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France
∗∗ Department of Computer Science Katholieke Universiteit
Leuven, Celestijnenlaan 200A B-3001 Heverlee, Belgium.

Abstract: This paper focuses on the stability of a class of linear systems including gamma-
distributed delay with a gap. More precisely, a complete characterization of stability
regions is given in the corresponding (delay, mean-delay) parameter-space. Optimal
delay intervals are explicitly computed. The stabilizing/destabilizing delay effect will
be explicitly outlined, and discussed. Several illustrative examples complete the paper.
Copyright IFAC 2006.
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1. INTRODUCTION

The stability of dynamical systems in presence of
time-delay have been extensively studied for the past
50 years. For a good introduction to the subject, see,
for instance, Hale and Verduyn-Lunel [2003], Gu
et al. [2003], Niculescu [2001] and the references
therein. Most of the work that has been done treats
delay differential equations with one or a few discrete
delays, and it is well-known by now that the charac-
terization of stability regions wrt the delays turns to
be an NP -hard problem (see, e.g., Toker and Ozbay
[1996]). Some insights in the quasipolynomial case
including two independent delays can be found in Gu
et al. [2005].
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The problem becomes more difficult in the case when
the delays are distributed. Realistic models in this
sense can be encountered in modeling the physio-
logical behavior, the population dynamics, and var-
ious schemes for controlling objects over networks.
In most of the cases, the overall delay is defined by
a distributed delay term (where the kernel is defined
by some appropriate gamma-distribution laws in the
simplest case, see, for instance, MacDonald [1989],
and the references therein), with a gap. Such a gap 4

simply describes the propagation, which is inherent to
most of the dynamical models encountered in biology,
and in most of the closed-loop schemes for describing
controlling objects over (communication) networks.

To the best of the authors’ knowledge, the first popula-
tion dynamics model including gamma-distributed de-
lays is due to Cushing Cushing [1981], and it received
a lot of attention starting with the 80s: Cooke and
Grossman [1983], Blythe et al. [1985], Boese [1989],

4 By a gap, we usually understand a “discrete delay value” added
to the corresponding model (see, for instance, the terminology
in MacDonald [1989].



to cite only a few. The linearized model ( Cooke and
Grossman [1983]) simply writes as:

ẋ(t) = −αx(t) + β

∫ t

−∞
g(t− θ)x(θ)dθ, (1)

under appropriate initial conditions. It is easy to see
that a narrow distribution leads to some simple “dis-
crete delay” system of the form ẋ(t) = −αx(t) +
βx(t − h), whose dynamics, and stability are com-
pletely known, and understood by now (see, e.g., Hale
and Verduyn-Lunel [2003]). Next, if one assumes that
the delay kernel is given by the gamma-distribution
law:

g(ξ) =
an+1

n!
ξne−aξ, (2)

the Laplace transform applied to (1), under the defi-
nition (2) reduces the stability analysis of (1) to the
analysis of some parameter-dependent polynomials of
the form:

D(s, τ̄ , n) := (s + α)
(

1 + s
τ̄

n + 1

)n+1

− β = 0,

(3)

where τ̄ =
n + 1

a
denotes the corresponding mean-

delay value. One of the problem discussed in Cooke
and Grossman [1983] was the analysis of the behavior
of the roots of the characteristic equation with respect
to the imaginary axis when the mean delay value τ̄ ,
or the exponent n are varying. The main interest of
such a study was to compute the stability regions
with respect to the corresponding parameters, and
to analyze the sensitivity of such regions when the
parameters change. Further discussions on this topics
can be found in MacDonald [1989].

Next, Nisbet and Gurney [1983] mention that popu-
lation dynamics models based on partial differential
equations, and reduced for convenience to integro-
differential forms are more realistic if the correspond-
ing delay kernel ĝ includes some gap (see also Blythe
et al. [1985], MacDonald [1989]), that is if the kernel
can be expressed as:

ĝ(ξ) =





0, ξ < τ

an+1

n!
(ξ − τ)ne−a(ξ−τ), ξ ≥ τ,

(4)

for some positive delay values τ . Simple compu-
tations prove that the corresponding mean delay is

defined by τ̂ = τ +
n + 1

a
. In this case, the stabil-

ity analysis becomes more complicated, since the
parameter-dependent polynomial D(s, τ̄ , n) in (3) be-
comes a parameter-dependent quasipolynomial of the
form (see, for instance, Blythe et al. [1985], Boese
[1989]):

D(s, τ̄ , τ, n) := (s + α)

(
1 + s

τ̄

n + 1

)n+1

− βe−sτ . (5)

It is important to note that, even for this simple ex-
ample, some of the first results ( Cooke and Grossman
[1983], Blythe et al. [1985]) concerning its stability
analysis includes errors as discussed by Boese [1989].

