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Abstract - We investigate a recent mesh subdivision scheme, allowing multiresolution analysis of irregular
triangular meshes by the wavelet transforms. We consider the wavelet scheme construction in terms of an inverse
problem. Some experimental results on different meshes prove the efficiency of this approach in multiresolution
schemes. In addition we show the effectiveness of the proposed algorithm for lossless compression.

1. INTRODUCTION

Multiresolution analysis of 3D objects is receiving a lot of
attention nowadays, due to the practical interest of 3D
modelling in a wider and wider range of applications and
in particular in artificial vision. Multiresolution analysis
of these objects gives some useful features : several levels
of details can be built for these objects, accelerating the
rendering when there is no need for sharp details, and
allowing progressive transmission. Another feature is that
multiresolution analysis can be an efficient way for data
compression. A survey of the existing methods used to
simplify meshes which is the first step for processing
multiresolution analysis, like vertex decimation [2], edge
contraction [3] and wavelet based analysis [4], was
reported in [1]. We put our attention on the third method,
because wavelets are well-suited for multiresolution
analysis. In section 2, we will shortly explain
multiresolution analysis of meshes [3], and show its
drawbacks in practical implementation, which we extend
for irregular triangular meshes. Based on a recent work
[5] we consider the inverse problem of the wavelet
scheme construction in section 3. In section 4, we show
why our proposal is suitable for compression. Section 5
gives the results obtained with this new scheme.

2. LOUNSBERY’S WAVELETS BASED
MULTIRESOLUTION SCHEME

In wavelets decomposition, a mesh (for example a
tetrahedron, see figure 1.a) is quaternary subdivided
(figure 1.b) and deformed (figure 1.c), to make it fit the
surface to be approximated. Subdividing the mesh
consists in splitting each triangular face into four faces.
These steps can be processed depending on the required
resolution levels.

a) b) c)
Figure 1: the subdivision scheme

Multiresolution analysis is computed with two analysis

filters jA  and jB  for each resolution level j .

Reconstruction is done with two synthesis filters jP and
jQ . Let us call jC the 3×jv  matrix giving the

coordinates of each vertex of the mesh at the resolution
level j . Then we have :

11. ++= jjj CAC (1)
11. ++= jjj CBD (2)

jjjjj DQCPC ..1 +=+ (3)
jD represents the wavelet coefficients of the mesh,

necessary to reconstruct 1+jC  from jC . From a

theoretical point of view, each column of the jP  matrix

(respectively the jQ  matrix) represents a scaling function

(respectively a wavelet function). These functions are
defined on a 3D space fixed by the mesh topology.
 We apply the lifting scheme [6] which consists in
constructing wavelet functions, starting from the hat
function, orthogonal to the scaling functions which are hat
functions too, but with a twice wider support. Without the
lifting scheme, Lounsbery's multiresolution analysis
would simply consist in subsampling the mesh (these
wavelets are known as “lazy” wavelets), but with the
lifting, the mesh at resolution level j is ensured to be the
best approximation in the mean square sense for the mesh
at level j+1. The main material for the lifting is the inner
product between two functions defined by Lounsbery as:
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)(M∆  is the set of triangles τ of the mesh and jK  is a

constant for a given resolution level j . ( j
jK −= 4 ). Note

that in this inner product it is assumed that the triangular
faces of the mesh have the same area. The consequence of
this assumption is that a mesh at resolution level j  will

effectively be the best approximation of the mesh at level
1+j  only if this constraint is fulfilled.
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Wavelets give a powerful tool for multiresolution analysis
of surfaces. However, in the simplification process, the
major drawback is that faces are always merged four to
one to have a simpler mesh. If the mesh does not respect
this connectivity constraint, one has to process a
resampling of the mesh, known as remeshing, which
results in a mesh having more faces than the original, as
explained in details in [7] and [8]. The aim of this work is
to solve this problem by improving the subdivision
process, as described in the next section.

3. A PROPOSAL FOR IRREGULAR
MULTIRESOLUTION ANALYSIS

A. Avoiding the remeshing step

The aim of this paper is to provide a new method allowing
to process multiresolution analysis directly on irregular
meshes, avoiding the remeshing step, as shown in figure
2. This would result in two major improvements in
multiresolution analysis on meshes:

- No extra computation is needed (for the remeshing)

- The reconstruction of the mesh can lead to a mesh
identical to the original mesh. This allows a lossy to
lossless encoding scheme for meshes.

Applying the multiresolution scheme on irregular meshes
requires the modification of the two main steps:
- The subdivision step, which gives the relation

between the different level meshes (connectivity)

- The analysis-synthesis step, where the vertices
coordinates of the lower resolution mesh and the

wavelet coefficients are computed (geometry)
These two modifications are described in details in the
two next sections.

