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This paper focuses on the stability of a class of linear systems including gammadistributed delay with a gap. More precisely, a complete characterization of stability regions is given in the corresponding (delay, mean-delay) parameter-space. Optimal delay intervals are explicitly computed. The stabilizing/destabilizing delay effect will be explicitly outlined, and discussed. Several illustrative examples complete the paper.

INTRODUCTION

The stability of dynamical systems in presence of time-delay have been extensively studied for the past 50 years. For a good introduction to the subject, see, for instance, Hale and Verduyn-Lunel [2003], [START_REF] Gu | Stability and robust stability of time-delay systems[END_REF], [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF] and the references therein. Most of the work that has been done treats delay differential equations with one or a few discrete delays, and it is well-known by now that the characterization of stability regions wrt the delays turns to be an N P -hard problem (see, e.g., Toker and Ozbay [1996]). Some insights in the quasipolynomial case including two independent delays can be found in [START_REF] Gu | On stability crossing curves for general systems with two delays[END_REF].

The problem becomes more difficult in the case when the delays are distributed. Realistic models in this sense can be encountered in modeling the physiological behavior, the population dynamics, and various schemes for controlling objects over networks. In most of the cases, the overall delay is defined by a distributed delay term (where the kernel is defined by some appropriate gamma-distribution laws in the simplest case, see, for instance, MacDonald [1989], and the references therein), with a gap. Such a gap4 simply describes the propagation, which is inherent to most of the dynamical models encountered in biology, and in most of the closed-loop schemes for describing controlling objects over (communication) networks.

To the best of the authors' knowledge, the first population dynamics model including gamma-distributed delays is due to [START_REF] Cushing | Volterra integrodifferential equations in population dynamics[END_REF], and it received a lot of attention starting with the 80s: Cooke and Grossman [1983], [START_REF] Blythe | Stability switches in distributed delay models[END_REF], [START_REF] Boese | The stability chart for the linearized Cushing equation with a discrete delay and with gamma-distributed delays[END_REF],

to cite only a few. The linearized model ( Cooke and Grossman [1983]) simply writes as:

ẋ(t) = -αx(t) + β t -∞ g(t -θ)x(θ)dθ, (1) 
under appropriate initial conditions. It is easy to see that a narrow distribution leads to some simple "discrete delay" system of the form ẋ(t) = -αx(t) + βx(t -h), whose dynamics, and stability are completely known, and understood by now (see, e.g., Hale and Verduyn-Lunel [2003]). Next, if one assumes that the delay kernel is given by the gamma-distribution law:

g(ξ) = a n+1 n! ξ n e -aξ , (2) 
the Laplace transform applied to (1), under the definition (2) reduces the stability analysis of (1) to the analysis of some parameter-dependent polynomials of the form:

D(s, τ , n) := (s + α) 1 + s τ n + 1 n+1 -β = 0, (3) 
where τ = n + 1 a denotes the corresponding meandelay value. One of the problem discussed in Cooke and Grossman [1983] was the analysis of the behavior of the roots of the characteristic equation with respect to the imaginary axis when the mean delay value τ , or the exponent n are varying. The main interest of such a study was to compute the stability regions with respect to the corresponding parameters, and to analyze the sensitivity of such regions when the parameters change. Further discussions on this topics can be found in MacDonald [1989].

Next, [START_REF] Nisbet | The formulation of age-structure models[END_REF] mention that population dynamics models based on partial differential equations, and reduced for convenience to integrodifferential forms are more realistic if the corresponding delay kernel ĝ includes some gap (see also [START_REF] Blythe | Stability switches in distributed delay models[END_REF], [START_REF] Macdonald | Biological delay systems: linear stability theory[END_REF]), that is if the kernel can be expressed as:

ĝ(ξ) =    0, ξ < τ a n+1 n! (ξ -τ ) n e -a(ξ-τ ) , ξ ≥ τ, ( 4 
)
for some positive delay values τ . Simple computations prove that the corresponding mean delay is defined by τ = τ + n + 1 a . In this case, the stability analysis becomes more complicated, since the parameter-dependent polynomial D(s, τ , n) in (3) becomes a parameter-dependent quasipolynomial of the form (see, for instance, [START_REF] Blythe | Stability switches in distributed delay models[END_REF], [START_REF] Boese | The stability chart for the linearized Cushing equation with a discrete delay and with gamma-distributed delays[END_REF]):

D(s, τ , τ, n) := (s + α) 1 + s τ n + 1 n+1 -βe -sτ . (5)
It is important to note that, even for this simple example, some of the first results ( Cooke and Grossman [1983], [START_REF] Blythe | Stability switches in distributed delay models[END_REF]) concerning its stability analysis includes errors as discussed by [START_REF] Boese | The stability chart for the linearized Cushing equation with a discrete delay and with gamma-distributed delays[END_REF].

