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I. INTRODUCTION

Today, the electric/electronic (E/E) architecture of modern cars is a distributed network of embedded systems, consisting of several bus systems, dozens of electronic control units (ECUs) and hundreds of sensors and actuators. To this system, high requirements regarding determinism are imposed which form the basis for safe operation in any conceivable driving situation. Because of that, the timing behavior of single components as well as communication within the vehicle is widely statically determined a priori and the E/E architecture is realized as a nearly fully closed system.

Due to the evermore rising number of functions, current E/E architectures are more and more a vulnerable source for faults and a barrier to innovation [START_REF] Buckl | The software car: Building ict architectures for future electric vehicles[END_REF]. This situation is aggravated by the integration of new technologies like Vehicle-to-X Communication (V2XC) which form the basis for a large number of future services and applications. For these, it is no longer sufficient to only consider data that is available locally. The majority of applications rather will rely on information that originates from most diverse data sources. E/E architectures in the first approximation need to be "opened" by means of an additional radio interface located e.g. at an ECU, which enables communication with other vehicles or infrastructure. This not least increases potential for non-deterministic disturbance of safety-critical functions or malicious attacks of the internal communication network [START_REF] Glas | Car-to-car communication security on reconfigurable hardware[END_REF].

In order to overcome the limitations of current E/E architectures, application of new design principles like more encapsulation, standardization and centralization as well as a fundamental reconsideration of the fragmented development process is necessary [START_REF] Buckl | The software car: Building ict architectures for future electric vehicles[END_REF]. Up to the present day, both, function and architecture development are most often separately running tasks. As a result, errors are often only discovered in the integration phase. This fact can become an extremely time consuming and expensive endavor. Principles of platformbased design (PBD) are a promising solution in order to cope with this problem [START_REF] Sangiovanni-Vincentelli | Embedded system design for automotive applications[END_REF] since function and architecture are separated. This enables a flexible mapping of function to architecture and its validation already in early phases of development. The result is an increase of reliability and a reduction of development cost by avoiding additional design cycles [START_REF] Sangiovanni-Vincentelli | Embedded system design for automotive applications[END_REF].

Within this context, we propose a novel extensible tool chain that targets facilitation of exploration, validation and verification of future V2X-based automotive E/E architectures. Such systems are heterogeneous by nature. Hence, a design framework is necessary that supports managing heterogeneous model composition for representing data as well as control flow between models. The proposed tool chain is made up of a heterogeneous design tool called Ptolemy II (PtII) [START_REF] Eker | Taming heterogeneity -the Ptolemy approach[END_REF] and a simulation middleware based on the High Level Architecture (HLA) [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)[END_REF]. A possible framework architecture that can be developed by means of the tool chain is illustrated in Fig. 1. The HLA enables distributed co-simulation with domainspecific simulators like (parallel) SystemC [START_REF]IEEE Standard for Standard SystemC Language Reference Manual[END_REF] [START_REF] Roth | Improving parallel mpsoc simulation performance by exploiting dynamic routing delay prediction[END_REF] (hardware/software), OMNET++ [START_REF] Varga | An overview of the omnet++ simulation environment[END_REF] (network), Veins/SUMO [START_REF] Sommer | Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis[END_REF], Microsim [START_REF] Treiber | Microsimulation of road traffic flow[END_REF] (traffic) or co-emulation with real hardware/software components [START_REF] Roth | Efficient execution of networked mpsoc models by exploiting multiple platform levels[END_REF]. PtII is the starting point of the design process. Its task within the tool chain is twofold: I) The capabilities for explicit meta-modeling using an abstract syntax of clustered graphs [START_REF] Liu | The ptolemy ii framework for visual languages[END_REF] serve as user interface for support of tool integration and configuration of control and data flow interaction via HLA, II) due to its inherent heterogeneity and model composition properties PtII serves as central design tool for performing architectural exploration and validation and verification.

Heterogeneous Modeling Tool (Ptolemy II)

II. FUNDAMENTALS

In PtII, the basic building block of a system description is an actor. Actors are concurrent components that communicate through ports and relations. They can be atomic or composite. An atomic actor is at the bottom of the hierarchy. A composite actor allows hierarchical nesting of actors. Both, atomic and composite actors are executable following specific execution semantics, also known as models of computation (MoC) [START_REF] Eker | Taming heterogeneity -the Ptolemy approach[END_REF].

The MoC within a composite actor is determined by a director. In the discrete event (DE) MoC, interaction between actors is modeled by events, representing some instantaneous action during simulation time. DE simulations are particularly suitable for modeling discrete systems like e.g. digital hardware or communication networks. SystemC, OMNET++, SUMO or Microsim are examples of DE simulators. Beside DE there exist various other MoCs like continuous time (CT) which is suitable for modeling analogue components like sensors, or process networks (PN) which are often used for modeling data flow applications.