Recently, it was pointed out that such gamma-distri-
buted delays with some gap can be also encountered
in the problem of controlling objects over communica-
tion networks ( Roesch et al. [2005]). More explicitly,
the overall communication delay in the network is
modeled by a gamma-distributed delay with a gap,
where the gap value corresponds to the minimal prop-
agation delay in the network, which is always a strictly
positive quantity. Without entering in the details, the
stability of the closed-loop system reduces to the sta-
bility analysis of the following parameter-dependent
quasipolynomial:

D(s, τ̄ , τ, n) := Q(s)

(
1 + s

τ̄

n + 1

)n+1

+ P (s)e−sτ , (6)

where P (s), Q(s) are polynomials of some appro-
priate degree. It is quite simple to observe that (5)
represents a particular case of (6).

In this paper, we consider systems described by (6),
and we shall give a complete characterization of the
behavior of the roots of (6) in the parameter-space
(gap, mean-delay). This paper can be seen as the
“dual” of Morărescu et al. [2005a], where the char-
acterization of the crossing curves 5 was given using
some geometric arguments. More precisely, we shall

explicitly compute all the “points”
(

τ,
τ̄

n + 1

)
, for

which a change of the number of roots in C+ will take
place, and next for each mean-delay value interval, an
explicit computation of the corresponding (stability)
delay interval can be performed.

The interest of the approach is twofold: first, the com-
putation of the corresponding delay intervals can be
performed relatively easily, and the corresponding al-
gorithm includes a finite number of steps. Further-
more, various interesting instability cases can be de-
tected, and the underlying ideas can be applied to var-
ious other delay analysis problems. Second, the propa-
gation delay (gap τ ) can be used as a design parameter
in the case of controlling objects over communica-
tion network. Such an idea was already exploited in
the context of constant communication delays (see,
e.g., Niculescu [2002]), and to the best of the authors’
knowledge, there does not exist any extension in the
distributed delay case. In other words, the propagation
delay can be used to define a so-called “wait-and-act”
strategy similar to the one encountered in synchronisa-
tion, and also mentioned in the case of delayed output
feedback stabilization problems ( Niculescu [2001]).

The remaining paper is organized as follows: In
Section 2 we briefly present the problem formula-
tion and some prerequisites necessary to develop our
(frequency-domain) stability analysis. The main re-
sults are presented in Section 3, and illustrative exam-
ples are given in Section 4. Some concluding remarks
end the paper. For the brevity of the paper, the proofs

5 Crossing curves represent curves in the delay-parameter space for
which at least one root of the corresponding characteristic equation
lies on the imaginary axis.



are omitted, but they can be found in the full version
of the paper ( Morărescu et al. [2005b]).

2. PROBLEM FORMULATION, AND
PRELIMINARIES

Without any loss of generality, the (asymptotic) stabil-
ity of (5), and (6) is equivalent to:

D(s, T, τ) = Q(s)(1 + sT )n + P (s)e−sτ = 0. (7)

for some appropriate pair (T, τ). We will make
now the following supplementary assumptions: (i)
deg(Q) = nq > deg(P ) = np; (ii) P (0)+Q(0) 6= 0;
(iii) P (s) and Q(s) have no common zeros.

The assumption (i) can be relaxed to nq ≥ np, but

with the supplementary constraint lim
s→∞

Q(s)
P (s)

< 1 if

equality (see Gu et al. [2003] for some discussions
on retarded, and neutral systems). If assumption (ii)
is not satisfied then 0 becomes one zero of (7) for any
(T, τ) ∈ R2

+, and therefore (7) can never be stable.
Finally, if (iii) is violated there is a common factor
c(s) 6= constant such that P (s) = c(s)P1(s) and
Q(s) = c(s)Q1(s), and the problem can be reduced
to the previous case using the pair (P1, Q1) instead of
(P,Q), etc.

The problem addressed in the sequel can be resumed
as follows: deriving necessary, and sufficient condi-
tions in terms of (T, τ) for guaranteeing the asymp-
totic stability of (7).

In this sense, the following two quantities will play a
major role in the stability study:

1) card(U), where U is the set of roots of D(s, T, 0) =
0, situated in the closed right half plane, and
card(·) denotes the cardinality (number of ele-
ments).

2) card(S), where S = {ω > 0 | (1 +
ω2T 2)n|Q(jω)|2 − |P (jω)|2 = 0}.