Recently, it was pointed out that such gamma-distributed delays with some gap can be also encountered in the problem of controlling objects over communication networks [START_REF] Roesch | Remote control of mechatronic systems over communication networks[END_REF]). More explicitly, the overall communication delay in the network is modeled by a gamma-distributed delay with a gap, where the gap value corresponds to the minimal propagation delay in the network, which is always a strictly positive quantity. Without entering in the details, the stability of the closed-loop system reduces to the stability analysis of the following parameter-dependent quasipolynomial: (6) where P (s), Q(s) are polynomials of some appropriate degree. It is quite simple to observe that (5) represents a particular case of (6).

D(s, τ , τ, n) := Q(s) 1 + s τ n + 1 n+1 + P (s)e -sτ ,
In this paper, we consider systems described by ( 6), and we shall give a complete characterization of the behavior of the roots of (6) in the parameter-space (gap, mean-delay). This paper can be seen as the "dual" of Morȃrescu et al. [2005a], where the characterization of the crossing curves5 was given using some geometric arguments. More precisely, we shall explicitly compute all the "points" τ,

τ n + 1
, for which a change of the number of roots in C + will take place, and next for each mean-delay value interval, an explicit computation of the corresponding (stability) delay interval can be performed.

The interest of the approach is twofold: first, the computation of the corresponding delay intervals can be performed relatively easily, and the corresponding algorithm includes a finite number of steps. Furthermore, various interesting instability cases can be detected, and the underlying ideas can be applied to various other delay analysis problems. Second, the propagation delay (gap τ ) can be used as a design parameter in the case of controlling objects over communication network. Such an idea was already exploited in the context of constant communication delays (see, e.g., [START_REF] Niculescu | On delay robustness analysis of a simple control algorithm in high-speed networks[END_REF]), and to the best of the authors' knowledge, there does not exist any extension in the distributed delay case. In other words, the propagation delay can be used to define a so-called "wait-and-act" strategy similar to the one encountered in synchronisation, and also mentioned in the case of delayed output feedback stabilization problems [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF]).

The remaining paper is organized as follows: In Section 2 we briefly present the problem formulation and some prerequisites necessary to develop our (frequency-domain) stability analysis. The main results are presented in Section 3, and illustrative examples are given in Section 4. Some concluding remarks end the paper. For the brevity of the paper, the proofs are omitted, but they can be found in the full version of the paper [START_REF] Morȃrescu | Asymptotic stability of some distributed delay systems: An algebraic approach[END_REF]).

PROBLEM FORMULATION, AND PRELIMINARIES

Without any loss of generality, the (asymptotic) stability of ( 5), and ( 6) is equivalent to:

D(s, T, τ ) = Q(s)(1 + sT ) n + P (s)e -sτ = 0. (7)
for some appropriate pair (T, τ ). We will make now the following supplementary assumptions:

(i) deg(Q) = n q > deg(P ) = n p ; (ii) P (0) + Q(0) = 0;
(iii) P (s) and Q(s) have no common zeros.

The assumption (i) can be relaxed to n q ≥ n p , but with the supplementary constraint [START_REF] Gu | Stability and robust stability of time-delay systems[END_REF] for some discussions on retarded, and neutral systems). If assumption (ii) is not satisfied then 0 becomes one zero of (7) for any (T, τ ) ∈ R 2 + , and therefore (7) can never be stable. Finally, if (iii) is violated there is a common factor c(s) = constant such that P (s) = c(s)P 1 (s) and

lim s→∞ Q(s) P (s) < 1 if equality (see
Q(s) = c(s)Q 1 (s)
, and the problem can be reduced to the previous case using the pair (P 1 , Q 1 ) instead of (P, Q), etc.

The problem addressed in the sequel can be resumed as follows: deriving necessary, and sufficient conditions in terms of (T, τ ) for guaranteeing the asymptotic stability of (7).

In this sense, the following two quantities will play a major role in the stability 1) card(U), where U is the set of roots of D(s, T, 0) = 0, situated in the closed right half plane, and card(•) denotes the cardinality (number of elements). 2) card(S), where

S = {ω > 0 | (1 + ω 2 T 2 ) n |Q(jω)| 2 -|P (jω)| 2 = 0}.
The characteristic equation ( 7) is said to be hyperbolic at some point (T 0 , τ 0 ) if no root of the characteristic equation lies on the imaginary axis for T = T 0 , and τ = τ 0 (see,e.g. [START_REF] Hale | Stability in linear delay equations[END_REF]). Thus, we have the following result:

Proposition 1. The system (7) is hyperbolic for all (T, τ ) ∈ R + × R + if and only if:

|Q(jω)| > |P (jω)| , ∀ω ∈ R * , (8) 
Furthermore, if card(U) = 0 (> 0) for T = 0, the system is delay-independent stable (unstable).