The HLA is an IEEE standard [START_REF]IEEE Standard for Modeling and Simulation (M&S) High Level Architecture (HLA)[END_REF] since 2000. It was originally defined by the Defense Modeling and Simulation Office (DMSO) for the U.S. Department of Defense. Its original field of application are military training simulations. The HLA is a generic software architecture combining all the components necessary for Parallel Discrete Event Simulation (PDES). In HLA terminology the logical representation of an interconnection of different simulators is called a federation and includes multiple simulators called federates. Federates connect via ambassadors to a runtime infrastructure (RTI). The RTI implements services defined by the HLA standard like time management or data distribution management. A RTI can possibly run several independent logical federations in parallel. Also part of the HLA standard is the so called Object Model Template (OMT) which defines the format and syntax of HLA object models including object/interaction classes attributes, parameters and datatypes but not their content. The OMT allows to define Federation Object Models (FOM) and Simulation Object Models (SOM). The FOM contains properties of a whole federation. The SOM contains properties of a single federate.The HLA implementation used in this work is [START_REF] Noulard | CERTI, an Open Source RTI, why and how[END_REF].

III. SIMULATION PLATFORM LIBRARY

The so called Simulation Platform Library (SPLib) forms the basis for contruction kit like composition of distributed simulation tools. The SPLib applied within this work is an extended version of the one described in [START_REF] Roth | Efficient execution of networked mpsoc models by exploiting multiple platform levels[END_REF]. It provides a set of classes that abstract from the lower level HLA ambassador interface classes. Its task is to provide a contract between HLA and the simulation tool that is to be integrated in terms of data flow and interaction behavior between both. Fig. 2 The Federate class aggregates all other core classes. The ToolAdaptor class establishes a link from a simulation tool to the data model and the behavioral metamodels of the SPLib. These are given by the ObjectModel (OM) and the BehavioralInterfaceModel (BIM) classes. The ToolAdaptor provides high-level control flow related methods that are to be called by the simulation tool. Beside that, it encapsulates instances of IOSocket which are used for establishing data flow connections to the simulation tool. IOSockets are equipped with a queue that allows buffering incoming HLA reflections. On the reverse side, the Ambassador class provides access to the RTI ambassador interfaces and implements the federate ambassador callback methods. Hence, it is the access point for data as well as control flow interaction with the RTI. The HLA specific interfaces given by the Ambassador class are encapsulated by the HLAAdaptor class.

A. Object Model

The ObjectModel allows to store the SOM of a specific simulator. It provides capabilities for dynamic object model representation resulting in a high amount of flexibility. An excerpt of the overall class structure is illustrated in Fig. 3. The classes form an object-oriented meta-representation of a SOM. The structure has been developed according to the OMT. In the OMT specification, components are structured in tables. Object/interaction classes within the OMT can be hierarchically nested, representing inheritance. Components within one table can reference components within other tables. For instance, an attribute entry in the attribute table must reference a specific object class it belongs to. In addition, an attribute must be assigned a datatype of one of the datatype tables. Each datatype table contains types that share common characteristics. The OMT standard differntiates e.g. between basic data representations, simple datatypes or the array datatype table. More complex datatypes like arrays may reference to simple datatypes as element types. The nesting and referencing relationships between components in the OMT tables are mapped to object-oriented aggregation and/or inheritance relationships within the structure of Fig. 3. Generally, the ObjectModel class consists of ObjectClass and InteractionClass members. The hierarchical nesting between object and interaction classes is modelled using self-aggregation. Also, attribute and parameter ownership is modelled using aggregation between Object/InteractionClass types and Attribute/Parameter types. The latter two are owner of any of the defined datatypes. For datatype representation inheritance has been applied in order to exploit polymorphism in case of compound datatypes like arrays. In the current implementation SOM tables can be specified in a easy readable form by means of (nested) C++ method calls as shown in Listing 1. Therefore, the ObjectModel class needs to be inherited for implementation of the generateObjectModel() method. Methods applied within generateObjectModel() are implemented in the base class. An alternative is to provide the SOM as XML representation. 

B. Behavioral Interface Model

By inheriting from the BIM class (see Fig. 4) it is possible to define a finite state machine (FSM) by which data and control flow interactions between simulator and HLA and vice versa can be controlled. The FSM defines a valid calling sequence of simulator interface and ambassador methods. This allows to realize/verify different general interaction behaviors and/or synchronization schemes on top of the HLA services. The latter can be advantageous for accelerating DE co-simulation/emulation [START_REF] Roth | Efficient execution of networked mpsoc models by exploiting multiple platform levels[END_REF]. Also, for MoCs different from DE other synchronization schemes may be more suitable. BIM descriptions can be annotated to respective actors as C++ code. When neglecting hierarchical states and abstract arguments, BIM FSMs can mathematically be described as a tuple (S, Σ, Ω, δ, s 0 , s e , S int ), with S being the set of states, Σ the input alphabet, Ω the output alphabet, δ : S × Σ → S × Ω the transition function, s 0 the start state, s e the end state and S int the set of the so called interaction states. States are realized by the State class. During execution, the input within a certain state s is given by the topmost Event within the EventQueue. Events are either generated by actions or incoming method calls from the Ambassador or the simulation tool respectively IOSocket. In the latter case, method calls are converted by the respective adaptor into events. The transition function relates inputs and source states to outputs and target states. In the BehavioralInterfaceModel class it is realized by a transition table which holds elements of type Transition. The traversal of transitions must be protected by Guards. Outputs are generated by Action(s) which can be annotated to transitions. An output corresponds to the generation of a new event into the event queue, the call of a ToolAdaptor/H-LAAdaptor method or the write access to elements of type AbstractArgument which are part of a FSM description.