The characteristic equation (7) is said to be hyperbolic
at some point (T0, τ0) if no root of the characteristic
equation lies on the imaginary axis for T = T0, and
τ = τ0 (see,e.g. Hale et al. [1985]). Thus, we have the
following result:

Proposition 1. The system (7) is hyperbolic for all
(T, τ) ∈ R+ × R+ if and only if:

|Q(jω)| > |P (jω)| , ∀ω ∈ R∗, (8)

Furthermore, if card(U) = 0 (> 0) for T = 0, the
system is delay-independent stable (unstable).

Remark 1. In the stability case, the frequency-sweeping
test (8) represents a slight modification of the Tsypkin
criterion (see, for instance, Niculescu [2001], Gu et
al. [2003]), and it gives a simple condition for which
cardS) = 0 for all the pairs (T, τ).

In the sequel, we shall assume that the condition
(8) in Proposition 1 does not hold. If not, we have
stability (or instability) for all the pairs (T, τ), etc.
In conclusion, the problem of interest is reduced to
analyze the cases when crossing roots exist.

Without any loss of generality, assume now that
Q(0) 6= 0. If not, we get P (0) = 0 from (7), which
is not possible since it contradicts the assumption (ii).
The next step is the characterization of the way the
quantities card(U), card(S) depend on the parameter
T if τ = 0.

2.1 Quantity card(U)

Introduce now the following Hurwitz matrix associ-

ated to some polynomial A(s) =
na∑

i=0

ais
na−i:

H(A) =




a1 a3 a5 . . . a2na−1

a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4

...
. . .

...
0 0 0 . . . ana



∈ Rna×na , (9)

where the coefficients al = 0, for all l > na.
Next, it is easy to see that D(s, T, 0) can be rewritten

as: D(s, T, 0) =
n∑

k=0

Pk(s)T k, with P0(s) = P (s) +

Q(s), P1(s) = sQ(s), . . ., Pn(s) = snQ(s) Next
introduce the matrix pencil: Σ(λ) = det(λU + V ),
with U, V given by:

U=




I

. . .
I

H(Pn)


,V =




0 −I · · · 0
...

...
. . .

...
0 0 · · · −I

H(P0) H(P1) · · · H(Pn−1)


,

where the identity, and the zero-blocks matrices have
appropriate dimension, and H(Pk) ∈ R(n+nq)×(n+nq)

represents the corresponding Hurwitz matrix 6 associ-
ated to the polynomial Pk(s) defined above.

The following result gives the characterization of
card(U) as a function of T , and represent a gener-
alization of some matrix pencil method proposed by
Chen [1995] in the context of static output feedback
for SISO systems:

Proposition 2. Let 0 < λ1 < λ2 < . . . λh, with
h ≤ n+nq be the real eigenvalues of the matrix pencil
Σ(λ) = det(λU + V ). Then the system (7) cannot be
stable for any T = λi, i = 1, 2, . . . h. Furthermore,
if there are r unstable roots (0 ≤ r ≤ n + nq) for
T = T ∗, T ∗ ∈ (λi, λi+1), then, there are r unstable
roots for any mean-delay value T ∈ (λi, λi+1). In

6 The order of Pk is nq + k, for all k = 0, . . . , n, and H(Pk)
will be constructed as a (n + nq) × (n + nq) matrix by setting
the coefficients of high-order terms as zeroes, that is p` = 0, for all
` > n + k.



other words, card(U) remains constant as T varies
within each interval (λi, λi+1). The same holds for the
intervals (0, λ1) and (λh,∞).

Proposition 2 allows studying the behavior of card(S)
as a function of T . First we have to compute the
positive real eigenvalues of Σ, and then the number of
unstable roots inside each interval defined by the cor-
responding eigenvalues. The characterization is com-
plete when computing U for intermediate values of T .

2.2 Quantity card(S)

Based on the arguments, assumptions, and remarks
above, we have the following result:

Proposition 3. If the card(S) changes at a value T ∗

then there exists a frequency ω∗ > 0 such that for
ω = ω∗ the following relations hold:

(1 + ω2T 2)n|Q(jω)|2 − |P (jω)|2 = 0 (10)

and

d
dω

[
1
ω2

(∣∣∣∣
P (jω)
Q(jω)

∣∣∣∣
2/n

− 1

)
− T 2

]
= 0 (11)

Remark 2. The equation
d

dω
[G(ω∗, T ∗)] = 0 has a

finite number of roots. Thus, the quantity card(S)
changes for a finite number of values of T .

As in the previous case, the characterization is com-
plete when computing S for intermediate values of T .