B. Modeling irregular subdivision scheme is an inverse
problem

In the regular multiresolution scheme, the connectivity of
all different level meshes depends on the lowest level
mesh connectivity. Then the highest resolution level mesh
connectivity has to be highly regular. Unfortunately,
classically built meshes (e.g. meshes built with the
marching cubes algorithm [9]), are not regular and can not
be directly used.

As a result, the subdivision scheme has to be changed, in
order to allow every mesh to be processed. Based on [5]
we propose an enhanced subdivision process, where the
subdivision differs from a face to another one.

In our scheme, each face of a mesh can be subdivided in
four, three or two faces, or remain unchanged. Figure 3
depicts the possible cases of subdivision for one face.

The direct problem

Taking a mesh jM  having jn  faces and jv  vertices, we

call jS  a subdivision scheme applied on it, represented

by the a row vector js  containing jn  elements (integers
between 1 and 11), and describes the subdivision case for
each face:





=

jnj ppps ....21

Mesh design

Remeshing

Regular multiresolution analysis Irregular multiresolution analysis

Volume data (voxels)

Irregular mesh

Regular mesh

Irregular mesh

Classical approach Our approach

Figure 2: regular versus irregular wavelet scheme
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1+j

M  is then the result of the subdivision process:
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(5)

We define the efficiency ratio
j

r  as:
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Note that:

41 ≤≤ jr (7)

There are  
in11  possible subdivision schemes, but not all

of them lead to a manifold mesh, as shown in figure 4 :
The subdivision of the two faces in figure 4-a) results in a
manifold mesh, but the in figure 4-b), the result is non-
manifold.

a) manifold result

b) non manifold result (marked vertice)

Figure 4: The manifold constraint

The inverse problem

In order to apply multiresolution analysis by wavelet

decomposition on a given mesh JM , one shall find a

mesh 1−JM  and a subdivision scheme 1−JS  satisfying:

JJJ MMS =−− )( 11 (8)

This is a blind inverse problem. We can say that for any

manifold mesh  JM , there always exist one mesh
1−JM and one subdivision scheme 1−JS  satisfying this

constraint. One evident solution is the identity subdivision

scheme [ ]1...11=idents , which leaves the entire

mesh unchanged:

JJident MMS =)(

But identS  is not an interesting solution, resulting in 1−Jr
equal to 1. In a coding efficiency purpose, one shall find a

subdivision leading to a ratio 1−Jr  as near as 4. This

consists in merging the faces of the mesh JM , leading to

a mesh 1−JM  having the lowest number of faces possible.

Figure 5 shows an example, where 15 faces are reduced to
6, resulting from merging 4 :1 faces for G2, 3 :1 faces for
G3 and G6, 2 :1 faces for G1 and G4 and keeping one
face unchanged for G5. For this subdivision scheme,

5.2
6

151 ==−J
r .

Original face
Subdivided

face

Subdivided
face

Subdivided
face

Subdivided
face

1 2

3

4

5

11

6

7 8
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Figure 3: Possible cases of subdivision
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Figure 5: an example of mesh simplification

Briefly, the proposed simplification algorithm starts by
selecting one face, building a set of merged faces (which
first consists in this selected face), and tries to expand this
set by merging faces around it. Figure 6 shows the
beginning of the expansion of the merged faces set (in
gray), merging sequentially a) one face, b) 2 faces, c) 4
faces and d) 3 faces.

Figure 6: expansion of the simplified face set

The algorithm stops when no more faces have to be
merged. In order to prevent the algorithm from being
unable to merge some faces with respect to the manifold
constraint, a modification of the mesh is allowed. It
consists in an edge swapping between two neighbour
faces, as shown in figure 7. Of course this modification
has to be stored, to recover the original mesh after
subdivision and guarantee the reversibility of the
simplification process.

Figure 7: an edge swap between two faces

We notice that this modification will introduce a
supplementary quality loss during multiresolution
analysis, but the difference between the original mesh and
the altered mesh is small and experimental results show
that this local error is negligible compared to the
approximation error. Finally, the algorithm is very
efficient for simplifying a large set of meshes.

C. Filter-bank construction

The last thing to do is to compute the approximation of
the high resolution mesh with the simplified one that is to

calculate the analysis filters jA  and jB . This can be
done with Lounsbery’s scheme. A difference has to be
noticed, due to the change of the subdivision process. The
inner product (5) has to be reformulated and becomes:
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Kj(τ) is no longer a constant and changes with each face
of the mesh. For example, a face in a low resolution mesh
that will split in 3 faces will have Kj(τ)=3 and the three
resulting faces will have Kj+1(τ)=1, taking into account the
differences between the triangle areas : the first face cited
above will approximately be three times larger than the
three last.