Event

The notion of interaction state become more clear when considering the execution semantics of a BIM FSM in more detail. These are based on iterative execution of the two methods exec() and post() which are inspired by the fire() and postfire() methods of Ptolemy II actors (since the FSM is always ready to fire, an equivalent to prefire() is not necessary). An iteration consists of a single call to exec() and a subsequent single call to post(). Therewith, the following happpens:

• The exec() method takes the front event from the EventQueue and selects the transition for which the guard evaluates to true. This transition is called active transition. Thereby, a runtime check is performed in order to ensure that there exists only one active transition.

If the runtime check is passed, the associated action(s) is/are executed. If the exist more than one or no active transitions, an exception is thrown. • The post() method changes the current state to the target state of the chosen transition. The method either returns 0 oder +1. If the target state is the toplevel end state or an interaction state the method returns 0 in order to signal termination or that control should temporally be passed to the environment. For all other states the method returns +1 in order to signal that a further iteration of exec() and post() should be performed.

Therewith, an interaction state forms a kind of label at which the execution of the BIM FSM is suspended and control is given to the surrounding execution environment (i.e. the simulator to be connected). The state in which the FSM has been suspended last, corresponds to the entry point for further execution. Instantiation of a BIM FSM works similar to the instantiation of the object model, namely by using (nested) C++ function calls within the generateBIM() method. Applied methods within generateBIM() like STATE() or TRANSITION() are again part of the BehavioralInterfaceModel base class. Listing 2 illustrates an example. At the top instantiation of an abstract argument, specifically a synchronization point named "'READY TO RUN"' is exemplarily shown. Afterwards, four states S_INIT, S_GRANT, S_ADVANCE and S_END are instantiated within the state table. S_INIT and S_END are marked as start respectively end states. In order to avoid state explosion, BIM FSMs can be defined hierarchically: S_INIT is a hierarchical state that is refined with a complete state machine called Init_FSM. Thereby, refinements are always executed first. Only if a refinement cannot execute, then outer transitions are evaluated. The S_GRANT state is marked as interaction state. Both, S_GRANT and S_ADVANCE are referenced by the subsequent transition definition, where S_GRANT is the source state and S_ADVANCE the destination state of the transition. Traversal of the transition is protected by an event guard (a derived type of the Guard class) which limits passage of the transition to the occurence of the Sim Event SetNextBarrier event. The passage of the transition is coupled with the execution of an action called HLA13 A5 11 Action NextEventReq. 

Listing 2. BIM FSM Instantiation Code

v i r t u a l v o i d g e n e

IV. TOOL INTEGRATION

Tool integration means, making simulation models or tool capable of communicating with the rest of the overall simulation. The process of tool integration can be separated into the three steps Federation Model Definition, Interface Generation and Interface Integration. The proposed overall supporting process is illustrated in Fig. 5. In the first step one or several federation models (FMs) are defined in PtII. A single PtII model can contain several FMs, each representing a separate federation. In the second step, interfaces for each tool are generated automatically based on the FM definition(s). Finally, interfaces are integrated into simulation tools. Depending on the tool, this step can occur automatically or must occur manually.

A. Federation Model Definition

An FM specified in PtII syntax includes all the necessary information for generating interfaces and configuration files. This information is extracted by parsing the FM. Generally, a FM is specified within a PtII HlaComposite actor. Step 1) Federation Model Definition

Step 2) Interface Generation

Step 3) Interface Integration HLADEDirector HLAGenDirector

Fig. 5. Interface Generation and Tool Integration

This includes datatypes, object/interaction classes and publish/subscribe relationships. II) control flow between simulators by means of annotating behavioral descriptions to actors.

1) Definition of Data Flows and Datatypes: Data flows between the mentioned HLA entities (i.e. the newly introduced actors) are modelled by PtII relations. Thereby, the names of the actors correspond to the names of the respective entities within an HLA object model. HLAFederate actors are only allowed to connect to HLAObjectClass actors and communicate with each other via these. Beside that, federation models can but need not include PtII as federate. PtII can solely be used for FM definition and interface generation. In turn, a HLAFederate actor can represent any type of simulator, including another PtII instance. In order to allow a PtII instance to take part in a federation, ports need to be added to the composite actor that allow connecting to the residual PtII simulation model to HLAObjectClass actors. The structure of HLA object classes and the datatypes of attributes and parameters are determined by the PtII datatypes of the actor ports. The direction of communication between federate actors and object class actors through ports and relations determines the publish/subscribe relationships. In the example of Fig. 5, a single external simulator represented by a federate actor named "'RemoteSimulator"' is co-simulated with a local PtII model. Connection to a local PtII model is achieved by introducing PtII input and output ports (large arrows in corners of the composite) that connect the FM to the HLA composite. The local PtII model and the remote simulator solely communicate via the ObjectClassX and InteractionClassY actors.