3. STABILITY ANALYSIS

For the sake of simplicity, assume that all the roots
of F are simple. Notice that this condition is satisfied
for almost all T . Next, we need to explicitly compute
the sensitivity of the roots with respect to the delay
parameter τ when crossing the imaginary axis, that is,
in other words, the delay crossing direction. We have
the following result:

Theorem 1. The characteristic equation has a root jω
on the imaginary axis for some τ0 if and only if ω ∈ S .
Furthermore, for ω ∈ S , the set of corresponding
values of τ where card(U) changes is given by 7

Tω =

{
1

ω

[
−jLog

P (jω)

(1 + jωT )nQ(jω)
+ 2kπ

]
≥ 0, k ∈ Z

}

(12)
When increasing the delay, the corresponding cross-

ing direction of characteristic roots is towards instabil-
ity (stability) when F ′(ω) > 0(< 0).

7 Here, Log denotes the principal value of the logarithm. Conse-
quently when |z| = 1, Log(z) = j arg(z)

The above theorem combined with the continuous
dependence of the characteristic roots with respect
to the delay, allows to say that T =

⋃

ω∈S
Tω makes

a partitions of the τ -delay space (R+) into intervals
in which the number of roots in the open right half
plane is constant. Such an argument will be used in
developing our stability region characterization.

3.1 Small delays

3.1.1. Robustness stability issues First, assume that
the system free of delays is asymptotically stable
(τ, T = 0), that is card(U) = 0 with T = 0, and that
the frequency-sweeping condition (8) does not hold.
Then Theorem 1, combined with the Propositions 2,
and 3 give a simple way to compute the first delay-
intervals guaranteeing stability:

Proposition 4. Under the assumption card(U) = 0
for the system free of delays, the system (7) is asymp-
totically stable for all the pairs (T, τ), with 0 ≤ T <
T ∗, where T ∗ is the smallest positive generalized
eigenvalue of Σ, and τ ∈ [0, τ∗), where τ∗ is given
by:

τ∗ = min
ω∈S(T )

{Tω(T )} (13)

as a function of T , for all T ∈ [0, T ∗).

In other words, Proposition 4 defines the explicit de-
pendence of the stability boundary in (T, τ) space
bounded by the corresponding OT , and Oτ -axis, and
by the curve τ(T ), defined as a function of T , for
all T ∈ [0, T ∗). The case T = 0 gives the standard
first delay-interval bound (see, e.g. Niculescu [2001]).
Using the terminology of Gu et al. [2003], we derive
the corresponding delay margins in OTτ parameter-
space.

3.1.2. Delay-induced stability/instability Assume
now that the system free-of-delays (τ = 0, T = 0)
is unstable. We start by presenting various cases in
which the gap, seen as a free-parameter cannot have
a stabilizing effect. We have the following results:

Proposition 5. If the card(U) is an odd number then
the stability of the system cannot be obtain increasing
the time delay τ .

Proposition 6. If card(S) ∈ {0, 1} then the stability
of the system cannot be obtain increasing the time
delay τ .

The first case, when the delay gap τ may induce
stability in the system by increasing its value appears
when card(S) ∈ {2, 3}. More precisely, we have the
following result:



Proposition 7. If card(S) ∈ {2, 3} then the stability
of the system can be obtain increasing the time delay
τ , if and only if:
1. card(U) = 2

2. τ− < τ+, where





τ− = min
⋃

ω∈S, F ′(ω)<0

Tω

τ+ = min
⋃

ω∈S, F ′(ω)>0

Tω \ {0}

In this case, for all delay values τ ∈ (τ−, τ+) the
system is stable.

Remark 3. One can conclude that in the previous case
is sufficiently to investigate the first crossing in order
to check the stabilizability in the delay. When one
determines the stability by numerically computations
the Proposition 4 is very useful because we can stop
the computations after the first root crossing.

In the case card(S) = 2, the set of all stabilizing delay
values can be expressed analytically:

Corollary 1. Assume that the following conditions
are satisfied

(1) card(S) = 2
(2) card(U) = 2
(3) τ− < τ+

Then all the stabilizing delay values are defined by
τ ∈ (τk, τk), k = 0, 1, ..., km, where

τk = τ− +
2kπ

ω−
, τk = τ+ +

2kπ

ω+

and km is the largest integer for which τk < τk, which
can be explicitly expressed as

km = max
l∈Z

{
l <

ω−ω+

ω+ − ω−
· τ+ − τ−

2π

}
(14)

3.2 General case

Based on the results, and the remarks above, we have
the following

Proposition 8. Assume that card(S) = 2p or card(S) =
2p + 1, with p ≥ 1 and card(U) > 2p. Then there
does not exist any gap τ > 0 such that (7) becomes
asymptotically stable.

