusion conquest (7 regions), (c) after significance filtering (4 regions), (d) after center regions splitting (6 regions) merge at only one vertex. This is not an issue, as the proposed algorithm is discrete and we process the vertices of the mesh one at a time.

A tree edge J β α corresponds to a connected part of the mesh, adjacent to N α and N β for which every point p satisfies µ(N α ) ≤ µ(p) ≤ µ(N β ) (assuming that µ(N α ) ≤ µ(N β )). The surface can then be segmented according to the edges J β α . Figure 5(a) shows such a segmentation on the horse model. Although the model is geometrically smooth, a lot of small regions are constructed. This is mainly due to the protrusion computation, which is only an approximation and exhibits a large number of local maxima.

We solve this issue by modifying the previous algorithm: while decreasing parameter x of equation (3), if several components meet at a given point p, we call n(p) the set of these regions. Instead of creating a new region and stoping the evolution of the set n(p), we select the biggest region r big of n(p) in terms of area, and stop the evolution of the other ones. The area of r big will be increased by the sum of the other regions contained in n(p). This provides a good means to merge the different created regions. for all vertices v i do push v i into Queue with priority = µ(v i ) end for while Queue not empty do pop a vertex v from Queue 1 presents the pseudo-code for the protrusion conquest, assuming that the protrusion µ has already been computed. Queue is a priority queue. n(v) is the set of regions adjacent to a vertex v. |n(v)| is the number of regions adjacent to v. As an example, if no direct neighbour of v is associated to a region, then n(v) = ∅ and |n(v)| = 0. Class[] is an array which associates every vertex to a specific region (it is the output of the algorithm). F ocus[] is an array storing the associations of the regions. It is useful to stop the growth of some regions and to let some others grow. Figure 5(b) shows the segmentation created with our algorithm. Note that there are still small regions due to the noise present in the protrusion, but the removal of these regions is easy, as explained in the following section.

if |n(v)| = 0 then Create a new region r new Set F ocus[r new ] = r new Set Class[v] = r new end if if |n(v)| = 1 then Set Class[v] = f ocus(n(v)) end if if |n(v)| >

Filtering out non significant regions

To keep only the significant segmented regions, we apply a simple filtering step, which is the only step needing an input parameter. Basically, we remove all the regions whom significance is lower than a certain percentage of the most sig-nificant region. The significance is chosen according to the protrusion: For each created region R k , we locate the vertices v max k and v min k having respectively the maximal and minimal protrusion value. Then for each region, we compute

∆ k = µ(v max k ) -µ(v min k ) (4) 
∆ k gives a good estimation of the significance of the region R k . The filtering consists in removing all the regions for which

∆ k < P Ratio .∆ max (5) 
where ∆ max is the maximum among the values ∆ k . P Ratio is the input parameter. Note that for all the experiments shown in this paper (figure 6 excluded) we used P Ratio = 10%. After this cleaning step, the vertices belonging to deleted regions are no more associated to any region. We associate them to the nearest regions with a simple region growing algorithm. Figure 5(c) shows the results on the horse model after the filtering step.

splitting center regions

Since the protrusion conquest algorithm can be considered to be a merging algorithm for regions created with the split tree construction, some "extremities" of the mesh will be merged with "center" regions. As an example, for the horse model shown in figure 5(c), the rear left leg has been merged with the back of the horse, and the head and the neck has been merged with the horse body. We have to split these regions, in order to make the difference between "extremities" (the head+neck and the rear left leg) and "center" (body and back). The regions to be split are the regions with more than one neighbour region. To choose how to split them, we provide a simple approach: for a region R k to be split, several vertices are boundary vertices (they are neighbours to other regions). Among these vertices, we pick the vertex v split k with maximal protrusion. Then all the vertices v in R k satisfying

µ(v) > µ(v split k ) (6) 
are associated to a new region. Figure 5 shows the segmentation after this final step for the horse model. Finally, the extremities of this model are well separated from the center regions. 