2) Definition of Control Flow: The kind of interaction and control flow between simulators that are part of a federation is specified by their BIM FSMs. The BIM FSMs limit the number of interaction patterns between simulators that interact via HLA to a subset of all interaction patterns that are allowed by HLA. In the current version of the PtII extension, BIM FSM descriptions must be annotated to actors as C++ code. In case PtII taking part as federate, the BIM FSM must be annotated to the HLAComposite in case of any other simulator it needs to be annotated to the respective HLAFederate actor.

B. Interface Generation

Tool interfaces can be generated automatically. A generated interface serves as a separate layer between a simulator and HLA. From the overall FM four types of artifacts are generated:

• FOM related artifacts: Currently it is possible to automatically generate the .fed file which is necessary for configuring the RTI. For interface generation there exists a special director called HLAGenDirector. This director must be added to the HLAComposite. The HLAGenDirector has access to different ModelInterpreter classes as shown in Fig. 6. These provide concrete (language specific) interpretations of the syntactical artifacts provided by the FM. Each of the TypeInterpreter classes contains tables with which PtII datatypes are mapped to language specific types like C++, Java or HLA datatypes. Hence, the PtII type system serves as reference type system from which language specific types are derived. The SOMInterpreter is used to fill the datatype tables of the type interpreters with SOM specific content. Both, SOMInterpreter and FOMInterpreter classes provide the capabilities for generating the above mentioned FOM and SOM related artifacts. Finally, the JavaInterfaceInterpreter and CPPInterfaceInterpreter classes inherit from SOMInterpreter and provide additional capabilities for deriving the signature of the data flow related Java and C++ interface functions by which the interface wrapper is accessed from outside. CPPInterfaceInterpreter is capable of generating the high level interface classes, the JavaInterfaceInterpreter is capable for generating the Java specific SWIG interface file.

The resulting artifacts are compiled with the SPLib classes into a shared C++ library. If the target simulator is written in C++ (like e.g. the open source SystemC or OMNET++ simulators) the shared library can directly be integrated and linked to the simulator/model. If the target simulator is written in another language like Java, C# or a scripting language like Python, SWIG must be called for target language wrapper generation. 

TypeInterpreter

C. Interface Integration

The interface wrapper appears to a simulator as a single class that provides a fixed number of control flow and a variable number of data flow related high level methods. The control flow related methods are provided by the ToolAdaptor class, the data flow related ones by the IOSocket classes (see also section III). They have a fixed signature. In the current implementation, control flow related methods are Generally, interface integration can be viewed as a mapping of BIM FSM states into the execution phases of the target simulator. Exemplarily transferred to a PtII director these phases are preinitialize(), initialize(), prefire(), fire(), postfire() and wrapup(). For PtII integration, a special HLADEDirector has been developed which derives from the original DEDirector and which integrates an interface wrapper following the described approach (a prestudy has been done in [START_REF] Brito | Development and evaluation of distributed simulation of embedded systems using ptolemy and hla[END_REF]). Since PtII is written in Java, a SWIG based wrapper is used and loaded dynamically. The mentioned control flow related calls can theoretically occur in any of the execution phases of the HLADEDirector. The applied BIM FSM (the same has been used for SystemC and Veins) is illustrated in Fig. 7. It consists of a toplevel FSM with four hierarchical refined states. In S_INIT HLA initialization like federation creation, publication and subscription as well as instance registration is performed (for the latter, S_INIT internally contains an interaction state). The S_SYNC_READY_TO_RUN and S_SYNC_SHUTDOWN states are refined by FSMs that implement synchronization procedures by means of HLA synchronization points which ensure that simulators start and stop execution (the latter includes instance deletion and the shutdown procedure) at the same time. The S_EXECUTE state is responsible for time advancement (federates are time regulating and time constrained). It is an interaction state and a refined state at the same time. Interaction with the environment simulator is only performed if there does not exist an event in the event queue (symbolized by Event_Absent). Otherwise, the refinement states ensure that only valid events can occur during the time advancement procedure. Finally, if the toplevel end state becomes the next state, the FSM terminates. The current implementation matches the S_INIT state to the initialize() phase, the S_EXECUTE state to the fire() phase and the S_END state to the wrapup() phase of the PtII HLADEDirector. If the fire() method of the HLADEDirector is called and the timestamp of the next event in the event queue is larger than the previously granted time the director proposes an advance, iterates and sets the next fire time via fireContainerAt() to the granted time. Afterwards reflections are served. Due to the microstep semantics zero lookahead was chosen. In order to be able to achieve deterministic distributed execution by means of the NER service a priority field method similar to the one described in [START_REF] Fujimoto | Zero lookahead and repeatability in the high level architecture[END_REF] is applied. The HLADEDirector manages data flow between a local PtII model and the interface wrapper with support of the HLAObjectClass. The HLADEDirector is equipped with a reflectDir() and updateDir(token) method. The reflectDir() method is called by the HLADEDirector itself at any point in simulation time when a new time barrier has been read by calling getNextBarrier(). The method checks IOSocket buffers for available reflections by calling getSocketQueueSize(). If a reflection is available the full signature of the read method is dynamically derived from the object class structure of the SOM using the JavaInterfaceInterpreter class. The reflection is then converted into a PtII token. Afterwards, the token is transferred to the HLAObjectClass actor that belongs to the IOSocket which provided the reflection. For that reason, each HLAObjectClass actor is equipped with a reflectAct(token,time) method. In turn, the updateDir(token) method is called by HLAObjectClass actors. The method converts the passed token by the help of the JavaInterfaceInterpreter class into a write method call on the interface wrapper. The timestamp of the generated update event corresponds to the current local simulation time. The semi-automatic integration by dynamic signature derivation makes sense since PtII plays a central role within the overall tool chain and is probably applied in many different and extensible co-simulation scenarios.