Define now the following quantities:

n+(τ) =
∑

ω∈S+, F ′(ω)>0

card {Tω ∩ (0, τ ]} , (15)

n−(τ) =
∑

ω∈S+, F ′(ω)<0

card {Tω ∩ [0, τ ]} , (16)

for some positive τ > 0. Furthermore, introduce the
sets T +, and T −, which represent a partition of T in
function of the sign of the derivative F ′ evaluated at
the corresponding crossing frequency, that is:

T + =
⋃

ω∈S+, F ′(ω)>0

Tω \ {0} ,

T − =
⋃

ω∈S+, F ′(ω)<0

Tω .

Based on the conditions and the notations above, we
conclude with the following result:

Proposition 9. For a given T the system with char-
acteristic equation (7) is asymptotically stable if and
only if the following conditions are satisfied:

(1) card(U(T )) is a strictly positive even integer
and the following inequality holds: card(U(T )) ≤
card(S(T ))

(2) there exists at least one gap value τ∗ ∈ T , such
that: n−(τ∗) = n+(τ∗) + card(U(T )).

Then all gap values τ ∈ (τ∗, τ∗+), with τ∗+ =
min{T + ∩ (τ∗, +∞)} guarantee the asymptotic sta-
bility.

4. ILLUSTRATIVE EXAMPLES

Several examples are considered (see Morărescu et
al. [2005b], the full version of the paper). For the
sake of brevity, we present only two simple examples:
the Cushing equation, and a second-order system,
respectively.

Example 1. (linearized Cushing equation with a gap).
In this example we apply the above method for the
Cushing linearized equation (s + a)(1 + sT )n +
be−sτ = 0, a > 0, b < 0. First it is easy to remark
that (s + a)(1 + sT )n + b has at least one (strictly)
unstable root if and only if a + b < 0. Consider the
case n = 1, that is the polynomial F (ω, T ) is given
by:

F (ω, T ) = (ω2 + a2)(1 + ω2T 2)− b2

= ω4T 2 + ω2(a2T 2 + 1) + a2 − b2.(17)

For a2 − b2 ≥ 0 (a + b 6= 0) we have card(S) = 0,
that is no crossing with respect to the imaginary axis
for all T (see Proposition 1), while for a2 − b2 < 0
we have card(S) = 1. According to the results of the
previous section, the stability of the Cushing equation
can be delay-independent stable (unstable), function
of the sign of a + b for all (T, τ) if card(S) = 0. If
not, Proposition 4 will give the corresponding delay-
intervals for which stability is preserved under the
assumption of asymptotic stability for some mean-
delay intervals (in T ) given by Proposition 2, etc.

Example 2. (second-order system). Consider the fol-
lowing second-order system:

P (s) = −s, Q(s) = s2 + 2 (18)



Simple computations prove that Q(s)(1+ sT )+P (s)
has two unstable roots. So that card(U) = 2.

The characteristic equation of the closed-loop system
is given by

(s2 + 2)(1 + sT )− se−sτ = 0 (19)

and polynomial F (ω, T ) by

F (ω, T ) = (2− ω2)2 + (1 + ω2T 2)− ω2

= ω6T 2 + ω4(1− 4T 2) + ω2(4T 2 − 5) + 4.

So we need to find how many positive roots has the
following equation:

x3T 2 + x2(1− 4T 2) + x(4T 2 − 5) + 4 (20)

First it is easy to see that the previous equation has
at least one real negative solution because x1x2x3 =

− 4
T 2

< 0 (where x1, x2, x3 are the solutions of the
equation (20)). Computing the discriminant and the
Hurwitz determinants of the equation (20) we find

card(S) =





2 T >
1
2

0 T ≤ 1
2

. According to the result of

the previous section a necessary condition for asymp-
totic stability of the closed-loop system is given by

T >
1
2

(21)

Furthermore, for T satisfying (21) the existence of a
stability region in the delay parameter is determined
by the condition τ− < τ+.

Summarizing,we have:

Proposition 10. The system (18) is asymptotically

stable if and only if T >
1
2

and in addition τ− < τ+,
where:

τ− = min
⋃

ω∈S, F ′(ω)<0

1

ω2T
, τ+ = min

⋃
ω∈S, F ′(ω)>0

1

ω2T

A stability region is defined by the pair (T, τ), where

T >
1
2

, and τ ∈ (τ−(T ), τ+(T )).

5. CONCLUDING REMARKS

This paper addressed the stability problem of a class
of of linear systems including distributed delays with
a gap. A characterization of stability regions in the
(mean-delay,gap) parameter-space has been proposed.
Illustrative examples complete the presentation.
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