Remark 1. In the stability case, the frequency-sweeping test (8) represents a slight modification of the Tsypkin criterion (see, for instance, [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF], [START_REF] Gu | Stability and robust stability of time-delay systems[END_REF]), and it gives a simple condition for which cardS) = 0 for all the pairs (T, τ ).

In the sequel, we shall assume that the condition (8) in Proposition 1 does not hold. If not, we have stability (or instability) for all the pairs (T, τ ), etc.

In conclusion, the problem of interest is reduced to analyze the cases when crossing roots exist.

Without any loss of generality, assume now that Q(0) = 0. If not, we get P (0) = 0 from (7), which is not possible since it contradicts the assumption (ii). The next step is the characterization of the way the quantities card(U), card(S) depend on the parameter T if τ = 0.

Quantity card(U)

Introduce now the following Hurwitz matrix associated to some polynomial A(s) = n a i=0 a i s na-i :

H(A) =        a 1 a 3 a 5 . . . a 2n a -1 a 0 a 2 a 4 . . . a 2n a -2 0 a 1 a 3 . . . a 2n a -3 0 a 0 a 2 . . . a 2n a -4 . . . . . . . . . 0 0 0 . . . a na        ∈ R n a ×n a , ( 9 
)
where the coefficients a l = 0, for all l > n a . Next, it is easy to see that D(s, T, 0) can be rewritten as:

D(s, T, 0) = n k=0 P k (s)T k , with P 0 (s) = P (s) + Q(s), P 1 (s) = sQ(s), . . ., P n (s) = s n Q(s) Next introduce the matrix pencil: Σ(λ) = det(λU + V ),
with U, V given by:

U=     I . . . I H(Pn)     , V =     0 -I • • • 0 . . . . . . . . . . . . 0 0 • • • -I H(P 0 ) H(P 1 ) • • • H(P n-1 )     ,
where the identity, and the zero-blocks matrices have appropriate dimension, and H(P k ) ∈ R (n+n q )×(n+n q ) represents the corresponding Hurwitz matrix6 associated to the polynomial P k (s) defined above.

The following result gives the characterization of card(U) as a function of T , and represent a generalization of some matrix pencil method proposed by [START_REF] Chen | Static output feedback stabilization for SISO systems and related problems: solutions via generalized eigenvalues[END_REF] in the context of static output feedback for SISO systems: Proposition 2. Let 0 < λ 1 < λ 2 < . . . λ h , with h ≤ n+n q be the real eigenvalues of the matrix pencil Σ(λ) = det(λU + V ). Then the system (7) cannot be stable for any T = λ i , i = 1, 2, . . . h. Furthermore, if there are r unstable roots (0 ≤ r ≤ n + n q ) for T = T * , T * ∈ (λ i , λ i+1 ), then, there are r unstable roots for any mean-delay value T ∈ (λ i , λ i+1 ). In other words, card(U) remains constant as T varies within each interval (λ i , λ i+1 ). The same holds for the intervals (0, λ 1 ) and (λ h , ∞).

Proposition 2 allows studying the behavior of card(S) as a function of T . First we have to compute the positive real eigenvalues of Σ, and then the number of unstable roots inside each interval defined by the corresponding eigenvalues. The characterization is complete when computing U for intermediate values of T .

Quantity card(S)

Based on the arguments, assumptions, and remarks above, we have the following result: Proposition 3. If the card(S) changes at a value T * then there exists a frequency ω * > 0 such that for ω = ω * the following relations hold: As in the previous case, the characterization is complete when computing S for intermediate values of T .

(1 + ω 2 T 2 ) n |Q(jω)| 2 -|P (jω)| 2 = 0 (10) and d dω 1 ω 2 P (jω) Q(jω) 2/n -1 -T 2 = 0 ( 

STABILITY ANALYSIS

For the sake of simplicity, assume that all the roots of F are simple. Notice that this condition is satisfied for almost all T . Next, we need to explicitly compute the sensitivity of the roots with respect to the delay parameter τ when crossing the imaginary axis, that is, in other words, the delay crossing direction. We have the following result:

Theorem 1. The characteristic equation has a root jω on the imaginary axis for some τ 0 if and only if ω ∈ S. Furthermore, for ω ∈ S, the set of corresponding values of τ where card(U) changes is given by7 

T ω = 1 ω -jLog P (jω) (1 + jωT ) n Q(jω) + 2kπ ≥ 0, k ∈ Z (12)
When increasing the delay, the corresponding crossing direction of characteristic roots is towards instability (stability) when F (ω) > 0(< 0).