During execution, only HLAObjectClass actors that connect to the HLAComposite ports play an active role. They represent the HLA object classes (to) which the residual probably heterogeneous PtII model subscribes/publishes. They are necessary for transferring data between the residual PtII model and the federation and vice versa. All other HLAObjectClass and HLAFederate actors remain passive and will never fire during execution. The reflectAct(token,time) method of a HLAObjectClass actor stores the passed token in an internal timed queue. The method internally calls fireAt(time). This makes sure, that the actor is fired at the point in time, when a reflected token should be forwarded to the residual PtII model through the corresponding output port. Therefore, the time parameter must correspond to the time of the grant. The opposite direction works as follows: As soon as an HLAObjectClass actor is fired it checks its input ports for available tokens. if a token is found it is passed to the HLADEDirector by calling updateDir(token).

Overall, by means of the combination of PtII and HLA in the described manner, the following types of execution are conceivable: V. CASE STUDIES Applicability of the previously described tool chain is now demonstrated by means of a framework that has been developed with the tool chain. Thereby, validation of a V2X based ACC application running on a future automotive E/E architecture has been chosen as example. By means of the presented case studies three goals are pursued I) demonstration of the basic capability of heterogeneous distributed co-simulation II) demonstration of the applicability of PBD within the tool chain III) demonstration of applicability for verification using several federations in parallel.

A. Simulation Setup

The overall framework is shown in Fig. 8. It allows investigating interdependency between inter/intra vehicle communication as well as computation overhead when executing ACC functions. The framework consists of a PtII federate, a Veins federate and a SystemC federate. In case of the latter two the interface wrapper has been integrated manually. The structure has been designed according to the PtII managed mode described in section IV-C, i.e. single simulators are cosimulated with PtII within seperate logical federations. Within the PtII federate the E/E architecture of the vehicles of interest is modelled. These intra-vehicle models are combined with an inter vehicle model that is provided by a Veins federate. Veins is an open source vehicular network simulator that integrates the OMNET++ network simulator with the SUMO traffic simulator bidirectionally using a TCP/IP proxy. Veins allows simulating IEEE 802.11p wireless networks including node mobility. Within the framework Veins simulates surrounding vehicles and the inter vehicle communication via V2X messages. Finally, by means of a SystemC federate selected ECUs within the E/E architecture model can be refined down to fully cycle accurate descriptions. All federates are integrated by means of the interface wrapper described above.

Concerning Veins we've modified the application and mobility modules of Veins by the introduction of additional parameters that allow indicating which vehicles are remotely controlled by PtII or if WiFi messages are received/sent remotely from/to PtII. This is a prerequisite for validation of the ACC functionality. Regarding synchronization a parameter can be set for each vehicle representing the time interval for updating messages exchanged with PtII. Analogueous, there is a parameter which specifies the update time interval between SUMO and OMNET++ via TCP/IP. In the different considered scenarios these are set to a value of 0.01s.

Considering SystemC, a detailed model of a multi-core architecure called HeMPS [START_REF] Carara | HeMPS -a framework for NoC-based MPSoC generation[END_REF] which represents a refined V2X ECU has been integrated. The model consists of a configurable number of processing elements (PEs) which are interconnected by a Network-on-Chip (NoC) called HERMES [START_REF] Moraes | HERMES: an infrastructure for low area overhead packet-switching networks on chip[END_REF]. In addition, the model is equipped with a virtual internal/external network interface that connects the model to the interface wrapper. 

B. Adaptive Cruise Control Application

Current ACC systems monitor the distance to the vehicle in front using radar sensors. Based on the monitored values speed and distance are automatically adjusted by motor and brake intervention. However, conventional ACC monitoring is limited to the line of sight. This can be a safety critical factor e.g. in case of a sudden traffic congestion within a curve. By extending the ACC with V2XC capabilities, an automatic reaction to such situations is possible.