Complexity

The algorithm complexity is in N log(N ), N being the number or vertices of the processed model. Most of the processing time is dedicated to the computation of the protrusion µ(v). As an example, our implementation segments a model with about 50k vertices in 40 seconds with an Intel Pentium III runing at 1GHz.

Results

Figure 7 shows the results obtained on a set of various meshes, from synthetic ones (Octoflower, Mushroom) to models acquired with 3D scanners.

For each mesh, the left image corresponds to the segmentation, and the right image corresponds to a perceptual 3D shape description of the model, proposed in [START_REF] Kim | A new mpeg-7 standard: Perceptual 3-d shape descriptor[END_REF]. To compute this representation, we take each segmented region independently, and represent it by an ellipsoid, which features can easily be computed with the 3D covariance matrix of the region vertices. By providing the connectivity graph of the constructed regions, we build a description of the models which is compliant to the descriptors defined in [START_REF] Kim | A new mpeg-7 standard: Perceptual 3-d shape descriptor[END_REF], with only one difference: our description is surface-based while the initial descriptors are volume-based. This representation has also proven its efficiency for 3D retrieval applications [START_REF] Kim | A comparative study on attributed relational gra matching algorithms for perceptual 3d shape descriptor in mpeg-7[END_REF].

Visually, the provided representations follow what we could expect from a 3D shape segmentation algorithm. Although this segmentation is not the most precise one, it is very robust, and can be applied to a wide range of polygo-nal models, may they have holes, handles or non manifold vertices or edges.

Figure 6 shows 4 different ellipsoidal representations for the cow model. These results were obtained with 4 different values of P Ratio : 0.04, 0.12, 0.2, 0.28. The number of regions (or ellipsoids) is respectively 16, 12, 10, 8. One can see that the main features of the model are kept, and while increasing P Ratio , the small parts (horns, ears) dissapear.

Conclusion and perspectives

We proposed in this paper a new segmentation algorithm for 3D polygonal meshes for perceptually significant parts representation. Our approach is driven by only one intuitive input parameter and can process polygonal meshes without any constraint on their topology.

Further works include the extension of this method for 3D models made of several disconnected components, by selectively connecting the components altogether.

We also explore the possibility of extending the presented approach to an ontologydriven 3D shape classification and parts recognition framework. The knowledge infrastructure would consider both kinds of information associated with visual content, namely the low-level features that can be automatically extracted and the underlying semantics. The ontology would formally define the syntax and semantics of the examined visual features and additionally associate them with the conceptualization of the 3D objects of interest. Enriching the knowledge base with appropriate prototypes for the mod- 

Figure 1 :

 1 Figure 1: example of protrusion computing for the dinosaur model. Left: the results of the clustering scheme for the bases vertices selection. Right: the resulting protrusion (dark: low protrusion values, bright: high values)

Figure 2 :

 2 Figure 2: examples of protrusion quantization (left) and Graph construction (right): the case of the Dinosaur model (top) is simple, and its corresponding graph matches the visual aspect of the shape.On the other hand, the second model (bottom) has a simple shape, but its graph representation exhibits a complex connectivity which may be problematic for further processing

Figure 3 :

 3 Figure 3: close-up view of the Dinosaur legs segmentation (uniform quantization)

Figure 5 :

 5 Figure 5: segmenting the horse model: (a) regions created with the split tree approach of Carr et al., (b) protrusion conquest, (c) after filtering out regions with low significance, (d) after the splitting step

Figure 6 :

 6 Figure 6: the cow model represented by ellipsoids. The values of P ratio are respectively : 0.04, 0.12, 0.2, 0.28

Figure 7 :

 7 Figure 7: Results on a set of various meshes: segmentation and semantic representation with linked ellipsoids

Table 1 :

 1 protrusion conquest pseudo-code

	1 then
	Find the region r big in n(v) with the
	biggest area
	Set Class[v] = F ocus[r big ]
	for all regions r j ∈ n(v) do
	Set F ocus[r j ] = r big
	end for
	Update area of r big
	end if
	end while
	Table
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