The above theorem combined with the continuous dependence of the characteristic roots with respect to the delay, allows to say that T = ω∈S T ω makes a partitions of the τ -delay space (R + ) into intervals in which the number of roots in the open right half plane is constant. Such an argument will be used in developing our stability region characterization.

3.1 Small delays 3.1.1. Robustness stability issues First, assume that the system free of delays is asymptotically stable (τ, T = 0), that is card(U) = 0 with T = 0, and that the frequency-sweeping condition (8) does not hold.

Then Theorem 1, combined with the Propositions 2, and 3 give a simple way to compute the first delayintervals guaranteeing stability:

Proposition 4. Under the assumption card(U) = 0 for the system free of delays, the system ( 7) is asymptotically stable for all the pairs (T, τ ), with 0 ≤ T < T * , where T * is the smallest positive generalized eigenvalue of Σ, and τ ∈ [0, τ * ), where τ * is given by:

τ * = min ω∈S(T ) {T ω (T )} (13) 
as a function of T , for all T ∈ [0, T * ).

In other words, Proposition 4 defines the explicit dependence of the stability boundary in (T, τ ) space bounded by the corresponding OT , and Oτ -axis, and by the curve τ (T ), defined as a function of T , for all T ∈ [0, T * ). The case T = 0 gives the standard first delay-interval bound (see, e.g. [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF]). Using the terminology of [START_REF] Gu | Stability and robust stability of time-delay systems[END_REF], we derive the corresponding delay margins in OT τ parameterspace.

Delay-induced stability/instability

Assume now that the system free-of-delays (τ = 0, T = 0) is unstable. We start by presenting various cases in which the gap, seen as a free-parameter cannot have a stabilizing effect. We have the following results: Proposition 5. If the card(U) is an odd number then the stability of the system cannot be obtain increasing the time delay τ . Proposition 6. If card(S) ∈ {0, 1} then the stability of the system cannot be obtain increasing the time delay τ .

The first case, when the delay gap τ may induce stability in the system by increasing its value appears when card(S) ∈ {2, 3}. More precisely, we have the following result: Proposition 7. If card(S) ∈ {2, 3} then the stability of the system can be obtain increasing the time delay τ , if and only if:

1. card(U) = 2 2. τ -< τ +, where        τ -= min ω∈S, F (ω)<0 T ω τ + = min ω∈S, F (ω)>0 T ω \ {0}
In this case, for all delay values τ ∈ (τ -, τ + ) the system is stable.

Remark 3. One can conclude that in the previous case is sufficiently to investigate the first crossing in order to check the stabilizability in the delay. When one determines the stability by numerically computations the Proposition 4 is very useful because we can stop the computations after the first root crossing.

In the case card(S) = 2, the set of all stabilizing delay values can be expressed analytically:

Corollary 1. Assume that the following conditions are satisfied

(1) card(S) = 2 (2) card(U) = 2 (3) τ -< τ +
Then all the stabilizing delay values are defined by τ ∈ (τ k , τ k ), k = 0, 1, ..., k m , where

τ k = τ -+ 2kπ ω - , τ k = τ + + 2kπ ω +
and k m is the largest integer for which τ k < τ k , which can be explicitly expressed as

k m = max l∈Z l < ω -+ ω + -ω - • τ + -τ - 2π (14) 

General case

Based on the results, and the remarks above, we have the following Proposition 8. Assume that card(S) = 2p or card(S) = 2p + 1, with p ≥ 1 and card(U) > 2p. Then there does not exist any gap τ > 0 such that (7) becomes asymptotically stable.

Define now the following quantities:

n + (τ ) = ω∈S + , F (ω)>0 card {Tω ∩ (0, τ ]} , (15) n -(τ ) = ω∈S + , F (ω)<0 card {Tω ∩ [0, τ ]} , ( 16 
)
for some positive τ > 0. Furthermore, introduce the sets T + , and T -, which represent a partition of T in function of the sign of the derivative F evaluated at the corresponding crossing frequency, that is:

T + = ω∈S + , F (ω)>0 T ω \ {0} , T -= ω∈S + , F (ω)<0
T ω .