The PtII model of the considered scenario is shown in Fig. 9. On the top level, the overall simulation model is instantiated, containing Veins and separate composite actors for selected vehicles. Vehicles can be refined to E/E architectures. Here, we orient ourselves by design principles suggested for future E/E architectures [START_REF] Buckl | The software car: Building ict architectures for future electric vehicles[END_REF] like a centralized computer architecture and interconnection by a standardized communication backbone. We assume, that the basic structure of the target E/E architecture is predefined while implementation of components like ECUs may vary. Inside the E/E architecture data is routed through a network model represented by an Internal Network composite. V2X and Central ECUs are assumed to be multicore architectures which execute the ACC application. Radar ECU and GPS ECU are responsible for data acquisition and preprocessing of radar sensor and GPS data where the Radar ECU provides position and velocity of the vehicle ahead and the GPS ECU the own position. The four Wheel ECUs take the acceleration calculated by the ACC as an input and drive the corresponding wheels to the desired velocity. The determined velocity value is fed back to the top level model and forwarded to Veins where the velocity of the corresponding remotely controlled SUMO vehicle is adjusted. The Wheel ECU composites, representing the control path of the ACC application, are directed by a ContinuousDirector. The velocity provided by the Wheel ECUs is discretized in order to be reused for transmission to connected ECUs. The sampling rate is set to 0.01s In Fig. 10 the velocity measurements of radar only controlled ACC is shown. The red and blue curves belong to the ahead and refined vehicle respectively. As we can see, the refined vehicle whose velocity is calculated in PtII follows the leading vehicle controlled by SUMO with a certain distance that depends on ACC parameters such as a safety time gap (set to 1.7s). The calculated acceleration is plotted in Fig. 10. On the right hand side in Fig. 10 we can see the position of the leading and the following vehicle. The difference between both curves represents the distance between both vehicles and is also reflected by the distance plot in Fig. 10.

To analyse the influence of the V2X based ACC, several simulations with different V2X message beacon rates of 0.1s, 1.0s and 10.0s have been conducted. With a beacon rate of 0.1s the curves are identical to the radar ACC. When increasing the beacon rate to 1.0s and 10.0s (low beacon rates could arise e.g. in lossy or jammed channels) the progress of the velocity of the following vehicle gets less comfortable in terms of maneuver with high deceleration rates or higher velocities. This gets more obvious the lower the beacon rates get since the ACC algorithm gets updates about the actual position and velocity of the leading vehicle less frequently. This can be observed in Fig. 11 but even with a beacon rate of 10.0s the scenario still remains crash free. However, if the beacon rate gets too low, the ACC cannot react properly anymore and crashes into the leading vehicle. This has been observed with a very low beacon rate of 50.0s where a crash occured after around 49s.

D. Application of Platform-based Design Principles

As has been shown, the framework allows modelling of functional and architectural artifacts as well as environmental components, that are necessary for a holistic analysis and system validation. In the following it is shown that by replacing abstract artifacts through more detailed entities, an iterative refinement of an abstract specification towards the final implementation is possible. Moreover, if the process of refinement is based on quantity managers (QM) [START_REF] Davare | A next-generation design framework for platformbased design[END_REF] a mapping of functions to co-simulated architecture models is possible. PtII provides capabilities for computation and communication refinement using so called aspects which are a synonym for QMs [START_REF] Ptolemaeus | System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org[END_REF].

As mentioned above, messages exchanged within an E/E architecture model are routed through an Internal Network composite. For communication refinement, the ports at that composite can e.g. be annotated with a so called bus communication aspect allowing investigation of bus delay influences. Furthermore, the vehicle composites can be refined towards functional and architectural models which is the basis for computation refinement. The function (ACC application) is specified by means of a task graph consisting of Tasks T1-T7. A task is represented by a (composite) actor which models a specific sub-functionality of the overall V2X-ACC application. Hereby, the single tasks fulfill the following sub-functionality:

1) V2X data transmission 2) V2X data reception 3) V2X data security measures 4) radar sensor and GPS data processing 5) data aggregration 6) V2X-ACC algorithm based on the Intelligent Driver Model (IDM) 7) actuator control.

Within this case study, Central ECU and V2X ECU are responsible for the tasks T1-T7. The latter can be mapped on the former by means of a newly developed quantity manager actor called QMMapper. The mapping and routing are specified by routing entries in a mapping/routing table used by the QMMapper. This is the basis for a later automization of design space exploration. For investigating task mapping influences, the following methodology is applied:

1) Tasks are clustered into task groups consolidated in further composite actors. These composites follow the PTIDES MoC [START_REF] Zhao | A programming model for timesynchronized distributed real-time systems[END_REF] time-synchronized distributed realtime applications. A PTIDES composite is also called PTIDES platform. 2) PTIDES platforms are mapped onto V2X ECU resp.

Central ECU which is accomplished by means of the QMMapper.

3) The specification of each of the ECUs can be refined from an abstract model down to an individual RTL SystemC implementation. Each PTIDES platform is then mapped onto a specific PE within the abstract composite/cosimulated SystemC model.

In the following measurements a V2X ACC has been configured with a beacon interval of 1.0s. Two task groups, i.e. PTIDES platforms called ACC containing T4-T7 and V2X containing T1-T3 have been created. The Central ECU and V2X ECU are modelled abstractly. Each is made up of four PEs interconnected by an abstract NoC. Scheduling issues are not considered in this use case but can be incorporated by annotating different kinds of so called execution aspects [START_REF] Ptolemaeus | System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org[END_REF].