4. COMPRESSION

A. Compression efficiency
The proposed method has powerful features for
compressing meshes, for two reasons:

• The wavelet decomposition, used to compute the
vertices coordinates, transforms coordinates into
wavelet coefficients which histogram is concentrated
around the zero value, making them well suited for
entropy coding.

• Starting from the lowest resolution level, there is no
need to store or transmit the faces descriptions to
reconstruct higher levels, only the subdivisions have to
be, which lets the amount of information needed to
reconstruct the connectivity of the mesh close to 2 bits
per face.

In the experimental results section, the lowest resolution
mesh is not compressed.

B. Lossless compression of the vertices coordinates

Here we consider vertices with integer coordinates in
order to perform lossless compression. In addition, a
number of rounding operations have to be introduced in
the multiresolution analysis-synthesis scheme. For a brief
demonstration, one shall come back to the construction of

the matrix filters 1+jA , 1+jB , jP  and jQ  used in

equations (1), (2) and (3).

First, we introduce 1+j
lazyA , 1+j

lazyB , j
lazyP  and j

lazyQ as the

“lazy” filterbank. These filters do not perform any
approximation, since during the analysis (where some
vertices are removed, as the mesh is simplified) the
coordinates of the remaining vertices stay unchanged. An
integer-to-integer intermediate analysis-synthesis scheme
can be defined as:

G1

G2 G3

G6 G5

G4

a) b)

c) d)
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int . ++= jj
lazy

j
ermediate CAC (10)

 11. ++= jj
lazy

j CBD (11)

 jj
lazy

j
ermediate

j
lazy

j DQCPC .. int
1 +=+ (12)

where .  and .  are respectively the floor and ceiling

operators, and ensure perfect reconstruction, as described
in [10].

The approximation-effective filter-bank  directly derives
from the “lazy” filter-bank modified by the lifting
scheme:

1111 . ++++ += j
lazy

jj
lazy

j BAA α (13)

11 ++ = j
lazy

j BB (14)

j
lazy

j PP = (15)

1. +−= jj
lazy

j
lazy

j PQQ α (16)

where jα  is a )( 1 jjj vvv −× +  matrix chosen to ensure

the best possible approximation.

By replacing jA  by its definition (13), equation (1)
becomes :

jjj
ermediate

j DCC .1
int

++= α (17)

An integer-to-integer analysis scheme can now be defined
as explained in [11]:

 11. ++= jj
lazy

j CBD (18)

 jjjj
lazy

j DCAC .. 111 +++ += α (19)

The corresponding inverse is :

 ( ) jj
lazy

jjjjj DQDCPC ... 11 +−= ++ α (20)

Equations (18), (19) and (20) now give the integer-to-
integer version of the multiresolution wavelet scheme
defined in (2), (3) and (4). This scheme can be used for

lossless compression as shown in the next section.

5. RESULTS

We show in this section the results obtained with the
proposed algorithm on two different meshes:

- One mesh (Figure 8), which is a part of the internal
structure of a human bone, which has a complex and
thin shape. It was build with a method described in
[12]. The algorithm constructed 24 resolution levels
with this mesh. The lossless compression ratio
obtained is R=6.0 .

- One mesh (figure 9), which has been build with the
marching cube algorithm [9], and which connectivity
is highly irregular. 25 resolution levels were built.
The lossless compression ratio is here R=7.92 .

The algorithm was able to simplify both meshes to the
simplest existing mesh : the tetrahedron (4 faces and 4
vertices).

Notice:

- Though the first mesh has much less faces than the
second one (1084 vs 9478), the algorithm built 24
levels of resolutions for the first one and only 25 for
the second one, because of the shape complexity of
the bone structure mesh. This can also explain the
difference in lossless compression efficiency.

- During the firsts resolution levels (from 0 to about
10) not much faces are created during the successive

subdivision steps. As a result, ir  is very low for these
levels, resulting in a poor compression ratio for the
firsts levels. One way to have a better compression
ratio would be to first encode a mesh with middle
complexity (e.g. at level 15 for the two considered
meshes) with a method such as proposed in [13], as
the proposed algorithm is not very efficient with
these very simple meshes (i.e. from level 0 to level
15).

Level 0
4 faces

Level 23
1084 faces

Level 21
330 faces

Level 19
132 faces

Level 15
62 faces

Level 11
38 faces

Figure 8 : results on a complex shape mesh
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6. CONCLUSION

We proposed the enhancement of the new scheme [5]
allowing to process multiresolution analysis on arbitrary
meshes. In sharp contrast with [4] and [7] where a
resampling of the original mesh is necessary, our scheme
processes directly on the original mesh. The irregular
multiresolution scheme is an inverse problem. The
proposed method has many potential applications such as
mesh compression, progressive transmission and fast
rendering of 3D images.

This work is in the scope of the scientific topics of the
GdR-PRC ISIS research group of the French National
Center for Scientific research.
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