Based on the conditions and the notations above, we conclude with the following result:

Proposition 9. For a given T the system with characteristic equation ( 7) is asymptotically stable if and only if the following conditions are satisfied:

(1) card(U(T )) is a strictly positive even integer and the following inequality holds: card(U(T )) ≤ card(S(T ))

(2) there exists at least one gap value τ * ∈ T , such that:

n -(τ * ) = n + (τ * ) + card(U (T )).
Then all gap values τ ∈ (τ * , τ * + ), with τ * + = min{T + ∩ (τ * , +∞)} guarantee the asymptotic stability.

ILLUSTRATIVE EXAMPLES

Several examples are considered (see [START_REF] Morȃrescu | Asymptotic stability of some distributed delay systems: An algebraic approach[END_REF], the full version of the paper). For the sake of brevity, we present only two simple examples: the Cushing equation, and a second-order system, respectively.

Example 1. (linearized Cushing equation with a gap).

In this example we apply the above method for the Cushing linearized equation (s + a)(1 + sT ) n + be -sτ = 0, a > 0, b < 0. First it is easy to remark that (s + a)(1 + sT ) n + b has at least one (strictly) unstable root if and only if a + b < 0. Consider the case n = 1, that is the polynomial F (ω, T ) is given by:

F (ω, T ) = (ω 2 + a 2 )(1 + ω 2 T 2 ) -b 2 = ω 4 T 2 + ω 2 (a 2 T 2 + 1) + a 2 -b 2 .(17)
For a 2 -b 2 ≥ 0 (a + b = 0) we have card(S) = 0, that is no crossing with respect to the imaginary axis for all T (see Proposition 1), while for a 2 -b 2 < 0 we have card(S) = 1. According to the results of the previous section, the stability of the Cushing equation can be delay-independent stable (unstable), function of the sign of a + b for all (T, τ ) if card(S) = 0. If not, Proposition 4 will give the corresponding delayintervals for which stability is preserved under the assumption of asymptotic stability for some meandelay intervals (in T ) given by Proposition 2, etc.

Example 2. (second-order system). Consider the following second-order system:

P (s) = -s, Q(s) = s 2 + 2 (18) 
Simple computations prove that Q(s)(1 + sT ) + P (s) has two unstable roots. So that card(U) = 2.

The characteristic equation of the closed-loop system is given by (s 2 + 2)(1 + sT ) -se -sτ = 0 (19) and polynomial F (ω, T ) by

F (ω, T ) = (2 -ω 2 ) 2 + (1 + ω 2 T 2 ) -ω 2
= ω 6 T 2 + ω 4 (1 -4T 2 ) + ω 2 (4T 2 -5) + 4.

So we need to find how many positive roots has the following equation:

x 3 T 2 + x 2 (1 -4T 2 ) + x(4T 2 -5) + 4 ( 20 
)
First it is easy to see that the previous equation has at least one real negative solution because x 1 x 2 x 3 = -4 T 2 < 0 (where x 1 , x 2 , x 3 are the solutions of the equation ( 20)). Computing the discriminant and the Hurwitz determinants of the equation ( 20) we find

card(S) =      2 T > 1 2 0 T ≤ 1 2
. According to the result of the previous section a necessary condition for asymptotic stability of the closed-loop system is given by

T > 1 2 (21) 
Furthermore, for T satisfying (21) the existence of a stability region in the delay parameter is determined by the condition τ -< τ + .

Summarizing,we have:

Proposition 10. The system (18) is asymptotically stable if and only if T > 1 2 and in addition τ -< τ + , where:

τ -= min ω∈S, F (ω)<0 1 ω 2 T , τ + = min ω∈S, F (ω)>0 1 ω 2 T
A stability region is defined by the pair (T, τ ), where

T > 1 2
, and τ ∈ (τ -(T ), τ + (T )).

CONCLUDING REMARKS

This paper addressed the stability problem of a class of of linear systems including distributed delays with a gap. A characterization of stability regions in the (mean-delay,gap) parameter-space has been proposed. Illustrative examples complete the presentation.

  ω * , T * )] = 0 has a finite number of roots. Thus, the quantity card(S) changes for a finite number of values of T .

By a gap, we usually understand a "discrete delay value" added to the corresponding model (see, for instance, the terminology in MacDonald[1989].

Crossing curves represent curves in the delay-parameter space for which at least one root of the corresponding characteristic equation lies on the imaginary axis.

The order of P k is n q + k, for all k = 0, . . . , n, and H(P k ) will be constructed as a (n + n q ) × (n + n q ) matrix by setting the coefficients of high-order terms as zeroes, that is p = 0, for all > n + k.

Here, Log denotes the principal value of the logarithm. Consequently when |z| = 1, Log(z) = j arg(z)
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