Table I summarizes the mapping variations of the platforms. In both cases the ACC platform is mapped onto the Central ECU and the V2X platform onto the V2X ECU but on different inside the ECU. Thereby PE 0 is a computational core with additional access to the network interface, i.e. every message to be received/sent is processed in PE 0 first. It is obvious that in Mapping 1 no additional communication delay through the NoC emerges whereas in Mapping 2 all messages need to be received/sent from/to PE 3. Furthermore, in both mappings the received V2X messages have to pass the internal network since the ACC and V2X platforms are mapped onto Central and V2X ECU respectively. To see the influence of communication delay caused by the E/E internal network and the NoCs of the Central ECU and V2X, we generated synthetic congestion resulting in bus service times of the internal network of 2ms and in NoC delays per hop of 500ms. Such high delays per hop can arise in simple NoCs in case of congestion when there are no quality of service countermeasures. Thus in Mapping 2 there are three hops necessary in the V2X ECU to forward received velocity and position values of the vehicle ahead to PE 0 before the packet can be sent out via the internal E/E bus to the Central ECU. In the Central ECU again all incoming messages have to be forwarded from PE 0 to PE 3 before the ACC can calculate new acceleration values. This results in a communication delay of about 6 * 500ms = 3s where the internal bus delay is neglected. This can be obeserved in Fig. 12 where the braking maneveur of Mapping 2 is delayed by calculated value compared to Mapping 1 where only the internal bus delay has an influence. 

E. Verification based on Multiple Federations

The last case study serves as demonstration of the feasibility of PtII managed mode and mixed mode. In the case of discrete-event models a distinct execution order of actors is the basis for achieving causally correct and deterministic simulation results. For that case, PtII assigns priorities to events by sorting them according to model time, microstep and level [START_REF] Ptolemaeus | System Design, Modeling, and Simulation using Ptolemy II. Ptolemy.org[END_REF]. The microstep specifies a zero delay at a certain point in time whereas the level is determined by a topological sort of a directed acyclic graph (DAG) of the actors. Therewith an ordering is assigned such that an upstream actor in the DAG executes earlier than a downstream actor. In order to be able to build a DAG, loops between actors must contain at least a microstep delay. The synchronization algorithm that has been presented above relies on the NER service of the HLA. An HLADEDirector proposes to advance to a certain point in time that is specified by the setNextBarrier() call. It always passes the next event that is currently available within the event queue. In order to guarantee causal correct execution the time delta from the current point in time to the proposed time must not be larger than the minimum possible delay until the HLAComposite may possibly receive a new token. This requirement is always fulfilled for a single HLA composite and for multiple HLA composites without loops between them (due to the execution ordering). However, in case of the existence of loops between HLA composites the next event in the event queue cannot unconditionally be taken for proposition via setNextBarrier(), even in the case of delays that are inserted. The reason is, that after the grant of a HLADEDirector A within an upstream HLAComposite to time t A a HLADEDirector B within an adjacent downstream HLAComposite that requests at the same time and microstep could be granted to a time t B < t A and violate causal correctness by inserting a token that will be sent to federation A at an already passed point in time. A simple solution is to derive a minimum lookahead within the PtII model and regularly generate events with the derived minimum lookahead. This solution has been chosen here. The path from Veins to HeMPS contains no delay. The path from HeMPS to Veins via the Wheel ECU hence must contain at least a microstep delay to create the DAG. Concerning lookahead, since the Wheel ECU generates events with the same frequency as Veins (i.e. 1/0.01s), there will always be a event in the event queue in due time which avoids that Veins requests too far into the future. Hence, Veins will never receive events in the past and causal correctness is preserved. Fig. 13 illustrates the measured results for a simulated time interval of 10s when executing the radar ACC application as Kahn Process Network (KPN) on the cycle accurate HeMPS model. The model has been simulated with clock frequencies of 100 kHz respectively 50 kHz. As can be seen 100 kHz version reacts slightly faster which results in the velocity to start increasing again already at 19s whereas the 50 kHz version still remains at 0 m/s. The execution for 10s of simulation time was 25min at 50kHz and 52min at 100kHz on a core i5 dual-core at 2.5GHz. In [START_REF] Topc ¸u | A metamodel for federation architectures[END_REF] a metamodel for federation architectures is presented. However, no solution for managing heterogeneity is provided. In recent model-based approaches for investigating V2X communication like [START_REF] Queck | Realistic simulation of v2x communication scenarios[END_REF], [START_REF] Sommer | Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis[END_REF] the emphasis lies on application analysis on a more coarse grained level like traffic management and efficiency. Because of that, in these works vehicles can be considered as a focused processing point. However, for validation of E/E architecture components, such a point-of-view is insufficient. There is rather the need for a comprehensive description of a complete V2X processing chain starting from the sensor of the source vehicle and ending up at the actor of the destination vehicle. The concept presented in [START_REF] Roth | Car-to-X Simulation Environment for Comprehensive Design Space Exploration Verification and Test[END_REF] targets such a view but it is not mentioned, how heterogeneity could be managed or PBD principles could be integrated. In the area of hardware/software co-simulation [START_REF]Synopsis Platform Architect[END_REF] or [START_REF] Davare | A next-generation design framework for platformbased design[END_REF] are prominent tools. However, they do not provide capabilities for structured integration of simulators.
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 7 Fig. 7. Behavioral Interface Model FSM In contrast to the control flow methods, data flow related methods do not necessarily have a fixed signature. Methods for reading and writing start with read or write followed by the name of the object class that is accessed. The instance name is a method parameter. Number and types of other parameters depend on number and types of attributes that are stored within the respective object class. Data flow related methods are • readX(): Read topmost reflection of IOSocket/object class "'X"'. • writeX(): Write an update into IOSocket/object class "'X"'. This effectively generates a Sim_Event_Update event for the BIM FSM. In addition, a timestamp must be passed to the write call. • addRemInst(): Generate event for adding/removing object class instances. • getSocketQueueSize(): Return the fill level of a specified IOSocket. • popSocket(): Pop the topmost reflection from a specified IOSocket.

Fig. 9 .
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 12 Fig. 12. Velocities depending on Mapping, Left: ACC=CentralECU PE0, V2X=V2XECU PE0, Right: ACC=CentralECU PE3, V2X=V2XECU PE3
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 13 Fig. 13. Radar ACC as KPN Application on HeMPS (100 kHz left, 50 kHz right), red = ahead vehicle, blue = follower vehicle VI. DISTINCTION TO RELATED WORKS

  HLAObjectClass orHLAInteractionClass actors represent HLA object respectively interaction classes (in the following only HLAObjectClass actors are mentioned for simplicity reasons). By means of these basic elements the user can define I) data flows and data representations within a distributed co-simulation using actors, ports and relations.

		ObjectClassX		
		RemoteSimulator	
		InteractionClassY		
		HLAComposite	
	FOM	High Level		
	(XML/FED)	Interface	SOMs	BIM FSMs
		Classes	(C++)	(C++)
		(C++)		
	Beside the HLAComposite actor, further different novel types of PtII actors like HLAComposite, HLAFederate, HLAObjectClass or HLAInteractionClass are introduced. HLAFederate actors represent simulators to be co-simulated, SWIG Wrapper Generator Target Language C++ Compiler & Linker Compilers, Interpreters, Classloaders, ... wrap Federates RTI Shared Federate Libraries Target Language Wrappers	SPLib Sources Target Language Models HLA Ambass. Interfaces

  • SOM: The SOM is exported as C++ code. SOM specifications follow the syntax as it has been defined in section III-A (i.e. an inherited class of the ObjectModel class with respective OM instantiation code). • Behavioral Interface Model FSM: As already mentioned above, BIM FSMs currently need to be annotated as PtII parameter to federate actors and/or the HLA composite actor. BIM FSMs follow the syntax defined in section III-B. From the annotated FSM description an inherited class of the BehavioralInterfaceModel class is generated for each federate. • High level interface classes: These are generated for each federate and set on top of the SPLib classes.

They include derived types of IOSocket and a C++ wrapper class. The latter provides a function-based interface to the Adaptor and IOSocket classes. This greatly simplifies usage. Beside that, SWIG

[START_REF] Beazley | Automated scientific software scripting with swig[END_REF] 

interface files (.i files) can be generated. SWIG is incorporated in order to wrap the C++ wrapper class once again for integration into simulators that are based other languages than C++. Interface files are used to configure SWIG with special type mappings between C++ and a target language. The resulting component is called interface wrapper in the following.

  • getState(): Return the current state of the BIM FSM. • setExpState(s exp ): The expected s exp state value may be used by the FSM to verify that it matches the actual next interaction state.

	• setNextBarrier(): Set the next time barrier that the
	simulator wishes to advance.
	• getNextBarrier(): Get the last time barrier that has
	been granted.

• iterate(): Iterate the BIM FSM. Executes sequences of exec() and post() until post() returns 0. This method must regularly be called by the environment simulator in order to advance the BIM FSM state.

• end(): Generate a Sim_Event_End event for the BIM FSM.

  and modification of data and control flows between them. Single simulators are co-simulated with PtII within seperate federations using appropriate SOMs and BIM FSMs. PtII serves as federation gateway and mediates between these federations. A possible drawback is decreased performance.• Mixed Mode: In this mode, the previously described modes are executed together, i.e. not only PtII and single simulators form separate federations but a co-simulation federation can contain more simulators. It combines advantages of both modes, namely better execution performance and flexibility in model composition.

	• Standard Mode: All simulators are part of a single feder-
	ation. This mode is best applied if all simulators follow
	related execution semantics. E.g. integrating several iden-
	tical DE simulators into a single federation is a straight
	forward issue since both, RTI and the simulators are
	basically event-based. A typical application is parallel
	simulation for improving performance.

• PtII Managed Mode: Generally, a "brute-force" composition of heterogeneous simulators following different MoCs may result in so called emergent behavior

[START_REF] Eker | Taming heterogeneity -the Ptolemy approach[END_REF]

. Hence, in this mode, the RTI is assisted by PtII for managing heterogeneity. This enables structured composition of federations

TABLE I

 I 

	.	PTIDES PLATFORM MAPPINGS
		Mapping 1	
	Platform	Tasks	ECU	PE
	ACC	T4-T7	Central ECU	0
	V2X	T1-T3	V2X ECU	0
		Mapping 2	
	Platform	Tasks	ECU	PE
	ACC	T4-T7	Central ECU	3
	V2X	T1-T3	V2X ECU	3
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